

High Altitude Long Endurance UAV Configurations:

JAVNET

Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions

- Giulio ROMEO, Politecnico Di Torino (Turin Polytec. Univ.), Dept. of Aerospace Eng., Italy.
- Zvi SHAVIT, Israel Aircraft Industries, Israel
- Zdobyslaw GORAJ, Warsaw Univ. of Technology, Dept. of Airplane & Helicopter Design, Poland
- Jean HERMETZ, Onera, France
- CIRA, DLR, UNINA

EILAT, May 18-19th 2005

CAPECON

BIRD <u>- Orbit</u>: 570 Km Spatial Resolution: 370 m Repeat Cycle: 24 HOURS Design Life: 5 years

LANDSAT <u>- Orbit</u>: 705Km Spatial Resolution: 15-60m Repeat Cycle: 14 days Design Life: 5 years

Integration SATELLITE + UAV = Higher Resolution +

Continuous Data

EILAT, May 18-19th 2005 HALE UAV Configuration

MAIN GOAL: to define and consolidate, within a 2 iteration design cycle, 3 HALE Configurations:

- MODULAR

UAVNET

- SOLAR
- BLENDED

MULTI-DISCIPLINARY OPTIMISATION SOFTWARE developed to obtain the Optimised configuration

FINAL CONFIGURATIONS: as result of best compromise among production cost, aerodynamic performance efficiency, structural efficiency and aeroelastic behaviour, propulsion efficiency, and safety.

PERFORMANCE shall be improved by at least 20% with respect to current technologies.

EILAT, May 18-19th 2005 SHAMPO Main Characteristics					
Description	Symbol	Value			
Flight Altitude	Z	17.000 m			
Max. Power available for the Payload	PPL	1300 W			
Avionic Mass	Wav	32.0 kg			
Max. Payload Mass	WPL	100 kg			
Structural Mass	Wstr	430 kg			
Solar cells Mass	Wsc	127 kg			
Take off Weight	W_to	924 kg			
Power available for the Avionic	Pav	325 W			
Cruise Flight Power supplied to the electric motors	P_fly	6700 W			
Sun Power (38 °N April)	P_sun	11560 W			
Efficiency Energy storage system (Fuel cell + al.)	$\eta_{ m FC}$	0.6			
Density Energy storage system (Fuel cell + al.)	W _{FC}	550 Wh/kg			
Efficiency Solar cells	η_{SC}	0.21			
Density Solar cells	W _{SC}	0.6 Kg/m ²			
Efficiency Electric Motor	$\eta_{\rm M}$	0.95			
Efficiency Propeller	η _{PROP}	0.85			
Number of Motors	N	8			
Cruise Airspeed (TAS)	TAS	25 m/s			

SOLAR HALE UAV

CAPECON

Solar

Hale

Multi

Aircraft

Payload &

Operation

POLITO, DIASP, giulio.romeo@polito.it

POLITO, DIASP, giulio.romeo@polito.it

TAKEOFF			LANDING			SC	DLAR HALE U
Ground	roll		Approach	-	1		
V final	8.31	m/s	V approach	9.8	m/s	Longitudinal St	atic Stability
	0	m/s	h obstacle	15	m		
S Ground roll	138.77	m	Drag	455	Ν	0.08	→ DAE21 tip
time to rotate	on 2	6	gamma approach	2.8	deg		SH118_dae21_tip
S Retation	24.02	- S - m	S approach	305	m	0.06	
5 Rotation	24.92		Flare	•		0.04 -	
load factor	1 2		load factor	1.2		0.02	
Radius	38.43	m	V td	8.7	m/s		
Vtr	8.68	m/s	Vflare	9.3	m/s	0	
Vclimb	9.06	m/s	Radius	44	m	0 2 4	6 8
Drag	272.2	Ν	Hfl	0.053	m		
Angle of climb	1.3	deg	S flare	2.1	m		
Htr	0.010	m				angle of	attack
S transition	0.9	m	Ground roll				
Clim	<u> </u>		V final	0	m/s	Lateral Static	Stability
h obstacle	15	m	V initial	8.68	m/s		
S climb	639.9	m	S Ground roll	113.	m		
Total length	804.5	m	Total length	421	m	C -	0.012

POLITO, DIASP, giulio.romeo@polito.it

13/64

EILAT, May 18-19th 2005 Structural design & analysis

Maximum wing deflection: 5.89m Load factor = 4.5

UAVNET

Maximum fuselage deflection:29mm Load factor = 4.5

POLITO, DIASP, giulio.romeo@polito.it

EILAT, May 18-19th 2005 Linear Flutter Analysis

Non-linear effect due to high-aspect ratio structure is not included in a 1st attempt. No critical speed detected up to 100m/s (at 17000m). Normative requirement fulfilled.

POLITO, DIASP, giulio.romeo@polito.it

18/64

EILAT, May 18-19th 2005 **PRELIMINARY RELIABILITY**

SOLAR HALE UAV

The platform has to have a very long endurance of flight (4-5.000h) is supposed to fly continuously without failure the loss of a platform must not cause damage to the service. Catastrophic failure conditions must be extremely improbable, i.e.: The probability that a failure condition would occur maybe assessed on the order of 10⁻⁹ or less.

"The safety standard that should be maintained is one in which UAVs are operated as safely as manned aircraft, insofar as they should not present or create a hazard to persons or properties in the air or on the ground greater than that created by manned aircraft conducting similar operations" (FAA Advisory Circular 8/5/96).

A MTBF=40000h for each motor and a MTBF=100000h for each propeller is assumed for the reliability analysis obtaining a 0.991.

UAVNET

EILAT, May 18-19th 2005 ONERA Aerodynamic analysis

 Objective : maximizing of the global aerodynamic efficiency in loiter conditions

CAPECON

- Airfoils design drivers : low nosed-up or zero moment coefficient
- Geometric constraints for central part

EILAT, May 18-19th 2005 OBW-02 concept

- A concept for which the two cycles analysis done gives confidence in its ability to fulfil requirements and missions specifications (500 kg during 24 h at 60 kft and 1000 km egress bound)
- This concept demonstrates the potential of blended wing configuration
- Analysis also points out the high sensibility of Blended Wing <u>UAVs</u> to several aspects, mainly :
 - flutter risks which require a deeper analysis
 - the rather poor stability of such a vehicle that could lead to the use of robust automatic flight control system

BLENDED HALE UAV (ONERA)

EILAT, May 18-19th 2005 Torsion box section							
m ₅ U						NDED HALE AV (WUT)	
m ₄	m ₃	m		M ₁ Weights of v torsion box	wing components with fuel ribs, nose	[kg] 96	
	Mass [ko]	%	1	control surf	aces	11.5	
m,	0.60	6.5		wingtip with brackets		7.8	
m ₂	3,17	34		control surfaces' consoles		3	
m ₃	3,17	34		actuators		16.5	
m₄	0.59	6.5		fuel installation		6	
m ₅	0,87	9,5		Whole wing		2x 140,8 =	
m ₆	0,88	9.5				≈ 4,5 % of	
Torsion box total	9,28	100				max TOW	

38/64

EILAT, May 18-19th 2005 Power unit

BLENDED HALE

UAV (WUT)

Location and attachment

- Compact design
- Small interference drag
- Small assembly weight
- High efficiency of straight intakes
- Easy access & simply maintenance

Comparison

EILAT, May 18-19th 2005 PW114 & Global Hawk

BLENDED HALE UAV (WUT)

parameter	GH	PW-114
Wing span [m]	35,4	28
Wing area [m ²]	50,2	44,4
Aspect ratio	25,1	17,7
Empty weight [kg]	4177	2200
Payload [kg]	1000	700
Fuel weight [kg]	6583	4150
Take-off weight [kg]	11622	6350
Take-off thrust [kN]	37	20,9
Wing loading [kg/m ²]	231,5	143
Thrust loading [kg/kN]	314,1	304,1
Payload/wing area [kg/m ²]	19,9	15,8
Payload/take-off thrust [kg/kN]	27	33,5
Payload/empty weight [kg/kg]	0.24	0.32

44/64

EILAT, May 18-19th 2005 Modular HALE - UAV

MODULAR HALE UAV (IAI)

A Multi-Role High-Altitude Long-Endurance Aircraft for Civil and Para-military Missions

- Modular twin jet aircraft concept (2 engines to improve reliability)
- Mission endurance --> 24 hr at 1000km range
- 500 kg interchangeable payload bay (The modular concept)
- Payload power 8kW MAX

JAVNET

- 65000 ft MAX ceiling altitude
- MAX Cruise speed 0.65 MACH at 60kft

EILAT, May 18-19th 2005 Requirements

CAPECON

©|A|

Νo.	Parameter	Starting Value	Current Value	
1	Empty Weight	~3400kg	~2010kg	
2	Payloads Weight	500 kg	500 kg	
3	Fuel Weight	3400 kg	3490 kg	
4	Take-off Weight	7700 kg	6000kg	
5	Ceiling	66 kft	66kft	
6	Endurance	24 h r	24 hr	
7	Mission Altitude	55-66 kft	55-66 kft	
8	R.O.C@SL>	2000 ft/m in	3200 ft/m in	
9	M ax Airspeed	340 ktas	340 ktas	
10	Take-off Ground Roll	2000 m	1100 m	

EILAT, May 18-19th 2005 Avionics system

<u>Autonomous Flight</u>

The System Architecture shall enable:

- Automatic Take Off
- Automatic Landing
- Autonomous Navigation and Flight Path Execution. (Human Operators became mission level managers and not pilots)
- > Continuous BIT for Failure Detection
- > Automatic In-Flight Reconfiguration Capability

55/64

LRI (Liquid Resin Infusion)

 The production technologies should be aimed towards cost reduction in one hand and increased performance (reduced weight) on other hand, leading to improved effectiveness.

The flight control solution to rigid body is not adequate here, and also if the flutter analyses show that the aircraft is free from dynamic aeroelastic instability within the flight envelope, we still have to design the flight control with interaction to aircraft structure, aerodynamic and aeroelasticy.

EILAT, May 18-19th 2005 Conclusion & Recommendations

Aerodynamics

JAVNET

- 🔄 Clean design
- Advanced laminar wing design
- High altitude turbofan propulsion (modification of the FJ44-3 to high altitude)
 - ✤ Lower SFC
 - Noise reduction
 - High reliability
- Using the new/future 3500-pound thrust Williams FJ44-4 engine (modified to high altitude) with a continued infusion of improved technology, will give advantages in flight performance, especially in case of grows in takeoff weight.

HALE UAV

CAPECON

61/64

EILAT, May 18-19th 2005 Conclusion&recommendations

- Concept of operation that will allow multi mission/multiple payloads operation to reduce operation cost per hour >> more sales.
- High reliable and durable systems fail safe reliability concept, assuming that in case of failure the mission will be aborted (return home) if the next similar (like) failure may caused UAV Loss.

- Reducing maintenance requirements through system design
 - Selection of reliable and durable components
 - Selection of durable and corrosion resistant materials
- *Maintenance concepts to reduce Mean Time To Repair (MTTR), Man Hours per Operating Hours (MMH/OH), crew, training, support equipment and spares.
- *This reduction in maintenance requirements improves the UAV system Life Cycle Cost (LCC)

HALE UAV