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a b s t r a c t

Market dynamics is quantified via the cluster entropy S(τ , n) =
∑

j Pj(τ , n) log Pj(τ , n),
an information measure with Pj (τ , n) the probability for the clusters, defined by the
intersection between the price series and its moving average with window n, to occur
with duration τ . The cluster entropy S(τ , n) is estimated over a broad range of temporal
horizons M , for raw and sampled highest-frequency data of US markets. A systematic
dependence of S(τ , n) on M emerges in agreement with price dynamics and correlation
involving short and long range horizon dependence over multiple temporal scales. A
comparison with the price dynamics based on Kullback–Leibler entropy simulations with
different representative agent models is also reported.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Entropy-based methodologies have demonstrated the ability to quantify heterogeneity and dynamics of complex
systems [1–3], thus, have found several relevant applications in interdisciplinary contexts as biology, economics and
finance. In particular, the entropy ability to quantify heterogeneity and dynamics has been exploited for portfolio selection,
as an alternative to traditional methods based on Markowitz covariance and Sharpe single-index models [4–11] and for
market evolution models in terms of stochastic functions [12–19].

Equilibrium prices pt of traded securities can be represented as the conditional expectation of the discounted future
payoff zt :

pt = E
[
mt+1

mt
zt+1

]
, (1)

where mt is the pricing kernel and mt+1/mt is the stochastic discount factor. The pricing kernel mt is factorizable into a
function of the consumption growth µt+1 times a model specific term ψt :

mt = µt+1ψt . (2)

The simple consumption-based asset pricing model identifies the kernel as a parametric function of the consumption
growth Ct . In the framework of time-separable power utility representative agent models, the function µt+1 is simply
proportional to ∆Ct = log(Ct/Ct−1). More sophisticated agent behaviours have been suggested to explain puzzling
phenomena such as amplitude and cross-sectional dispersion of returns among different categories of financial assets,
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quity premia and risk-free rates. Pricing kernel dispersion and dynamics with different representative agents have been
odelled by using the Kullback–Leibler entropy in [16], thus extending the work [13] aimed at quantifying standard
eviation and volatility to yield the pricing kernels bounds. A relative entropy minimization approach is put forward
n [17] to extract the model dependent term µt+1 and quantify the minimum amount of extra information to be embedded
in the standard pricing kernel models for reproducing asset returns correctly. The Kullback–Leibler divergence between
the probability distribution functions of the components µt+1 and ψt has been used as criterion to estimate the deviation
f mt+1 with respect to the simple consumption flow growth model [17].
An information theoretical measure, the moving average cluster entropy, has been proposed in [20,21] and applied

o quantify heterogeneity of human chromosomes [22] and of financial markets [23,24]. The physical interpretation of
he cluster entropy is related to the theory of irreversible processes and the concept of local equilibrium. By assuming
hat the system exists in a state of equilibrium in every elemental volume surrounding an arbitrary point, the state
unctionals (e.g. entropy) are described by state variables depending on space and time. Additionally, space and time
an be generalized and described by fractional rather than integer variables [25–28]. The entropy change dS in a time
nterval dt is given by:

dS = dSint + dSext (3)

ith dSint and dSext the entropy change produced respectively by endogenous processes and by exchanges of energy and
atter with system’s exterior.
Ref. [23] shows that the cluster entropy of the volatility series, estimated over a constant temporal horizon, takes

alues depending on each market, as opposed to the cluster entropy of the price series, approximately invariant across
arkets over the same horizon. These findings led to develop the Market Heterogeneity Index, a tool able to estimate

he portfolio weights over a constant time horizon. The Market Heterogeneity Index, defined as the integral of the cluster
entropy function, provides a cumulative figure allowing a straightforward comparison with the portfolio weights obtained
by the Sharpe ratio approach. A key advantage of the cluster entropy approach is to not require a symmetric Gaussian
distribution of returns, which is quite elusive in real-world financial assets and thus hinders, in principle, the application
of Markowitz-based portfolio models. Then, the study [24] was addressed to analyse the behaviour of the cluster entropy
with artificial models of financial markets such as Generalized Autoregressive Conditional Heteroskedastic (GARCH),
Autoregressive Fractionally Integrated Moving Average (ARFIMA), Fractional Brownian Motion (FBM) etc.

The present study builds upon the results of [23,24] and extends the cluster entropy method to quantify market price
heterogeneity and dynamics over different temporal horizons in real world assets. The approach is implemented on tick-
by-tick prices of NASDAQ, DJIA and S&P500 from Jan 1 to Dec 31 2018 with length N = 6982017, N = 5749145 and

= 6142443 respectively, downloaded from www.bloomberg.com/professional. Further details are provided in Table 1.
he three assets have been selected for this investigation based on homogeneity criteria, being traded in the same country,
ith same currency and comparable number of transactions over time. The asset similarity rules out that differences in
he price evolution might be due to exogenous causes. The extent of the investigated horizons is another feature ensuring
hat the observed behaviour is genuinely related to the intrinsic price dynamics rather than exogenous factors. Hence,
he maximum range of the investigated horizons is taken equal to one year and the cluster entropy analysis has been
erformed on multiple sets of raw and sampled data from one to twelve monthly horizons M . A systematic dependence
f the cluster entropy of the asset prices on varying temporal horizons has been observed. Such a dependence could be
elated to the intrinsic dynamics rather than cross market variations.

To further substantiate the results, a direct comparison is made between the horizon dependence obtained respectively
y the moving average cluster entropy and the Kullback–Leibler relative entropy with representative agent models of price
volution.
The manuscript is organized as follows. The main relationships relevant to the implementation of the Cluster Entropy

pproach are recalled in Section 2. The analysed data sets, financial assets and artificially generated series, are described
n Section 3. Cluster Entropy and Market Dynamic Index of the price series as a function of the temporal horizon M are
eported in Section 4. Artificially generated Fractional Brownian paths are used as reference to validate the deviations
bserved in real-world markets. Statistical significance via standard T-paired test is reported. A comparison against the
ullback–Leibler entropy obtained by simulating the pricing kernel with different representative agent models and other
oncluding remarks are reported in Section 5.

. Method

The main definitions underlying the cluster entropy approach [20–22] are briefly recalled henceforth. The method
uilds upon the idea of Claude Shannon to quantify the ‘expected’ information contained in a message extracted from a
equence {xt} with a probability distribution P(xt ) by using the entropy functional [29]:

S[P(xt )] =

∫
X
P(xt ) log P(xt )dxt , (4)

that for discrete sets writes:

S[P(xt )] =

∑
P(xt ) log P(xt ) . (5)
X

2
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onsider the time series {xt} of length N and the moving average {̃xt,n} of length N − n with n the moving average
indow. The time sequence x(t) is partitioned in clusters by the intersection with its moving average x̃n(t). The simple

moving average is defined at each t as the average of the n past observations from t to t − n + 1,

x̃n(t) =
1
n

n∑
i=1

x(t − i). (6)

Note that while the original series is defined from 1 to N , the moving average series is defined from 1 to N − n because n
samples are necessary to initialize the series. Consecutive intersections between the time series and the moving average
series yield a partition into a series of clusters. Each cluster is defined as the portion of the time series x(t) between two
consecutive intersection of x(t) itself and its moving average x̃n(t).

The Eq. (6) is a smoothing function of the time series, which can be interpreted as a linear regression: x(t) = x̃n(t)+ ϵn
where ϵn is the error in the estimate with expected value equal to 0 [30,31]. The function x̃n(t) is obtained by locally
averaging the x(t) somehow close to t as:

x̃n(t) =

n∑
i=1

Wi(t)xi(t) (7)

where Wi(t) are called weights and decrease as ti is far from t . Such estimators require a finite or countably infinite
partition Cn,j =

{
Cn,1, Cn,2, . . .

}
over the time series domain to estimate x̃n(t) by averaging x(t)’s with the corresponding

t ’s in Cn,j, i.e.:

x̃n(t) =

n∑
i=1

I{ti∈Cn,j}∑n
i=1 I{ti∈Cn,j}

xi(t) (8)

ith ti ∈ Cn,j and I a relevant function defined over the set Cn,j, thus:

Wi(t) =

I{ti∈Cn,j}∑n
l=1 I{tl∈Cn,j}

. (9)

he simple moving average is an example of a broad class of linear estimators such as the naive kernel or window kernel
pproach with I{∥t∥ ≤ h}, i.e. x̃n(t) is obtained by averaging x(t)’s such that the distance between ti and t is not greater

than h and the k-nearest neighbour approach, with the weight Wn,i(t) equals 1/k if ti is among the k nearest neighbours
f t , and equals 0 otherwise. In general, one uses a weighted average of the x(t) where the weights (i.e., the influence of
(t) on the value of the estimate at t) depend on the distance between ti and t . An extensive investigation and further
eneralizations to higher order moving average polynomials and trend estimators can be found in [30,31].
The function {̃xt,n} generates a partition {Cn,j} of non-overlapping clusters between two consecutive intersections of

xt} and {̃xt,n} for each n. Each cluster j has duration:

τj ≡ ∥tj − tj−1∥ (10)

here the instances tj−1 and tj refer to two consecutive intersections.
The probability distribution function P(τ , n) can be obtained by ranking the number of clusters N (τ1, n),N (τ2, n), . . . ,
(τj, n) according to their length τ1, τ2, . . . , τj for each n. A stationary sequence of clusters C is generated with probability
istribution function varying as [22]:

P(τ , n) ∼ τ−αF (τ , n) . (11)

he factor F (τ , n), taking the form exp(−τ/n), accounts for the finite size effects when τ ≫ n, resulting in the drop-off
f the power-law and the onset of the exponential decay. The cluster entropy writes (the details of the derivation can be
ound in [20,22]):

S[P(τj, n)] =

∑
j

P(τj, n) log P(τj, n) , (12)

hat, by using Eq. (11), simplifies to:

S(τ , n) = S0 + log τ α +
τ

n
, (13)

here S0 is a constant, log τ α and τ/n are related respectively to the terms τ−α and F(τ , n).
To clarify the meaning of the terms appearing in Eq. (13), it is worthy of remarking that, for isolated systems, the

ntropy increase dS is related to the irreversible processes spontaneously occurring within the system (as mentioned in
he Introduction and Eq. (3)). The entropy tends to a constant value as a stationary state is asymptotically reached (dS ≥ 0).
or open systems interacting with the environment, the increase is given by a term dSint due to the irreversible processes
pontaneously occurring within the system, and a term dS due to the irreversible processes arising from external
ext
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nteractions. The logarithmic term in Eq. (13) is related to the intrinsic entropy change dSint . It is indeed independent
f n, i.e. of the method used for partitioning the sequence, which plays here the role of the external interaction. The
ogarithmic term is of the form of a Boltzmann entropy S = logΩ , where Ω is the maximum volume occupied by the
solated system. The quantity τD is proportional to the volume occupied by the random walker. Whenever τ could reach
he maximum size N of the sequence, the second term on the right side would write logND. The term τ/n represents the
xcess entropy Sext (excess noise) added by the partition process. It comes into play when the sequence is partitioned in
lusters, thus it depends on n.
To gain further insight in the meaning of the entropy S(τ , n), the source entropy rate s∞ is calculated for Eq. (13). The

ource entropy rate is a measure of the excess randomness and increases as the cluster coding process becomes noisier.
y using the definition and Eq. (5), the source entropy rate writes:

s∞ ≡ lim
τ→∞

S(τ , n)
τ

=
1
n
. (14)

he excess randomness of the clusters is found to be inversely proportional to n and, thus, becomes negligible in the limit
f n → ∞. Such a behaviour is clearly related to disorder increase with increasing cluster lengths at constant n.
The minimum value of the entropy S(τ , n) = 0 is obtained for the fully ordered (deterministic) set of clusters with

uration τ = 1 from Eq. (13) in the limit n ∼ τ → 1 with S0 → −1. Conversely, the maximum value of the entropy
(τ , n) = logNα is obtained when n ∼ τ → N (with N the maximum length of the sequence). This condition corresponds

to the maximum randomness (minimum information) carried by the sequence, when the longest cluster, coinciding with
the whole series, is obtained.

For Fractional Brownian Motions, the exponent α is equal to the fractal dimension D = 2−H with H the Hurst exponent
f the time series. The term log τ α can be thus interpreted as a generalized form of the Boltzmann entropy S = logΩ ,
here Ω = τD corresponds to the fractional volume occupied by the fractional random walker. The term τ/n represents
n excess entropy (excess noise) added to the intrinsic entropy term log τD by the partition process. It depends on n and
s related to the finite size effect discussed above.

Moreover, we stress the difference between the time series partitions obtained either by using equal size boxes or
oving average clusters. For equal size boxes, the excess noise term τ/n becomes a constant and can be included in the
onstant term, thus the entropy reduces to the logarithmic term, which corresponds to the intrinsic block entropy of an
deal fractional random walk [3]. When a moving average partition is used, an excess entropy term τ/n emerges from the
preading introduced in the probability distribution function by the random partitioning process operated by the moving
verage intersections.
To summarize entropy properties in a single figure, a cumulative information measure has been defined as follows:

I(n) =

∫ τmax

1
S(τ , n)dτ , (15)

hich, for discrete sets, reduces to:

I(n) =

τmax∑
τ=1

S(τ , n) . (16)

n Section 4, Eq. (16) will be estimated over real-world and artificial time series at varying time horizons M . The measure
ill be indicated by I(M, n) and referred to as Market Dynamic Index. Furthermore, the Horizon Dependence H(M, n) can
e defined as the variation of I(M, n):

H(M, n) = I(M, n) − I(1, n) , (17)

eferred to the first horizon (M = 1).
Values of H(M, n) obtained by using Eq. (17) based on the cluster entropy will be compared with the values obtained

n different representative agent models of the pricing kernel dynamics by a measure of relative entropy. The pricing
ernel accounts for the stochastic dynamic evolution of asset returns, which in their turn contain information about the
ricing kernel. The analysis is based on the Kullback–Leibler entropy of the actual probability distribution of the prices
ith respect to the risk-adjusted probability. It has been argued that a realistic asset pricing model should have substantial
ne-period entropy and modest horizon dependence to justify equity mean excess returns and bond yields at once [16].
he Kullback–Leibler entropy of the continuous probability measure P(xt ) with respect to some probability measure P∗(xt ),
rites:

K (P∥P∗) =

∫
X
P(xt ) log

{
P(xt )
P∗(xt )

}
dxt . (18)

q. (18) can be interpreted as the expectation of the function log {P(xt )/P∗(xt )} with respect to the probability P(xt ):

K (P∥P∗) = E
[
log

{
P(xt )
P∗(xt )

}]
. (19)

he relative entropy given by Eq. (18) reduces to Eq. (4) for constant probability P∗(x ).
t

4
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Table 1
Asset description. Details of NASDAQ, S&P500 and DJIA data sets as downloaded from the Bloomberg terminal. Tick
duration (time interval between individual transactions) is about one second for the three markets.
Ticker Name Country Currency Members Length

NASDAQ Nasdaq Composite US USD 2570 6982017
S&P500 Standard & Poor 500 US USD 505 6142443
DJIA Dow Jones Industrial Average US USD 30 5749145

Table 2
Exploratory data analysis. Mean (µ), standard deviation (σ ), skewness (s), kurtosis (k) and Hurst exponent
Ĥ estimated over linear return series of the three financial indexes. The Hurst Exponent is obtained by
mean of the Detrending Moving Average algorithm [30,31].

Ticker µ · 10−3 σ s k · 103 Ĥ

NASDAQ −0.04 0.37 −10.16 58.23 0.53
S&P500 −0.03 0.12 −7.72 17.92 0.52
DJIA −0.26 1.23 −4.66 8.83 0.51

It is worth mentioning the relation between the cluster entropy approach adopted in this work, the multiscale entropy
(MSE) and its variants [32–34]. The multiscale entropy provides insights into the complexity of fluctuations over a range
of time scales and thus extends the standard one-sample entropy. The computational implementation of the multiscale
entropy implies a coarse graining of the time series at increasing time resolutions. Coarse graining the data basically means
averaging different numbers of consecutive points to create different scales or resolutions of the signal. In the cluster
entropy approach, the coarse graining of the signal is performed through the moving average, an average at increasing
time resolutions. The multiscale entropy analysis aims at quantifying the interdependence between entropy and scale,
achieved by evaluating sample entropy of univariate time series coarse grained at multiple temporal scales, thus enabling
the assessment of the dynamical complexity of the system.

3. Data

Prices pt and returns rt of market indices traded in the US, namely NASDAQ, S&P500 and DJIA are investigated in this
manuscript. In this section we provide a few general definitions and properties of relevance to the data analysis performed
in Section 4. Linear returns can be defined by:

rt = pt − pt−h , (20)

r by:

rt =
pt

pt−h
, (21)

here pt is the price at time t , with 0 < h < t < N and N the maximum length of the time series. Alternatively, the
log-returns can be defined as:

rt = log pt − log pt−h . (22)

qs. (20)–(22) are definitions, thus if linear returns are defined according to Eq. (21) they are related to the logarithmic
eturns by the following equation r logt = log(r lint ) [35].

Data sets have been downloaded from the terminal www.bloomberg.com/professional. For each index, data include
tick-by-tick prices pt from January to December 2018. Details (Ticker; Extended name; Country; Currency; Members;
Length) as provided by Bloomberg for the three assets are reported in Table 1. The length of each index refers to the year
2018 (last column).

As a general overview of the asset properties, we report the first four moments of the linear returns’ distributions,
respectively the mean µ = E(xt ), variance σ 2

= E(xt − µ)2, skewness s = E(xt − µ)3/σ 3 and kurtosis k = E(xt − µ)4/σ 4,
in Table 2. Estimates of the Hurst exponent Ĥ are also reported (last column in Table 2). All results are obtained over the
entire financial series data ranging from January 2018 to December 2018. Estimates of the Hurst Exponent are obtained
by means of the Detrending Moving Average algorithm [30,31]. Given a moving average window n, for each observation
in the series, a backward m.a. x̃n,backward(t) =

1
n

∑n−1
k=0 x(t − k), computes the mean of n past observations, a centred m.a.

x̃n,centred(t) =
1
n

∑(n−1)/2
k=−(n−1)/2 x(t − k), computes the mean of n/2 past observations and n/2 future observations and a

forward m.a. x̃n,forward(t) =
1
n

∑0
k=−(n−1) x(t − k) computes the mean of n future observations. Fig. 1 reports linear returns

nd norm plots of linear returns for the U.S. financial indexes. Results show the departure of the linear return distributions
rom normality.

In this study, different temporal horizons have been considered as monthly integer multiples of one-month period
anging from M = 1 up to M = 12. To perform the cluster entropy analysis over equally spaced sequences with constant
5
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Fig. 1. Plot of linear returns for NASDAQ, S&P500 and DJIA (first row). Quantile–return plot for NASDAQ, S&P500 and DJIA (second row). These plots
compare the distribution of the three indexes’ linear returns with a normal distribution: on the x-axis, values of returns are reported, with mean
lose to 0 as found in Table 1, while on the y-axis quantile values are reported (the scale is not linear but a function of the interquantile distance).
The distribution underlying indexes’ linear returns cannot be assumed normal due to the heavy fat tails at the extreme of the distribution. The
insets show box plots. Boxes for every indexes are very narrow because of the high variability of linear returns at the extreme of the distribution,
that confirms the fat tails distribution mentioned above.

Table 3
Data length. 1st column reports the temporal horizon M (number of
periods in month units). The lengths N of the price series for each temporal
horizon M for the three assets are reported in 2nd, 3rd and 4th columns.
M NASDAQ S&P500 DJIA

1 586866 516635 516644
2 1117840 984046 984101
3 1704706 1500662 1500764
4 2291572 2017282 1623779
5 2906384 2558504 2165044
6 3493250 3075125 2681708
7 4069315 3580946 3187571
8 4712062 4146769 3753440
9 5243029 4614186 4220774

10 5885781 5180006 4786624
11 6461845 5685826 5292487
12 6982017 6142443 5749145

lengths, raw data have been sampled, thus yielding equally spaced data with equal length over different horizons. The
sampling frequency is defined by dividing the length of the series corresponding to the longest horizon by the length of
the shortest one and rounding the ratio to the nearest integer. The individual lengths of the subsequences referred to the
twelve time periods are reported for each index in Table 3.

Consider for example the S&P500 market (2nd column in Table 3). Minimum and maximum values of the horizon
re respectively M = 1 (January with N = 516635) and M = 12 (twelve months from January to December with
= 6142443). N is the number of tick-by-tick data in the considered horizon. Looking at Table 3, the minimum length

f the time series is for the horizon M = 1, which is different for the three markets as the number of transactions in each
inancial market is different. In the following, the length of S&P500 is taken as the minimum reference value to perform
he entropy analysis.

For the sake of validation, computational tests have been performed on artificial series. The artificial series have been
enerated by means of the FRACLAB tool (https://project.inria.fr/fraclab/) with lengths N corresponding to those of the
inancial markets under investigation (Table 3). Further details are reported in Sections 4 and 5.
6
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Fig. 2. Cluster entropy S(τ , n) vs cluster duration τ for the time series of the prices (raw data) respectively of the market indices NASDAQ, S&P500
and DJIA described in Table 1. The series lengths are N = 586866, N = 516635 and N = 516644 respectively for NASDAQ, S&P500 and DJIA as given
n Table 3. The curves refer to one period, i.e. the first month of tick-by-tick data (M = 1). Different curves in each figure refer to different values
f the moving average window n as indicated by the arrow.

Fig. 3. Cluster entropy S(τ , n) vs cluster duration τ for the time series of the prices (raw data) respectively of the market indices NASDAQ, S&P500
and DJIA described in Table 1. The series lengths are N = 6982017, N = 6142443 and N = 5749145 respectively for NASDAQ, S&P500 and DJIA as
iven in Table 3. The curves refer to twelve periods, i.e. the whole year 2018 of tick-by-tick data (M = 12). Different curves in each figure refer to
ifferent values of the moving average window n as indicated by the arrow.

. Results

Probability distribution P(τ , n) and cluster entropy S(τ , n) have been estimated on a large set of price series by means
f the procedure summarized in Section 2. The series of NASDAQ, S&P500 and DJIA indexes described in Section 3 have
een used for the investigation.
The cluster entropy S(τ , n) is obtained by taking the intersection of the asset prices pt and its moving average

˜ t,n for different moving average window n [20–22]. For each window n, the clusters are defined as the subsets {pt :

= s, . . . , s − n} between two consecutive intersections. It is worth mentioning that the clusters are defined as the
ortions of the series between death/golden crosses according to the technical trading rules. Therefore, the information
ontent of the cluster has a straightforward connection with the technical trading perspective on the price and volatility
eries. Following [22], the probability distribution function P(τ , n) is obtained by ranking the clusters according to their
haracteristic size (the duration τ ).
Fig. 2 shows the cluster entropy S(τ , n) estimated on raw data prices. Plots refer to one month of data (M = 1). Lengths

re N = 586866, N = 516635 and N = 516644 respectively for NASDAQ, S&P500 and DJIA (first row of Table 3).
Fig. 3 shows the cluster entropy S(τ , n) estimated on raw data prices for horizon of twelve months (M = 12). Lengths

re N = 6982017, N = 6142443 and N = 5749145 respectively for NASDAQ, S&P500 and DJIA (last row of Table 3).
Fig. 4 shows the cluster entropy S(τ , n) estimated on sampled data of the price series. Plots refer to the first month of

data (M = 1). All the series have same length N = 492035.
Fig. 5 shows the cluster entropy S(τ , n) estimated on sampled data of the price series. Plots refer to twelve months

(M = 12). All the series have same length N = 492035. Different curves in each figure correspond to moving average
values varying from n = 30 s, n = 50 s, n = 100 s, n = 150 s, n = 200 s . . . up to n = 1500 s (with step 100 s).

The entropy curves shown in Figs. 2–5 exhibit a behaviour consistent with Eq. (13). At small values of the cluster
duration (τ < n), entropy behaves as a logarithmic function. At large values of the cluster duration (τ > n), the entropy
curves increase linearly with the τ/n term dominating. S(τ , n) is n-invariant for small values of τ , while its slope decreases
as 1/n at larger τ , as expected according to Eq. (13), meaning that clusters with duration τ > n are not power-law
correlated, due to the finite-size effects introduced by the partition with window n. Hence, they are characterized by
a value of the entropy exceeding the curve log τD, which corresponds to power-law correlated clusters. Same cluster
7
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Fig. 4. Cluster entropy S(τ , n) vs cluster duration τ for the time series of the prices (sampled data) respectively of the market indices NASDAQ,
S&P500 and DJIA described in Table 1. Figures refer to the first month of data (M = 1). All time series have same length N = 492035 by the
sampling procedure described in Section 3. Different curves refer to different values of the moving average window n as indicated by the arrow.

Fig. 5. Cluster entropy S(τ , n) vs cluster duration τ for the time series of the prices (sampled data) respectively of the market indices NASDAQ,
S&P500 and DJIA described in Table 1. Figures refer to twelve months of data (M = 12). All time series have same length N = 492035 by the
ampling procedure described in Section 3. Different curves refer to different values of the moving average window n as indicated by the arrow.

uration τ can be generated by different values of the moving average window n. At given τ value, larger entropy values
re obtained as n increases. The entropy curves S(τ , n) of the NASDAQ, S&P500 and DJIA prices shown in Figs. 2–5 are
epresentative of a quite general behaviour observed in several markets.

How to quantify the horizon dependence of the asset prices by using the cluster entropy S(τ , n) is discussed in the
ollowing. The Market Dynamic Index I(M, n) is estimated by using Eq. (16) with the values of the entropy S(τ , n) of
he asset prices pt over several periods M on raw and sampled data. The first period (M = 1) of the price sequences
orresponds to January 2018 for all the assets. Multiple periods have been built by considering M = 2 (January and
ebruary 2018) and, so on, up to M = 12 (one year from January to December 2018). Details concerning lengths of
he series corresponding to the temporal horizons M are reported in Table 3. I(M, n) is plotted in Fig. 6 for the NASDAQ,
&P500 and DJIA prices. A dependence of the function I(M, n) on the horizon M can be observed. At small scales (i.e. small
and τ ) I(M, n) is the same for all M implying that the horizon dependence H(M, n) is negligible. Conversely, at large n
alues, i.e. with a broad range of cluster lengths τ spanning more than one decades of values in the power law distribution,
horizon dependence H(M, n) varying with M is found. By comparing the behaviour of the different assets a dependence
f the function I(M, n) on the horizon M is observed, especially at large scales. The Market Dynamic Index I(M, n) varies
ore significantly for NASDAQ than for S&P500 and DJIA prices.

. Discussion and conclusions

In this section, the results of the cluster entropy analysis obtained on real-world assets are discussed and com-
ared with: (i) artificially generated series of Fractional Brownian Motion; (ii) artificially generated series of different
epresentative agent models.

The Market Dynamic Index I(M, n) and the Horizon Dependence H(M, n) defined by Eqs. (16), (17) have been estimated
n NASDAQ, S&P500 and DIJA assets. To understand the behaviour of real-world markets, simulations have been
erformed on Fractional Brownian Motion series with assigned Hurst exponent H generated via FRACLAB. In traditional
inancial theory, price increments are usually considered to be approximately i.i.d. and the Hurst exponent of financial
rocesses is generally assumed to be H ∼ 0.5. Fig. 7 shows cluster entropy curves for FBM series with H = 0.5. Each
lot refers respectively to FBM segments ranging over one (M = 1), six (M = 6) and twelve (M = 12) monthly horizons.
or the sake of comparison, FBM series have been generated with total length equal to that of the NASDAQ index in the
hole 2018 (N = 6982017); then, the artificial series has been divided into twelve segments according to the monthly
8
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Fig. 6. Market Dynamic Index I(M, n) as a function of the moving average window n, calculated according to Eq. (16) for the prices respectively of
he NASDAQ, S&P500 and DJIA indexes as described in Table 1. Different curves in each figure refer to horizon varying from one (M = 1) to twelve
onths (M = 12). In particular, this set of curves corresponds to time series length N = 492035 by the sampling procedure described in Section 3.

(M, n) has been evaluated as the integral of the entropy curves S(τ , n) similar to those shown in Fig. 4. The insets show the Market Dynamic Index
(M, n) as a function of the horizon M . Symbols with different colours refer to different values of the moving average window n as indicated by the
arrow (namely n = 30 s, n = 50 s, n = 100 s, n = 150 s and n = 200 s).

Fig. 7. Cluster entropy S(τ , n) vs cluster duration τ for the time series of the Fractional Brownian Motion with H = 0.5. Figures refer to one (M = 1),
ix (M = 6) and twelve (M = 12) time horizons of data. All time series have same length N = 492035 obtained by the sampling procedure described
n Section 3 applied to the FBMs. Different curves refer to different values of the moving average window n as indicated by the arrow.

Fig. 8. Market Dynamic Index I(M, n) as a function of the moving average window n, calculated according to Eq. (16) for the FBM with H = 0.5.
Different curves in each figure refer to horizon varying from one (M = 1) to twelve months (M = 12). In particular, this set of curves corresponds
to time series length N = 492035 with sampling frequency calculated as described in Section 3. I(M, n) has been evaluated as the integral of the
entropy curves S(τ , n) in Fig. 7. The insets show the Market Dynamic Index I(M, n) as a function of the horizon M . Symbols with different colours
refer to different values of the moving average window n as indicated by the arrow (n = 30 s, n = 50 s, n = 100 s, n = 150 s and n = 200 s).

tructure of the NASDAQ series in 2018 (reported in Table 1) and sampled to obtain twelve series of the same lengths.
etails of the sampling procedure are described in [24]. As it can be observed in Fig. 8, for Fractional Brownian Motion,
(M, n) has quite a constant value at different horizons M and moving average windows n, thus exhibiting a different
ehaviour compared to the real world assets shown in Fig. 6.
To quantify the departure of real market series’ from the artificially generated series behaviour, statistical significance

s estimated and results are reported in Table 8. The T-paired statistics compares the moments (means, variances and
igher order moments) that are obtained on two independent datasets according to either the same statistical measure
r the same experiment. The comparison is performed between the real world time series (e.g. the S&P 500 assets) and
rtificial data series (the simple Fractional Brownian Motion with H = 0.5) by using the same information measure (the
oving average cluster entropy). The T-paired test validates the null hypothesis that the cluster entropy values obtained
9
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Table 4
Market Dynamic Index I(M, n) and Market Horizon Dependence H(M, n). The indexes I(M, n) and H(M, n)
are calculated by using the relationships Eqs. (16), (17) with the entropy data plotted in Figs. 4 and 5
for NASDAQ. The spanned horizons M range from one to twelve months (from M = 1 to M = 12). The
values of the moving average window n are reported in the 1st column. The reference values (entropy
first period I(1)) in the third, fourth and fifth column have been taken equal to those of the consumption
growth models respectively with Power Utility (I(1) = 0.0049), Recursive Utility (I(1) = 0.0214) and
Difference Habit (I(1) = 0.0197) [16].
Nasdaq composite index (NASDAQ)

n Entropy Indexes Power Utility Recursive Utility Difference Habit

30 I(12) 0.0052 0.0226 0.0208
H(12) 0.0003 0.0012 0.0011

50 I(12) 0.0052 0.0227 0.0209
H(12) 0.0003 0.0013 0.0012

100 I(12) 0.0052 0.0229 0.0211
H(12) 0.0003 0.0015 0.0014

150 I(12) 0.0054 0.0234 0.0215
H(12) 0.0005 0.0020 0.0018

200 I(12) 0.0056 0.0246 0.0226
H(12) 0.0007 0.0032 0.0029

Table 5
Market Dynamic Index I(M, n) and Market Horizon Dependence H(M, n) for the S&P500 index. Other details
as in Table 4.
S&P 500 index (S&P500)

n Entropy Indexes Power Utility Recursive Utility Difference Habit

30 I(12) 0.0051 0.0224 0.0206
H(12) 0.0002 0.0010 0.0009

50 I(12) 0.0052 0.0226 0.0208
H(12) 0.0003 0.0012 0.0011

100 I(12) 0.0052 0.0227 0.0209
H(12) 0.0003 0.0013 0.0012

150 I(12) 0.0052 0.0229 0.0211
H(12) 0.0003 0.0015 0.0014

200 I(12) 0.0053 0.0230 0.0212
H(12) 0.0004 0.0016 0.0015

on real-world financial markets and those obtained on the artificial series (FBMs with H = 0.5) come from distributions
with equal mean and variance. In the case of the NASDAQ index, the p-value ranges between 0.5154 ≤ p ≤ 0.7584. This
confirms that the NASDAQ index exhibits a behaviour quite different from an independent elementary stochastic process
of price variations, as the FBM with H = 0.5 would imply. In the case of the S&P500 index, the p-value ranges between
0.7399 ≤ p ≤ 0.9248. Therefore, the S&P500 exhibits an intermediate tendency to behave as ideal market. In the case of
the DJIA index, the p-value ranges in the interval 0.8892 ≤ p ≤ 0.9434, suggesting a behaviour closer to an independent
stochastic process.

A comparison with results of asset price dispersion and dynamics [16], based on the Kullback–Leibler divergence in
terms of the ratio between the true and risk-adjusted distribution of the pricing kernels mt is offered. In [16], the Horizon
Dependence is defined as the difference H(M) = I(M) − I(1) with I(M) given by:

I(M) =
ELt (mt,t+M )

M
, (23)

here ELt (mt,t+M ) is the average of the relative entropy of the pricing kernel, and I(1) is calculated at the horizon M = 1.
he authors argued that a proper representative agent model should have substantial entropy, to account for the mean
xcess returns, and modest horizon dependence to account for the small premiums on long bonds. A summary of the
orizon dependence H(M) obtained by different representative agent models according to [16] is reported in Table 7.
Values of the Market Dynamic Index I(M, n) and Horizon Dependence H(M, n), defined respectively by Eq. (16) and

q. (17), are reported in Tables 4–6 for the NASDAQ, S&P500 and DJIA. The one-period cluster entropy value I(1, n) has
een taken equal to the one-period entropy (lower bound entropy) I(1) = 0.0049, I(1) = 0.0214 and I(1) = 0.0197
espectively for power utility, recursive utility and difference habit representative agent models of the consumption
rowth [16]. The value I(12, n) has been obtained from the curves in Fig. 6 for NASDAQ, S&P500 and DJIA. H(12, n) is
btained as the difference between I(12, n) and I(1, n) on account of Eq. (17).
The Market Dynamic Indexes I(M, n) (data in Tables 4–6) have been plotted in Fig. 9 (circles) for the NASDAQ, S&P

00 and DJIA. The values of the Market Dynamic Indexes I(M, n) are referred to the lower bound value I(1). As a guide
10
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Table 6
Market Dynamic Index I(M, n) and Market Horizon Dependence H(M, n) for the DJIA index. Other details
as in Table 4.
Dow Jones Industrial Average Index (DJIA)

n Entropy Indexes Power Utility Recursive Utility Difference Habit

30 I(12) 0.0050 0.0218 0.0201
H(12) 0.0001 0.0004 0.0004

50 I(12) 0.0050 0.0219 0.0201
H(12) 0.0001 0.0005 0.0004

100 I(12) 0.0050 0.0217 0.0200
H(12) 0.0001 0.0003 0.0003

150 I(12) 0.0050 0.0219 0.0201
H(12) 0.0001 0.0005 0.0004

200 I(12) 0.0050 0.0218 0.0201
H(12) 0.0001 0.0004 0.0004

Table 7
Entropy Index I(1) = ELt

(
mt,t+1

)
, I(∞), Horizon Dependence H(120) = I(120) − I(1) and H(∞) = I(∞) − I(1) as defined

in Ref. [16]. Kullback–Leibler entropy approach is used for obtaining the entropy indexes I(1) and I(∞) and horizon
dependences H(120) and H(∞) for representative agent models with constant variance (top), stochastic variance
(middle) and jumps (bottom) .
Constant variance

Power Utility Recursive Utility Ratio Habit Difference Habit

I(1) 0.0049 0.0214 0.0049 0.0197
I(∞) 0.0258 0.0232 0.0003 0.0258
H(120) 0.0119 0.0011 −0.0042 0.0001
H(∞) 0.0208 0.0018 −0.0047 0.0061

Stochastic variance

Recursive Utility 1 Recursive Utility 2 Campbell Cochrane –

I(1) 0.0218 0.0249 0.0230 –
I(∞) 0.0238 0.0293 0.0230 –
H(120) 0.0012 0.0014 0 –
H(∞) 0.0020 0.0044 0 –

with Jumps

IID w/Jumps Stochastic Intensity Constant Intensity 1 Constant Intensity 2

I(1) 0.0485 0.0512 1.2299 0.0193
I(∞) 0.0485 0.0542 15.730 0.0200
H(120) 0 0.0025 9.0900 0.0005
H(∞) 0 0.0030 14.5000 0.0007

Table 8
T-paired test. 1st column reports the horizon M . 2nd, 3rd and 4th column
report the probability p to reject the null hypothesis that the cluster
entropy values have same mean and variance for NASDAQ, S&P500, DJIA
and for the Fractional Brownian Motion with H = 0.5 at varying horizons
M .
Probability p

M NASDAQ S&P500 DJIA

1 0.5154 0.7399 0.8892
2 0.6026 0.8335 0.9257
3 0.6470 0.8588 0.9332
4 0.6631 0.8814 0.9283
5 0.6823 0.9018 0.9417
6 0.7124 0.9246 0.9534
7 0.7162 0.9224 0.9461
8 0.7288 0.9309 0.9618
9 0.7370 0.9479 0.9645

10 0.7409 0.9336 0.9570
11 0.7542 0.9321 0.9519
12 0.7584 0.9248 0.9434

for the eyes, lines between the symbols are drawn. The variation of the Market Dynamic Index I(M, n) can be directly
ompared to the values I(120) and I(∞) estimated in [16] for the power utility, recursive utility and difference habit
11
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Fig. 9. Market Dynamic Index I(M, n) as a function of the moving average window n (left axis) for NASDAQ, S&P500 and DIJA (data reported in
Tables 4, 5, 6). Cluster entropy data for the three markets are plotted with reference to the lower bound entropy values I(1) = 0.0049 for Power
tility (left panel), I(1) = 0.0214 for Recursive Utility (middle panel) and I(1) = 0.0197 for Difference Habit (right panel) agent models respectively.
he value of the entropy index I(120) and the upper bound I(∞) are also plotted (values on the right axis).

epresentative agent models. Bearing in mind that the cluster entropy increase is referred to twelve months (namely
varies from 1 to 12 over the year 2018), Fig. 9 zooms the one-year horizon dependence out of the ten-years horizon

ependence investigated in [16]. Overall, the comparison with the Kullback–Leibler entropy based on the pricing kernel
hows that the two approaches yield consistent results. Furthermore Fig. 9 shows that the increasing trend exhibited
y the entropy index with recursive utility more faithfully reproduces those of the real world data compared to other
odels. Actually, the difference habit and power utility representative agent models respectively under-estimate and
ver-estimate the increasing trends and the asymptotic values of the entropy production rate.
In order to complete our understanding of the behaviour of the cluster entropy S(τ , n) and the market dynamic index

(M, n), it is convenient to recall and further elaborate on the meaning of the entropy change dS in a time interval dt
Eq. (3)) rewritten here:

dS = dSint + dSext

ith dSint and dSext related to the endogeneous and exogeneous irreversible processes respectively. The assumption of
ocal equilibrium implies the existence of multiple characteristic times (multiscale process), namely, the time required
o reach the equilibrium for the whole system and the time required to reach the equilibrium locally (i.e. in a limited
olume, compared to the size of the system). The variation of entropy with time t in a local volume can be written in the
orm:

dS
dt

= σ − div (js) (24)

here σ =
∑

i XiJi is the endogenous entropy production (positive or equal to zero according to the second law of
hermodynamics); js is the entropy flux, which depends on the thermodynamic flux densities Ji; Xi are thermodynamic
forces. The maximum entropy production principle states that if irreversible forces Xi act, the actual flux Ji maximizes the
entropy production. In isolated systems, the maximum entropy production Eq. (24) reduces to:

dS
dt

= σ , (25)

mplying that an isolated system tends to the state with maximum entropy along the shortest possible path.
The entropy change dS/dt , with the entropy production rates σ and div (js) can be related to the derivative of Eq. (13),

y taking the cluster duration τ as the time unit, i.e.:
dS
dτ

=
α

τ
+

1
n
, (26)

ith the first term referring to the entropy produced by the intrinsic processes and the second term referring to the
ntropy produced by the interactions of the system with its environment.
To interpret the behaviour of the cluster entropy results for the three assets, we recall that the exponent α is related

to the Hurst exponent by the relation α = 2 − H (with 0 < H < 1). In the range of cluster duration τ < n when the
ntropy behaviour is dominated by the logarithmic term, the excess entropy τ/n can be neglected. Hence, the entropy
roduction rate is given by:

σ =
2 − H
τ

, (27)

ith the dependence on τ consistent with the entropy production rate of the simple diffusion process [28]. This equation
hows that the entropy production rate is positive for any τ > 0 and thus the process can be classified as irreversible.
The entropy production decreases with τ and tends to zero for τ → +∞.
12
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The relationship Eq. (27) suggests that the entropy production rate depends on the correlation exponent H . This
ependence is reflected in the behaviour of the three assets as will be discussed here below. In order to compare the
ntropy production and cope with fluctuations and discreteness of the data, the time-averaged entropy over a time interval
as been considered (Eq. (16) with τmax ≈ n). The Market Dynamic Index I(M, n) provides a cumulative estimate of the
ndogenous entropy production in the system. It depends on the Hurst exponent H (α = 2 − H). By comparing integrals
stimated over same range of cluster duration τ , like those in Fig. 6, one can note that the Market Dynamic Index I(M, n)
xhibits a slower increase for NASDAQ (H = 0.53) compared to S&P500 (H = 0.52) and DIJA (H = 0.51). This entropy

production behaviour is consistent with the smaller value of α = 2 − H for the NASDAQ compared to S&P500 and DIJA.
However, the difference in the Hurst exponent H is not enough to account for the dispersion of the entropy index

I(M, n) observed at large n for NASDAQ in particular. The discrete time version of fractional Brownian motion with Hurst
exponent H is the fractionally differenced white noise or ARFIMA (0, d, 0) where d is the fractional differencing parameter
related to the Hurst coefficient as d = H − 1/2. A more general class of processes are the ARFIMA (p, d, q) models with
the parameter p and q related to the autoregressive and moving average terms. The ARFIMA (p, d, q) model might account
for the dispersion of the entropy curve. This effect might be related to a local variability and short term correlation as
one can deduce from [24] where cluster entropy simulations with ARFIMA (p, d, q) processes with parameter p, q ̸= 0 are
reported.

An interesting perspective could be offered by arguing on the emergence of long memory as a consequence of the
aggregation of short memory processes [36]. Formally, it was shown that the autocorrelation function of the aggregated
process,

xt =

NA∑
i=1

xi,t , xi,t = φixi,t−1 + εi,t

where
(
εi,t

)
t∈N are i.i.d. white noise for each i, converges to that of a long memory process as NA → ∞ if (φi)i∈N are i.i.d.

random variables. Real world applications have shown that NA does not need to be large and even a few superimposed
entities allow xt to exhibit long memory. The effect of aggregation can be relevant to the cluster entropy behaviour. The
three assets are obtained by aggregating 2570, 505 and 30 members (see Table 1). They appear to be driven by a large
number of superimposed dynamical entities characterized by short-term fluctuations.

As a concluding remark, the cluster entropy method demonstrates its ability to quantify dispersion, intrinsic dynamics
and horizon dependence of price returns. The comparison with the Kullback–Leibler entropy results has evidenced that
the cluster entropy approach might provide complementary criteria to select among different representative agent models
of financial markets.

Future directions of this study have been devised aimed at deepening the insights in the endogenous sources of market
dynamics and at extending the definition of portfolio weights (proposed in Ref. [23]), to include horizon dependence in
the optimal portfolio choice.
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Table 9
File and workflow description.
Name Description

TimeSeriesGenerator.m → generate time series by using FracLab.
SampledSeries.m → create data structures and sample the data.a
Prices.m → create and store price vectors.
Entropy.m → evaluate the cluster entropy.b
MarketDynamicIndex.m → evaluate the Market Dynamic Index.c

DMIfigure.m → plot the Market Dynamic Index.d
DMA.m function
DMAbackward.m function
DMAcentered.m function
DMAforward.m function
ComputeClusterProbability.m function

aIt has the variable ‘‘Sampled’’ as input. If ‘‘Sampled = 1’’ returns sampled data; If
‘‘Sampled = 0‘‘ returns unsampled (raw) data.
bIt Yields Figs. 2–5 and 7.
cAccording to Eq. (16).
dYields Figs. 6 and 8.

Table 10
Data input and output.
File name Input (data & functions) Output (data & figures)

TimeSeriesGenerator.m None Data1.mat, . . . , Data12.mat
SampledSeries.m Data1.mat - Data12.mat DataSampled0.mat; DataSampled1.mat
Prices.m DataSampled0.mat, DataSampled1.mat PricesData1.mat, . . . , PricesData12.mat.
Entropy.m PricesData1.mat, . . . , PricesData12.mat; DMA.m;

ComputeClusterProbability.m
Simulations_Complete_Data1.mat, . . . ,
Simulations_Complete_Data12.mat

MarketDynamicIndex.m Simulations_Complete_Data1.mat,
Simulations_Complete_Data12.mat

MDI_n_Prices_Data.mat

DMI_figure.m MDI_n_Prices_Data.mat None
DMA.m DMA_backward.m; DMA_centred.m; DMA_forward.m None

Appendix. Supporting information

This section describes the files available in the Dropbox Shared Folder: https://www.dropbox.com/sh/9pfeltf2ks0ewjl/
ACjuScK_gZxmyQ_mDFmGHoya?dl=0, in particular the following items can be found:
ATA contains raw and sampled data .zip folders. These data can be generated and analysed by using the codes described
ere below. Horizon.zip contains the horizon (.MAT) data estimated for market series and artificial series shown in Figs. 6
nd 8. These data have been used to estimate the horizon dependence reported in Table 7. These data have been used to
erform the test whose results are reported in Table 8.
ODES contains all the MATLAB codes used for the analysis (Codes.zip).
ain steps and input/output resources are summarized respectively in Table 9 and in Table 10:

1. Generate the time series by using the ‘‘TimeSeriesGenerator.m’’ file (alternatively use any other time series in the
specified format).

2. Create a structured data with option sampled/unsampled the series with the ‘‘SampledSeries.m’’ file.
3. Create a vector of prices by means of ‘‘Prices.m’’
4. Evaluate the Market Dynamic Index by means of ‘‘MarketDynamicIndex.m’’
5. Plot the MarketDynamic Index by means of ‘‘MDI_figure.m‘‘ (Figs. 6 and 8).
6. Evaluate the entropy by means of ‘‘Entropy.m’’ (to produce Figs. 2 and 3 for unsampled data series; to produce

Figs. 4 and 5 for sampled data series).
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