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Abstract

We propose a new approach to estimate the cross-covariance Cxy(τ) of two long-range correlated

signals. In particular, we provide the asymptotic expression of Cxy(τ) for fractional Brownian

motions (fBm) and show that wide-sense stationarity holds. The method is finally implemented

on financial series of the German market to argue on the leverage effect or volatility asymmetry,

i.e. the negative sign of the volatility-return correlation at small lag τ .
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I. INTRODUCTION

Interdependent behavior and causality in coupled complex systems continue to attract

considerable interest in fields as diverse as solid state, biology, physiology, climatology and

finance [1, 2, 3, 4, 5, 6, 7]. Coupling and synchronization effects have been observed for

example in cardiorespiratory interactions, in neural signals, between glacial variability and

Milankovitch forcing [8, 9, 10]. The leverage correlation function L(τ) characterizes the

cause-effect relation between return r(t) and volatility σv(t + τ) [11, 12, 13, 14, 15].

One problem is that such processes are often represented by nonstationary signals, not

fulfilling the condition to be wide-sense-stationary, needed to yield statistically meaningful

information. The development of accurate methods to estimate coupling in long-range cor-

related signals should be addressed to overcome this limitation. Recently, a straightforward

implementation of the detrended fluctuation function F (n) has been proposed. The power-

law behavior of Fxy(n) as a function of the scale n has been discussed for couples of signals

x and y in [16, 17]. The function Fxy(n) hold for τ = 0 consistently with the fact that the

autocorrelation, a measure of self-similarity, is maximum for τ = 0.

Different from the autocorrelation, the cross-correlation is not maximum for τ = 0. It is a

non-monotonic function of τ , since the coupling between x and y, i.e. the cause-effect relation

between the systems, could be delayed in general. Therefore, measures of cross-correlation

have to be carried out as functions of τ in order to estimate causality and sign of the coupling.

In this work, we will develop a method suitable to estimate the cross-correlation Cxy(τ)

between two nonstationary long-range correlated signals. In particular, we will derive the

expression of Cxy(τ) for two coupled fractional Brownian motions, which are widely used to

model long-range correlated series. By means of such analytical expression, the wide-sense-

stationarity will be validated and some relevant cases will be discussed. In order to clarify

the practical implications of our findings, we will finally implement the method on financial

time series: tick-by-tick data of the German DAX stock index. We will show in particular

results obtained by operating our method at varying values of the lag τ , providing sign and

direction of the coupling between return and volatility at different scales n.

The cross-correlation Cxy(t, t + τ) of two nonstationary stochastic processes x and y can

be defined as:

Cxy(t, t + τ) ≡
〈
[x(t) − ηx(t)][y

∗(t + τ) − η∗

y(t + τ)]
〉

(1)
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where ηx(t) and η∗

y(t + τ) are the time-dependent mean values of x(t) and y∗(t + τ) and the

symbol ∗ indicates the complex conjugate. The brackets <> indicate the ensemble average

over the two series joint domain. The Eq. (1) can yield sound information on the coupling

between x and y provided the two quantities in square parentheses are jointly stationary.

This requires Cxy(t, t+ τ) be a function only of the lag τ , i.e.: Cxy(t, t+ τ) ≡ Cxy(τ). With

non-stationary processes as those represented by long-range correlated series, the function

Cxy(t, t + τ) is in general a function of time, thus wide-sense-stationarity does not hold.

As already stated, the aim of this paper is to propose a method to estimate the cross-

correlation function of two nonstationary signals. This will be achieved by choosing time-

dependent averages ηx(t) and η∗

y(t + τ) suitable to make the terms in square parentheses in

the Eq. (1) wide-sense-stationary. We propose to use the following time-dependent averages

of x(t) and y(t):

x̃n(t) =
1

n

n∑

k=0

x(t − k) (2)

and

ỹ∗

n(t + τ) =
1

n

n∑

k=0

y∗(t + τ − k) (3)

The average values x̃n(t) and ỹn(t) defined by the Eqs. (2,3) are obtained by summing the

values of x(t) and y(t) over a time window of width n. In order to clarify the meaning and

check that wide-sense stationarity holds, we will focus on two coupled fractional Brownian

motions BH(t), H being the Hurst exponent [18]. Thus, by taking x(t) = BH1
(t) and

y(t) = BH2
(t), the Eq. (1) with ηx(t) and η∗

y(t + τ) calculated according to the Eqs. (2,3)

writes:

Cxy(t, t + τ) =
〈[

BH1
(t) − B̃H1

(t)
][

B∗

H2
(t + τ) − B̃∗

H2
(t + τ)

]〉
, (4)

that, after multiplying the terms in parentheses, becomes:

Cxy(t, t + τ) =
〈[

BH1
(t)B∗

H2
(t + τ) − BH1

(t)B̃∗

H2
(t + τ)

−B̃H1
(t)B∗

H2
(t + τ) + B̃H1

(t)B̃∗

H2
(t + τ)

]〉
.

Next, we explicitly calculate each term in the Eq. (5). For the sake of simplicity, the

analytical derivation will be done by using the harmonizable representation of the fractional

3



Brownian motion [19, 20, 21]:

BH(t) ≡

∫ +∞

−∞

eitξ − 1

|ξ|H+ 1

2

dB̄(ξ) , (5)

where dB̄(ξ) is a representation of dB(t) in the ξ domain. By using the Eq. (5), the cross-

correlation function of two fbms BH1
(t) and BH2

(t + τ) can be written as:

〈BH1
(t)B∗

H2
(t + τ)〉 =

〈 ∫ +∞

−∞

eitξ − 1

|ξ|H1+
1

2

dB̄(ξ)

∫ +∞

−∞

e−i(t+τ)η − 1

|η|H2+
1

2

dB̄(η)
〉

. (6)

Since dB̄ is Gaussian, the following property holds for any f, g ∈ L2(R) :

〈 ∫ +∞

−∞

f(ξ)dB̄(ξ)

(∫ +∞

−∞

g(η)dB̄(η)

)∗ 〉
=

∫ +∞

−∞

f(ξ)g∗(ξ) dξ (7)

By using the Eq. (7), after some algebra, the Eq. (6) writes:

〈BH1
(t)B∗

H2
(t + τ)〉 = DH1, H2

(
|t|H1+H2 + |t + τ |H1+H2 − |τ |H1+H2

)
, (8)

where DH1, H2
depends only on H1 and H2 [23].

The Eq. (8) will be now used to calculate each of the four terms in the right hand side of

the Eq. (5). After cumbersome calculations, whose details are reported in [22], one obtains:

Cxy(τ) = DH1, H2

[
− τH1+H2 + 1

n

∑n

h=0 |τ − h|H1+H2 + 1
n

∑n

k=0 |τ + k|H1+H2

− 1
n2

∑n

h=0

∑n

k=0 |τ − h + k|H1+H2

]
. (9)

In the limit of large n, the sums in (9) can be replaced by integrals:

Cxy(τ̂) = nH1+H2DH1, H2

[
− τ̂H1+H2 +

∫ 1

0

|τ̂ − ĥ|H1+H2 dĥ

+

∫ 1

0

|τ̂ + k̂|H1+H2 dk̂ −

∫ 1

0

|τ̂ − ĥ + k̂|H1+H2 dĥ dk̂
]

, (10)

where τ̂ = τ/n is the rescaled lag and ĥ = h/n k̂ = k/n . After integration, the Eq. (10)

yields:

Cxy(τ̂ ) = nH1+H2DH1, H2

[
− τ̂H1+H2 +

(1 + τ̂ )1+H1+H2 + (1 − τ̂)1+H1+H2

1 + H1 + H2

−
(1 − τ̂)2+H1+H2 − 2τ̂ 2+H1+H2 + (1 + τ̂)2+H1+H2

(1 + H1 + H2)(2 + H1 + H2)

]
. (11)
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The Eq. (11) does not depend on time. The terms in square parentheses in the right hand

side are indeed dependent only on the rescaled lag τ̂ , i.e. only on the ratio τ/n. Furthermore,

one can notice that for τ = 0 the Eq. (11) reduces to:

Cxy(0) ∝ nH1+H2 , (12)

indicating that for two fractional Brownian motions, with Hurst exponent H1 and H2 re-

spectively, Cxy(0) scales as a power-law with exponent equal to H1 + H2. This power-law

behavior follows from the fact that each fractional Brownian motion scales as n2H . It is wor-

thy of note that if the two processes coincide, x(t) = y(t) and H1 = H2 = H , the Eq. (11)

reduces to:

Cxx(0) ∝ n2H (13)

and the power-law scaling of a single fractional brownian motion is recovered [24, 25, 26].

As stated above, information about direction and sign of the coupling, i.e. on the cause-

effect relation between the two processes x(t) and y(t), can be obtained by studying the

function Cxy(τ) as a function of τ . To further clarify this point, the Eq. (1) with the

Eqs. (2,3) are implemented on the series of the tick-by-tick DAX stock index prices P (t),

sampled every minute from 02-01-1997 to 22-03-2004. We consider return and volatility

defined as:

r(t) = lnP (t + t′) − ln P (t) (14)

σv(t) =
1

T − 1

T∑

t=1

[
r(t) − r(t)T

]
. (15)

The DAX returns, calculated by using the Eq. (14), are shown in Fig. 1(a) for t′ = 1h.

Then, the DAX volatilities, calculated by using the Eq. (15) , are shown for T = 300h and

T = 660h respectively in Fig. 1(b) and Fig. 1(c). The Hurst exponent of these series can be

obtained by the slope of the log-log plot of the autocorrelation function Eq. (13). The Hurst

exponent of the series of return is H = 0.5. The Hurst exponent of the series of the volatility

with T = 300h is H = 0.7. The Hurst exponent of the series of the volatility with T = 660h

is H = 0.8. The function Cxy(0), with x(t) = r(t) and y(t) = σv(t) is also calculated as a

function of n. The slope of Cxy(0) is H = 0.65, i.e. the average between H1 and H2.

The function Cxy(τ) has been calculated as a function of the lag τ for the DAX return

and volatility by using the Eqs. (1-3). The results are plotted as a function of τ in Fig. 1(a)
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for x(t) = r(t) and y(t) = σv(t + τ) with T = 300h. In Fig. 2 (b) the results of Cxy(τ)

calculated by taking x(t) = r(t) and y(t) = σv(t + τ) with T = 660h are shown.

Finally, the function Cxy(τ), calculated for x(t) = r(t) and y(t) = σv(t+τ)2, as a function

of τ are shown in Fig. 2(c). The reason is to compare our results with the leverage correlation

function L(τ) = 〈σv(t + τ)2r(t)〉/〈r(t)2〉2. It is worthy of note that the negative range of

L(τ) at small τ is unequivocally identified. The leverage function L(τ) takes negative values

for −200h < τ < 500h and reaches the minimum at a time lag of about τ = 200h − 300h

(10-12 days), then L(τ) changes sign for τ = 450h − 500h and tends asymptotically to zero

from positive values as expected from the Eq. (11). A relevant result exhibited by the curves

in Fig. 2 is that the zeroes of the function Cxy(τ) occurs at the same values of τ for all

the curves. This further validates the wide-sense-stationarity of the Eqs. (1-3) for all the

n-scales.
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E. Lutton and C. Tricot (Eds.). Springer Verlag, 1999.

[21] V. Dobric, F. M. Ojeda, IMS Lecture Notes-Monograph Series, High Dimensional Probability,

51, 77, (2006).

[22] S. Arianos and A. Carbone, to be published (2008)

[23]

DH1, H2
=

pH1
pH2

qH1
qH2

q2
H1+H2

2

p2
H1+H2

2

with:

qH =
γ

(
H + 1

2

)
√

γ(2H + 1)

√
2

(
1 − sin(πH)

sin(πH)

)
for H 6=

1

2
and q 1

2

= π

pH = −2γ

(
H +

1

2

)
sin

(
π

2

(
H −

1

2

))
for H 6=

1

2
and p 1

2

= π

[24] A. Carbone, G. Castelli, H. E. Stanley, Phys. Rev. E 69, 026105 (2004)

[25] A. Carbone, Phys. Rev. E 76, 056703 (2007)

[26] S. Arianos and A. Carbone, Physica A 382, 9 (2007).

7

http://arXiv.org/abs/0709.0281


0 3000 6000 9000 12000 15000 18000
1
2

3
4
5

6
7
8

9
10

 

 

r(t
)

t[h]

(a)

0 3000 6000 9000 12000 15000 18000
0
1
2
3
4
5
6
7
8
9

10

 

 

v(t)

t[h]

(b)

0 3000 6000 9000 12000 15000 18000
0
1
2
3
4
5
6
7
8
9

10
 (c)

 

 

v(t)

t[h]

FIG. 1: (Color online). (a) Plot of the log return r(t) = ln P (t + t′) − ln P (t) with t′ = 1h for the

DAX stock index. (b) Plot of the volatility σv(t) =
∑T

t=1

(
r(t)− r(t)T

)
/(T − 1) with T = 300h for

the return series plotted in Fig. 1. (c) Plot of the volatility σv(t) =
∑T

t=1

(
r(t) − r(t)T

)
/(T − 1)

with T = 660h for the return series r(t) plotted in Fig. 1. The DAX data are tick-by-tick from

02-01-1997 to 22-03-2004 sampled every minute.
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FIG. 2: (Color online). (a) Plot of the function Cxy(τ) with x(t) = r(t), the DAX return series

plotted in Fig. 1(a), and y(t) = σv(t) the volatility calculated over a window T = 300h plotted in

Fig. 1(b). Plot of the cross-correlation function (b) Cxy(τ) with x(t) = r(t), the DAX return series

plotted in Fig. 1(a), and y(t) = σv(t) the volatility calculated over a window T = 660h plotted in

Fig. 1(c). Plot of the cross-correlation function (c) Cxy(τ) with x(t) = r(t), the DAX return series

plotted in Fig. 1(a), and y(t) = σv(t)
2 the squared volatility calculated over a window T = 660h

plotted in Fig. 1(c).
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