
Does current noise arise from the competition
between conductive and insulating phase at the

trap-filling transition in organic semiconductors?

A. Carbone∗, B. Kutrezba-Kotowska† and D. Kotowski∗∗

∗Dipartimento di Fisica and INFM Politecnico di Torino,
Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

†Department of Physics of Electronic Phenomena, Gdansk University of Technology,
Narutowicza 11/12, 80-952 Gdansk, Poland

∗∗Istituto per lo Studio delle Macromolecole (ISMAC) Consiglio Nazionale delle Ricerche,
via Bassini 15, 20133 Milano, Italy

Abstract. The relative current noise power spectral densityS = SI ( f )/I2 observed in organic
semiconductors exhibits a maximum at thetrap-filling transition between theohmicand thespace-
charge-limited-currentregime. The electrostatic conditions determining the crossover from ohmic
to space-charge-limited transport at thetrap-filling transitionare here discussed. These arguments
shed light on the need to adopt apercolative fluctuationsmodel to account for the competition
between insulating and conductive phases as the voltage increases.
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INTRODUCTION

The phenomena underlying carrier transport in disordered solids continue to raise the
interest of the scientific community.f−g noise is an almost universal phenomenon ob-
served in such systems. In spite of the intense research effort, a general agreement on
the origin of such noise has still to be achieved. In homogeneous conductors, the rela-
tive spectral density of noise is independent of the voltageV when the Ohm law holds.
Under the same assumptions, at fixed voltage, an increase (respectively decrease) of the
free charge carrier densityn results in a monotonic decrease (respectively increase) of
the relative fluctuations. The relative noise power spectral density of the current can be
directly equated to the relative noise power spectral density of the charge carrier density
asS= SI ( f )/I2 = Sn( f )/n2. Under the assumption of independent fluctuations ofn, it
is 〈dn2〉 ∝ n and thusS∝ f−g/n.
This simple law is rarely found in inhomogeneous systems. The application of an elec-
tric, magnetic or photon field causes the current paths to be randomly modified by acting
on the different conductive properties of the coexisting phases and interfaces. Similar
phenomena are observed in ferroelectrics, polymers and copolymers, superconductors
and magnetic semiconductors, island-like metallic films, carbon-wax mixtures, poly-
crystalline semiconductors only to mention a few examples [1, 2]. The common feature
shared by these systems is the transformation undergone by the conduction paths upon
variation of a control parameter in an otherwise quasi-homogeneous conductive struc-



ture. The modification of the conduction paths - upon the external bias - results in a cur-
rent flowing according to a two-phase percolation process arising from the competition
between metallic and insulating components. Current fluctuations have been employed
to probe the electronic properties of inhomogeneous systems. Both the amplitude and
the spectral characteristics of the noise are indeed extremely sensitive to the dynamics
of the current paths upon the external excitation [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
One important aspect is that the behaviorS∝ f−g/n for homogeneous conductors, is not
observed in inhomogeneous systems. Relative noise power spectral densities changing
with the voltage have been indeed reported. Furthermore, at constant voltage values, the
1/n dependence of the relative noise lacks to occur when the charge carrier densityn
is changed. 1/n deviations are obtained when polycrystalline photosensitive materials
are irradiated. The photon flux, preferentially and disorderly, increases the conductivity
of the regions where photosensitive defects are located, resulting in the formation of
coexisting paths having different conductivities [4, 5]. Another feature often observed
in inhomogeneous systems is the non-gaussianity of the noise traces. All the mentioned
issues are diverse aspects of an unique problem: the charge carrier transport takes places
across narrow conductive paths, with a volume which is only a small part of the whole
conductor and with always less "fluctuators" involved in the stochastic process.
f−g fluctuations have been recently observed in thin films of pentacene and tetracene.
Pentacene and tetracene are small-weight organic molecules formed respectively by five,
C22H14, and four,C18H12, benzene-like rings [6]. The study of noise in organic insula-
tors is interesting at least for two reasons: (i) a complete understanding of the mecha-
nisms underlying the charge carrier transport in organic small chain and polymers has
not yet been fulfilled and still many unsolved issues remain; (ii) the deployment of or-
ganic and polymeric materials in the electronic industry requires a detailed insight into
the dynamics other than into the time-averaged properties of the charge carrier transport
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. We have reported that the relative power
spectral densityS( f ) observed in polycrystalline polyacenes is consistent with steady
fluctuations of thermally generated and of injected charge carriers, respectively inohmic
and in space-charge-limited-current(SCLC) regime. The relative noise suddenly in-
creases at thetrap filling region at intermediate voltage. The peak has been estimated
within a simple percolation model of the fluctuations as a consequence of the imbalance
between empty and filled traps. Inohmicregime, the conductive component almost ex-
clusively consists of thermally activated charge carriersnth with the deep traps almost
completely empty. In SCLC regime, the transport is dominated by the injected charge
carriersnin j , controlled by space-charge, with deep traps almost completely filled. The
intermediate voltage region,trap-filling regime, is characterized by the coexistence of a
conductive and an insulating phase, corresponding respectively to empty and filled traps,
with deep traps almost completely filled. The system can be viewed as a two-components
continuum percolative medium. The material, initially in the quasi-homogeneous ohmic
phase, becomes populated by insulating sites as the voltage increases. The current paths
become extremely intricate owing to the inhomogeneous distribution of trapping centers,
whose occupancy randomly evolves as the Fermi level moves through the trap level. The
system is in a strongly disordered state, due to the nucleation of insulating patterns in-
side the conductive medium. The relative noise intensityS( f ) of the system undergoing



the trap filling transition exceeds that of the same system when one of the two phases
prevails. The increase of fluctuations has its origin in the greatly disordered distribution
of local fields compared to the almost uniform distribution characterizing the ohmic and
the SCLC regimes. The resistanceRand the excess noiseS( f ) observed in a percolative
system are described by means of the relationships [27, 29, 30, 28]:
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S( f ) = sΩ( f ) ∑a i4a
(∑a i2a)2 , (2)

whereia andva are respectively the current and the voltage drop across the resistances
ra in the network. I is the total average current,sΩ( f ) indicates the noise spectral
density in each conductive element of the network. The resistanceR and the excess
noiseS( f ) progressively increase as the conductive matrix becomes sparse according to
the relationships:

R∝ (∆f)−t (3)

S∝ (∆f)−k (4)

wheref represents the conductive fraction.t and k are critical exponents depending
on the structure, composition and conduction mechanism (e.g. lattice, random void,
inverted random void).

An expression ofS( f ) in terms of physical observable depending upon the external
drive has been worked out in [6]. During trap-filling, the conductive site fraction of the
network is reduced proportionally to the free charge carrier density decrease caused by
the increased number of trapped charge carriers. It is:

∆f ∝
n−nt

Nv
(5)

wheren andnt are respectively the free and trapped charge carrier densities,Nv is the
total density of states, coinciding with the molecular density for narrow band materials
as polyacenes. The Eq. (5) can be rewritten as:

∆f ∝
n
Nv

(
1− nt

n

)
(6)

It follows that the noise, exceeding the level that would be expected for an ho-
mogeneous conductor with comparable density of free charge, arises from the
term (1− nt/n), i.e. from the imbalance between free and trapped carriers. As-
suming for simplicity a discrete trap level, it isn = Nvexp[−(Ev − EF)/kT] and
nt = Nt/{1+g−1exp[−(EF −Et)/kT]} ' 2Nt exp[(EF −Et)/kT], EF being the quasi-
Fermi level, g the degeneracy factor of the trap and the other quantities have the
usual meaning [15]. The resistanceR and the excess noiseSdiverge at the percolation
thresholdfc according to the relationships:R ∝ (f − fc)−t and S∝ (f − fc)−k. The
percolation thresholdfc and the onset of breakdown were obtained as a consequence of



additional traps progressively formed by bias or thermal stress. The increase of the trap
densityNt enhances the unbalance between free and trapped charge carriersnt/n [6, 7].

The system corresponds to a binary phase system where the transport is confined to
narrower and narrower conductive paths worn away by larger insulating regions as the
voltage increases. In the remainder of the paper we will add further insights into the
percolative fluctuation model arguing on the relationships between thermal and injected
charge carrier densities. These relationships will be then used to show that the observed
behavior could not have been deduced as linear superposition of the fluctuations of the
two diverse components demonstrating the evidence of the percolative mechanism of
the transport. The puzzling phenomena related to transport in organic and polymeric
material could be unraveled by an investigation accounting for the statistical properties,
namely the fluctuations, of the charge carrier dynamics. Pure organic materials could be
consideredperfect insulators, i.e. materials that, under an applied voltage, carry a neg-
ligible current associated to the injection of charge carriers according to the mechanism
known as Space Charge Limited Current (SCLC). The Space Charge Limited Current
characterizes the emission from a thermionic cathode into vacuum and is analytically
described by theChild law. Compared to vacuum, the description of the space-charge-
limited current in solids requires to keep into account the complications arising from the
electron-lattice interactions and by the unavoidable chemical impurities and structural
imperfections. The onset of charge injection under SCLC conditions from the electrode
critically depends on the presence of deep and shallow energy states related to the un-
avoidable defects at the metal-organic interface and in the bulk. The low-voltage region,
with slopel ≈ 1, corresponds to theohmicregime, described by:

JΩ = qmnV/L . (7)

The high-voltage region, with slopel ≈ 2, corresponds to the trap-free space-charge-
limited-current regime, obeying theMott-Gurney law:

JSCLC = 9ee0mΘV2/8L3 (8)

whereΘ is the trapping parameter and the other quantities have the usual meaning.
The intermediate voltage region, the trap-filling region, is analytically described by the
Mark-Helfrich law[15]. The current crossing the material under SCLC regime is carried
by the injected carriersnin j , depending onV according to:

nin j =
ee0

eL
V (9)

The ohmic regime described by the Eq. (7) dominates up to a voltage, the threshold
voltageVt , where the injected free charge carrier densitynin j becomes comparable to the
thermal concentrationnth. Furthermore, atVt one can assume that the injected charges
have completely filled the traps. This condition is expressed by the relationship:

nin j(Vt)≈ Nt −nt(Vt) (10)

At the crossover from ohmic to SCLC regime, the charge carrier transit timett = L2/mV
becomes comparable to the dielectric relaxation timetr = ee0/enm. The condition
tt = tr provides the value of the threshold voltageVt :



Vt =
NteL2

ee0
(11)

The sudden increase exhibited by the current atVt can be estimated through the
current change accompanying a doubling of the voltage. Therefore by takingV = 2Vt
and because of the proportionality of the injected charges to the voltage [Eq. (9)], the
total injected charge can be assumed to double:

nin j(2Vt) = 2nin j(Vt) . (12)

Since, on average, the traps are completely filled atVt , the additional chargenin j
must all appear in the valence band (respectively in the conduction band for electron
conduction). The trap filling process is thus accompanied by a conductance change:

dGt =
(
¶G
¶Vt

)
dVt ∝ nin j(Vt) , (13)

that accounts for the current increase [31]. This relationship can be analytically obtained
using theregional approximationto calculate the current change over the trap-filling
region [15]. We will use the relationships (10-13) to argue on the need of the percolation
picture for the current fluctuations observed at the trap-filling transition. The increase of
the rationt/n with V, i.e. the onset of the noise peak, can be directly deduced using the
Eq. (9) and Eq. (10). At low bias, it isnt � n and thus the term(1−nt/n) in Eq.(6) is
close to 1. As the trap-filling region is spanned by varying the voltage the injected carrier
densities increase with voltage, the rationt/n→ 1 with the consequent divergence of the
noise. If the transport process would occur in an homogeneous system, the increase of
the total number of charge carriersn, due to the contribution of the injected onesnin j ,
will result in a decrease of noise. The charge carrier trapping has the additional effect
to increase the number of insulating region and forces the current flow to the narrower
conductive paths. The dynamic evolution of the complex structure where the transport
takes place is clearly deduced from the occurrence of a peak in the noise. It could not
have been deduced simply from theI −V characteristics, that, as we have discussed
above, will lead to the opposite conclusion.

Let us now address the limits and the extent of validity of the model described above
and in [6, 7]. The relationships (1-4) apply only to the ohmic and trap-filling region of the
I −V characteristics where the noise is mostly due to charge carrier fluctuations. When
the trap-free SCLC regime is fully achieved, the current is determined by the injection of
charge carriers from the cathode. The noise is originated by fluctuations of the emission
probability over the metal-organic potential barrier. The mechanism is thus analogous to
the shot noiseSshot= 2eIΓ, observed in vacuum tube or solid state junctions, where the
space charge, built-up in the interelectrode region, produces a negative feedback effect
on the fluctuations [6]. Such a noise mechanism could indeed explain the decrease of
the relative fluctuations observed when the trap-free space-charge-limited conduction is
fully achieved. In organic semiconductors, a more complicated relationship thanSshot=
2eIΓ should be expected, due to the correlation between hopping events. The transport
through a two-component disordered system made of ohmic and SCLC elements is not



exactly described by the Eqs.(1-4). In fact these expressions hold for a metal-insulator
mixture with the insulator carrying no current at all [29] or with a matrix with two
different sets of conductors [30]. The two conductors have different ohmic conductivities
and the fluctuations arise from an ohmic mechanism in the two sets of conductors.
As opposed to the situations considered in [29, 30], the analytical treatment of the
fluctuations in a SCLC disordered conductor would require to take into account the
different mechanisms of noise occurring respectively in the ohmic and in the SCLC
phase of the matrix.
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