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Abstract
Accurate estimates of the urban fractal dimension Df are obtained by implementing the detrended
moving average algorithm on high-resolution multi-spectral satellite images from the WorldView2
(WV2) database covering the largest European cities. Fractal dimension Df varies between 1.65 and
1.90 with high values for highly urbanised urban sectors and low ones for suburban and peripheral
ones. Based on recently proposed models, the values of the fractal dimension Df are checked
against the exponents βs and β i of the scaling law Y ∼ Nβ , respectively for socio-economic and
infrastructural variables Y, with N the population size. The exponents βs and β i are traditionally
derived as if cities were zero-dimensional objects, with the relevant feature Y related to a single
homogeneous population value N, thus neglecting the microscopic heterogeneity of the urban
structure. Our findings go beyond this limit. High sensitive and repeatable satellite records yield
robust local estimates of the urban scaling exponents. Furthermore, the work discusses how to
discriminate among different scaling theories, shedding light on the debated issue of scaling
phenomena contradictory perspectives and pave paths to a more systematic adoption of the
complex system science methods to urban landscape analysis.

1. Introduction

The idea of quantifying socio-economic phenomena in terms of laws derived from statistical physics and com-
plex systems science continues to spread as more and more accurate time and space dependent data become
available. Hence, early studies evidencing that diverse socio-economic processes obey certain empirical laws
can be supported by robust statistical modelling [1, 2]. Despite the diversity of historical and geograph-
ical contexts, several urban features Y have been linked to the population size N by power-laws Y ∼ Nβ .
Socio-economic features (e.g. patent production, gross domestic product, crime, pollution) tend to scale super-
linearly, with β > 1. On the other hand, physical infrastructure features (e.g. transportation, financial services)
tend to increase sub-linearly, with β < 1. Individual needs (e.g. housing, water consumption) tend to scale lin-
early with β ≈ 1 [3]. Diverse theories, e.g. based on dissipative interactions [4], gravity [5], three-dimensional
fractal buildings [6], self-organization [7] and synergetics [8], have been proposed to describe the microscopic
origin of such behaviour. A feature common to these models is that the interactions depend on the effective
distance � connecting site pairs, which for fractal media, is expressed in terms of the Hausdorff dimension
as � ∝ λDf (figure 1). Then the fractal (Hausdorff) dimension Df is linked to the exponent β, hence bridging
together the urban scaling and fractal geometry research areas and opening novel directions to the quantitative
analysis of socio-economic phenomena and urban complex systems.

Morphology and function of cities are prominent examples of fractals with the Hausdorff dimension Df

providing a measure of the urban concentration across scales [9, 10]. The estimation of fractal dimension in
urban contexts begins by analysing the spatial distribution of the build-up area, traditionally performed on
cartographic images with black pixels corresponding to built-up space and resolution defined by the size of the
pixels. While a uniform distribution of buildings over the investigated area would yield a fractal dimension Df
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Figure 1. Individual path samples between urban site pairs A and B with characteristic length �. Two paths connecting a pair of
sites, define the boundary of a urban cluster with area A. The length � can be related to the average size (diameter) of the area
λ = A1/d and to the fractal dimension Df by the relationship � ∝ λDf = ADf/d .

almost equal to the Euclidean dimension d (Df ∼ d), a sparse distribution of buildings provides values lower
than d (Df < d) [11].

Urban infrastructures cannot be simply quantified by iteration of elementary constituents, as it would be
appropriate for deterministic fractals. Statistically based elaboration of data mapped on the coordinates i, j
of the city grid are required. Methods as diverse as radial and box counting, isarithm, triangular prism, and
variogram have been adopted [10–20].

Despite extensive efforts and several successful applications [21–26], many issues are still unsolved pre-
venting full acceptance of the urban scaling ideas [27–30]. Concerns refer for example to the microscopic
origin of the scaling behaviour, to the analytical relationships linking the exponents β and Df , to the accuracy
of statistical fitting. Different outcomes have been obtained even for the same city due to computing-method
variations, disparities in map size, coverage and boundary, resolution, data accuracy, time period, box-size
and scale. The scaling exponent β and the fractal dimension Df heavily depend on the definitions, methods
and variables chosen for their estimation, varying significantly among different works and irremediably defy-
ing the intended universality. Dataset heterogeneity and incompleteness represent a severe limitation to the
accuracy and ultimately prevent the comparison of the scaling exponents across different cities. Digitally col-
lected data have the potential to provide objective features and comparable estimates across different regions.
In particular, satellite technologies, yielding regularly and uniformly recorded data with well-defined features,
are conveniently exploited to gather information about infrastructural and socio-economic features [31–36].
However, the ever increasing variety and volume of data pose additional constraints to their practical usability,
requiring more and more sophisticated computational tools.

It is noteworthy that most of the empirical estimates of the scaling exponents made in the literature use
socio-economic quantities of employment or added values, which are not provided by a pointwise distribution
over the urban areas and certainly they are not detectable, nor can be provided by satellite images, which
refer to physical information of rural and urban landscapes. Models like those proposed in [4–8] might be
very relevant to overcome this limitation, as they share the common aim to relate the physical/infrastructural
features to the socio-economic variables. Further scientific steps are still required in order to shed light on the
physical hypothesis and mathematical constraints underlying the existing literature in order to find a unified
view of the described phenomena and remove all the apparent contradictions still present in the outcomes
fueling controversial perspectives.

This work addresses some of the above challenges. Firstly, robust estimates of the fractal dimensions Df

of urban and suburban sectors are obtained by implementing the two-dimensional detrended moving average
(DMA) [39] on 1.84 m-resolution WorldView-2 satellite images of several cities [40]. For centrally located
urban areas characterized, by regular building grid, fractal dimension values close to 1.9 are found. Subur-
ban and peripheral areas are characterised by lower fractal dimension with values close to 1.6. Secondly, the
dependence of the exponents β on the fractal dimension Df is discussed on account of the empirical values
for socio-economic and infrastructural quantities reported in [3] and the behaviour expected on account of
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the models [4–6]. By taking advantage of the accuracy of the DMA method and high resolution repeatable
satellite records, the proposed approach yields statistically robust estimates of the scaling exponents for urban
and suburban sectors. It is worthnoting that central and peripheral parts of European urban agglomerations
have been discriminated by means of alternative approaches based on radial distribution density D(r) and
cumulative population function P(r) of the CORINE Land Cover database images [17] and of the Urban Atlas
database [18].

The manuscript is organized as follows. In section 2 (definitions and methods) the fractal dimension, the
fractional Brownian field and the DMA method are briefly recalled. In section 3 (data and results) the World-
View2 satellite images are described and a few examples are shown (Turin, Wien, Zurich, Prague). The fractal
dimensions Df are estimated for different urban and suburban sectors of the same city. In section 4 (discus-
sion), comparison with previously published results and validation against urban scaling models, in terms of
the β vs Df relationships, are provided. In section 5 (conclusion) the main outcomes, potential implications
and directions for future work are summarised.

2. Definitions and methods

Self-similarity concepts and fractal geometry have been extensively adopted to describe real-world structures
characterized by irregular fragmented shapes and complex features that traditional approaches fail to grasp.
Scaling relations of the form:

f (λ) ∝ λDf , (1)

are generally exhibited by self-similar textures where λ is a characteristic scale, a measuring unit size, and Df

the fractal (Hausdorff) dimension, defined as:

Df = d − H, (2)

with d the Euclidean embedding dimension and H the Hurst exponent, ranging from 0 < H < 0.5 and 0.5 <

H < 1, respectively for negatively and positively correlated random sets, and H = 0.5 corresponding to the
ordinary Brownian function, i.e. to fully uncorrelated random sets.

Fractional Brownian fields, i.e. continuous functions of two variables fH(x1, x2) can be conveniently adopted
for spatial data modelling [37, 38]. The Hurst exponent H characterizes the degree of irregularity which
decreases as H increases. The Hurst exponent uniquely characterizes the fractional Brownian field and can be
used in equation (2) to estimate the fractal dimension Df , which instead is not uniquely defined and depends
on d. The fractal dimension Df of the fractional Brownian surface is Df = 2 − H when referred to an horizon-
tal cross section of the fractal set (i.e. a curve with dimension varying between a line 1 and a plan 2), whereas
for the whole fractal set, i.e. a geometric structure varying between a plan and a volume, Df = 3 − H [37].
Since the value of the fractal dimension Df depends on the topological dimension d, it is convenient to take
the Hurst exponent as a metric of the random field, whereas Df might be useful to graphically envision the
irregular structure. Several realizations of the fractional Brownian random fields for different values of the
Hurst exponent H have been graphically represented with d = 2 in [39] and with d = 3 in [42, 43].

As mentioned in the introduction, the high-dimensional DMA (d-DMA) [39] is here applied to World-
View2 satellite images [40] to estimate the Hurst exponent H and fractal dimension Df of urban infrastructures.
For the sake of clarity, the main steps of the DMA method are briefly summarized below.

Random fractal sets can be analytically described in terms of a scalar function fH(r) : Rd → R showing
self-similarity, with the Hurst exponent H as a parameter, and correlation function:

CH(r, r + λ) =
σ2

2

�
|λ|2H + |r + λ|2H − |r|2H

�
(3)

depending as a power law on the scale λ and H ∈ [0, 1]. The power-law correlation is reflected by the variance:

σ2
H =

�
[fH(r + λ) − fH(r)]2

�
∝ ‖λ‖2H (4)

with r = (x1, x2, . . . , xd), λ = (λ1, λ2, . . . , λd) and ‖λ‖ = (λ2
1 + λ2

2 + · · · + λ2
d)1/2.

As schematically illustrated in figure 2, the DMA algorithm operates via a generalized high-dimensional
variance σDMA of fH(r) around the moving average function�fH(r) [39], that, for d = 2, writes:

σ2
DMA =

1

(N1 − n1max )(N2 − n2max )
×

N1�

i1=n1

N2�

i2=n2

[f (i1, i2) − �fn1n2 (i1, i2)]
2, (5)
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Figure 2. Scheme of the DMA algorithm operation on a two dimensional domain. Given a matrix M, for each moving average
windows ni and nj, a matrix M̃i,j, where each element M̃i,j is equal to the moving average window around M, is obtained. M̃i,j is
then used to detrend Mi,j according to the algorithm described in section 2.

with�fn1n2 (i1, i2) given by:

�fn1n2 (i1, i2) =
1

n1n2
×

n1−1�

k1=0

n2−1�

k2=0

f (i1 − k1, i2 − k2). (6)

First, the average scalar field�fn1n2 (i1, i2) is estimated over sub-arrays with different size n1 × n2. The next step
of the algorithm is the calculation of the difference f (i1, i2) − �fn1,n2 (i1, i2) for each sub-array n1 × n2. It can be
shown that equation (5) reduces to the form:

σ2
DMA ∼

��
n2

1 + n2
2

	2H

= sH , (7)

hence a log–log plot of σ2
DMA as a function of s = n2

1 + n2
2 yields a straight line with slope H.

The scaling behaviour expected by equation (7) is illustrated in figure 3 where the 2d-DMA
method is implemented on artificial fractal images, with different size and Hurst exponent, generated by
Cholesky–Levinson factorization [41]. One of such surfaces with H = 0.2 is shown in figure 3 (top panel).
The σDMA values obtained for artificial fractal surfaces with input Hurst exponent ranging from 0.1 to
0.9, size 480 × 480 and 1024 × 1024 are plotted in the middle and bottom panels. The difference between
the input Hurst exponents and the DMA outcomes is negligible and decreases as the size of the surface
increases.

As opposed to fractional Brownian functions fH(r) defined to exist at all scales, real-world data sets barely
behave as ideal fractals. Being characterized by finite sizes, setting upper and lower limits to the detection of
small and large scales, deviations from the ideal scaling behaviour should be expected.

Deviations at large scales are caused by finite-size effects, which occur when the analysed surfaces does not
contain a sufficient amount of data to allow for a statistically significant evaluation of the scaling law for large
values of the moving average window n. Finite-size effects become negligible for n1,max 	 N1 and n2,max 	 N2.
On the other hand, deviations at small scales occur when the low-pass filter deviates from ideality. As discussed
in [39] with respect to the transfer function HT (ω1, ω2) of the moving average low pass filter for d = 2, in ideal
operations, HT should be one or zero respectively for frequencies lower or higher than the cutoff frequency.
However, for real low-pass filters, at frequencies below the cutoff, signals suffer attenuation, while at frequencies
over the cutoff, signals are not fully filtered out, causing HT to take values respectively smaller or larger than
1. This results in an excess of components with high frequency and a lack of components with low frequency,
which in turn cause a decrease in the value of σ2

DMA and therefore an increase of the slope in the log–log plot,
resulting in deviations of the scaling law from the full linearity.

Equations (5)–(7) have been implemented on d = 2 and d = 3 artificially generated structures in [42, 43].
Multi-spectral LandSat Thematic Mapper imagery of rural areas of Mangystan (Kazakhstan) and New Mexico
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Figure 3. (Top panel) Fractional Brownian surface with size 512 × 512 and Hurst exponent H = 0.2 generated via FRACLAB
[41]. (Middle panel) Log–log plots of σ2

DMA results for fractional Brownian surfaces with Hurst exponent
H = 0.1, 0.2, 0.3, . . . , 0.9 and size 480 × 480. Log–log axis are in natural base. Each color refers to DMA results and to Hurst
exponent estimates H for a different fractional Brownian surface. The Hurst exponent estimates reported in the legend are
obtained as the slope of the regression line by least squares of log σ2

DMA. (Bottom panel) Same as the middle panel but for surfaces
with size 1024 × 1024.

(USA), monthly recorded from July 1982 to May 2012, have been analysed in [44]. Hurst exponents ranging
between 0.21 � H � 0.30 and 0.11 � H � 0.30, corresponding to fractal dimensions between 1.70 � Df �
1.79 and 1.70 � Df � 1.89, have been found respectively for Mangystan and New Mexico. The increase of
the fractal dimensions over the years has been interpreted in terms of the effect of the growth of man-made
infrastructures and built-up areas at the expenses of the rural landscape.
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Figure 4. (Top panel) Image N45-024 (Torino) downloaded from the Urban Atlas collection of the largest European cities of
WorldView-2 satellite images [40]. The image is multi-spectral with size 1080 × 1080. Yellow lines divide the image into four
sub-images of size 540 × 540. (Bottom panel) Log–log plots of σ2

DMA for each sub-image and for the red band. Log–log axis are in
natural base. Hurst exponent estimates H, obtained as the slope of the regression line by least squares, are shown for each
sub-image. Goodness of fit is evaluated by R2 provided in table 1.

In this work, the Hurst exponent and the fractal dimension of WorldView2 satellite images of several cities
will be estimated by using the two-dimensional detrending moving average algorithm (DMA) described by
the equations (5)–(7) with the main purpose to investigate if the method can provide meaningful infor-
mation regarding the variability of urban and suburban sectors within the same area and between different
cities.

6



J.Phys.Complex. 3 (2022) 025007 (16pp) A Carbone et al

Figure 5. Same as for Fig. 4 but for image N48-181 (Vienna).

3. Data and results

WorldView2 [40] provides panchromatic imagery with 0.46 m resolution and eight-band multispectral
imagery with 1.84 m resolution. The subset European cities includes WorldView2 images of several European
cities and their hinterland, processed by the European Space Imaging GmbH from February 2011 to Octo-
ber 2013 and is referred to as the Urban Atlas. With spatial resolutions of the order of 10–30 m, LandSat and
Sentinel satellites are very effective at mapping land coverage and cryosphere by identifying spectral signa-
ture and broadly classifying areas containing that spectral pattern. Multi-spectral satellite imagery with pixel
resolution of the order of 1 m and less provide finer scale features able to investigate Earth crust phenomena
at the microscopic level. The high resolution might enable to discriminate fine details of land use/land cover
such as farmland, urban areas, quality of road surfaces, and health of plants. The multiple spectral bands yield
inter-band spectral information to discriminate texture features [45, 46].

Samples of the analysed urban areas are shown in the top panels of figures 4–7. The images are 1080 × 1080
pixels large. Sub-images, obtained by dividing the main image into four squares of size 540 × 540, are delimited
by yellow lines and labelled by A, B, C, D. Here, we report results obtained on the red band. Results obtained
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Figure 6. Same as figure 4 but for the image 47-377 (Zurich).

for green and blue bands, different sectors and other cities will be reported in a forthcoming work. Before
implementing the DMA algorithm, raw data are converted from the uint8 to the double format. The algorithm
is implemented separately on each sub-image, to grasp the variability of the scaling properties of different areas
(partially mountainous, suburban and centrally located areas).

Log–log values of σ2
DMA are plotted in the bottom panels of figures 4–7. Deviations from the fully linear

trend (expected for an ideal fractal) can be observed particularly at the low scales (small s values) where the
σ2

DMA drops down. In order to account for non-ideality extent and the deviations at the extreme scales, multiple
computational steps are implemented.

The DMA algorithm has been computed for ni ∈ [2, 49], with i = 1, 2, which, according to equation (7),
results in the s values shown in the horizontal axis of the plots.

8
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Figure 7. Same as figure 4 but for the image N50-090 (Prague).

Regressions are computed for the first range (2 < s < 5), the last range (5.5 < s < 8.5) and the whole range
of scales, providing three estimates of the Hurst exponent, respectively labelled by H1, H2 and H. The values
of H1, H2 and H are reported for the images shown in figures 4–7, for other images and related subsectors in
table 1. The last and the whole range of scales provide quite accurate Hurst exponents (respectively H2 and
H) with excellent goodness of fit as indicated by the high R2 values in table 1. Higher values of the slope are
obtained for the first range of s values (H1). The origin of the deviation at the low scales reflected in the excess
value of H1 is due to the satellite image resolution mismatch compared to the average size of urban blocks.
Being the pixel resolution of the order of 1.84 m, the minimum area detectable by the DMA algorithm is of
the order of 1.84 m × 1.84 m. This area is much smaller than the minimal average urban block area (about
10 m × 10 m or larger). Thus fewer elementary random built-up components are found at the smallest scales
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Figure 8. Range of the empirical values for β i and βs reported in reference [3] (second column). Analytical expression of the
exponents β i and βs deduced in references [4–6] (respectively third, fourth and fifth columns). Plot of βs (filled symbols) and βi

(hollow symbols) as defined by equation (8) (red circle), equation (9) (blue square) and equation (10) (green diamond). A
different dependence of the exponents on the fractal dimension is observed: βs increases (βi decreases) very slowly with the fractal
dimension Df according to equation (8); a stronger increase (decrease) is found according to equation (9); whereas βs decreases
(βi increases) with Df according to equation (10).

compared to the number that would be expected with an ideal self-similar urban structure with block size of
the order or smaller than 1.84 m.

Image N45-024 (Turin) is shown in figure 4 (top panel). Log–log results of σ2
DMA are plotted for each sub-

image A, B, C, D for the whole range of s scales (bottom panels). The slope is estimated by ordinary linear
regression over three different ranges of s values. H1, H and H2 corresponding respectively to the first range,
full range and last range of s values are reported in table 1. H2 ranges between 0.10 ÷ 0.15, H ranges between
0.12 ÷ 0.16, while H1 ranges between 0.23 ÷ 0.24. The Hurst exponent of section D is the highest and indeed
corresponds to less urbanised areas (Torino hills). Further results are reported for other Turin areas (image
N45-037 and N45-124) in table 1.

Image N48-181 (Vienna) is shown in figure 5 (top panel). The σ2
DMA results are plotted in log–log scale

(bottom panels). Sections A, B and C are highly urbanized areas, while section D is less urbanized. This is
reflected in the Hurst exponent estimates, which tends to be lower for urbanized areas. H2 ranges between
0.09 ÷ 0.17, H ranges between 0.12 ÷ 0.20, while H1 ranges between 0.22 ÷ 0.27 (table 1). Further results are
reported for other areas of Vienna (image N48-006 and N48-465) in table 1.

Image N47-377 (Zurich) is shown in figure 6 (top panel). The σ2
DMA results are plotted in log–log scale

(bottom panels). The most densely urbanized area looks section B, while the least section A. Overall, the city of
Zurich seems more heterogeneous compared to Turin (figure 4) and Vienna (figure 5) with large wooded areas
frequently interrupting the urbanized grid. This is reflected in the Hurst exponent, which takes higher and less
diversified values than for Torino and Vienna. H2 ranges between 0.10 ÷ 0.20, H ranges between 0.12 ÷ 0.22,
while H1 ranges between 0.22 ÷ 0.28 (table 1). Further results are reported for other areas of Zurich (images
N47-167 and N48-230) in table 1.

The image N50-090 of the city of Prague is shown in figure 7 (top panel) and σ2
DMA results are reported in

log–log scale (bottom panels) for each of the four sections of the whole image. H2 ranges between 0.11 ÷ 0.16,
H ranges between 0.14 ÷ 0.17, while H1 takes the value 0.26. Further results are reported for other areas of
Prague (images N50-045 and N49-908) in table 1.

The fractal dimension Df can be estimated by using the Hurst exponents estimated above in equation (2).
Df values calculated by introducing the value H2 in the equation (2) are reported in the last columns of the
table 1 for the sectors A, B, C, D of the above described images and other images of the same cities. Similar Df

values can be easily obtained by using H as well.
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Table 1. Hurst exponents estimated for the WorldView2 satellite images N45-024, N45-037, N45-124 (Torino); N48-181, N48-006,
N48-465 (Vienna); N47-377, N47-230, N47-167 (Zurich); N50-090, N50-045, N49-908 (Prague). The Hurst exponents H1, H and H2

have been obtained by implementing the 2d-DMA algorithm over the first, whole and last range of s values as summarised in section 2.
For each image the Hurst exponent is estimated for 4 cross-sections (different urban areas) labelled A, B, C, D as shown in figure 4 for
the image N45-024. Last column reports the estimates of the fractal dimension by using Df = d − H with the Hurst exponents H2 and
d = 2. Using the Hurst exponents results in the second column, referred to as H, alternative but similar values of Df can be obtained.

Image Section H1 H H2 R2 Df

Torino
ID: N45-024 A 0.23 0.12 0.10 0.93 1.90

X: 45.024 B 0.23 0.13 0.11 0.95 1.89
Y : 7.709 C 0.24 0.13 0.11 0.94 1.89

D: 09-2011 D 0.25 0.16 0.15 0.97 1.85
ID: N45-037 A 0.31 0.30 0.32 1.00 1.68

X coord: 45.037 B 0.27 0.25 0.27 0.99 1.73
Y coord: 7.189 C 0.28 0.23 0.23 0.99 1.77
Date: 09-2011 D 0.33 0.30 0.31 1.00 1.69
ID: N45-124 A 0.30 0.28 0.30 1.00 1.70

X coord: 45.125 B 0.27 0.22 0.23 0.99 1.77
Y coord: 7.303 C 0.25 0.16 0.13 0.97 1.87
Date: 09-2011 D 0.26 0.17 0.15 0.98 1.85

Vienna
ID: N48-181 A 0.23 0.13 0.11 0.94 1.89

X: 48.181 B 0.24 0.15 0.13 0.97 1.87
Y : 16.448 C 0.22 0.12 0.09 0.93 1.90

D: 07-2012 D 0.27 0.20 0.17 0.98 1.83
ID: N48-006 A 0.33 0.26 0.23 0.99 1.77

X: 48.006 B 0.38 0.30 0.27 0.99 1.73
Y : 16.446 C 0.33 0.29 0.27 1.00 1.73

D: 07-2012 D 0.33 0.26 0.22 0.99 1.78
ID: N48-465 A 0.41 0.30 0.27 0.99 1.73

X: 48.466 B 0.39 0.32 0.31 1.00 1.69
Y : 16.619 C 0.40 0.29 0.26 0.99 1.74

D: 07-2012 D 0.40 0.28 0.24 0.98 1.76

Zurich
ID: N47-377 A 0.28 0.22 0.20 0.99 1.80

X: 47.37 B 0.27 0.19 0.17 0.98 1.83
Y : 8.500 C 0.23 0.12 0.10 0.93 1.90

D: 04-2014 D 0.22 0.14 0.12 0.96 1.88
ID: N47-167 A 0.26 0.19 0.16 0.98 1.84

X: 47.167 B 0.27 0.20 0.19 0.99 1.81
Y : 8.702 C 0.28 0.23 0.23 0.99 1.77

Date: 07-2010 D 0.26 0.18 0.16 0.98 1.84
ID: N47-230 A 0.28 0.23 0.21 0.99 1.79

X: 47.230 B 0.27 0.21 0.19 0.99 1.81
Y : 8.501 C 0.29 0.23 0.21 0.99 1.79

D: 04-2014 D 0.27 0.21 0.18 0.99 1.82

Prague
ID: N50-090 A 0.26 0.17 0.16 0.97 1.84

X: 50.091 B 0.26 0.15 0.12 0.95 1.88
Y : 14.371 C 0.26 0.16 0.14 0.96 1.86

D: 08-2013 D 0.26 0.14 0.11 0.93 1.89
ID: N50-045 A 0.25 0.18 0.17 0.99 1.83

X: 50.046 B 0.24 0.14 0.12 0.95 1.88
Y : 14.313 C 0.25 0.19 0.19 0.99 1.81

D: 03-2012 D 0.26 0.21 0.21 0.99 1.79
ID: N49-908 A 0.29 0.24 0.24 0.99 1.76

X: 49.909 B 0.34 0.32 0.32 1.00 1.68
Y : 15.273 C 0.36 0.32 0.33 1.00 1.67

D: 07-2013 D 0.33 0.29 0.30 1.00 1.70
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Table 2. Scaling exponents βi and βs obtained by using the values of Df reported in table 1. The values for the sections A, B, C, D are
obtained by using equation (8) and equation (9) with γ = 1.5 and equation (10), with Dp = Df + 1.

Reference [4] [5] [6]

A B C D A B C D A B C D

Vienna
N48-181 βi 0.76 0.76 0.76 0.76 0.80 0.81 0.80 0.83 0.65 0.65 0.65 0.64

βs 1.24 1.24 1.24 1.24 1.20 1.20 1.20 1.17 1.35 1.35 1.35 1.36
N48-006 βi 0.76 0.77 0.77 0.76 0.85 0.87 0.87 0.84 0.64 0.63 0.63 0.64

βs 1.23 1.23 1.23 1.23 1.15 1.13 1.13 1.16 1.36 1.37 1.37 1.36
N48-465 βi 0.77 0.77 0.77 0.77 0.87 0.89 0.86 0.85 0.63 0.63 0.63 0.64

βs 1.23 1.23 1.23 1.23 1.13 1.11 1.14 1.15 1.37 1.37 1.36 1.36

Prague
N50-090 βi 0.76 0.76 0.76 0.76 0.82 0.81 0.81 0.80 0.65 0.65 0.65 0.65

βs 1.24 1.24 1.24 1.24 1.18 1.19 1.18 1.19 1.35 1.35 1.35 1.35
N50-045 βi 0.76 0.76 0.76 0.76 0.82 0.80 0.83 0.84 0.65 0.65 0.64 0.64

βs 1.24 1.24 1.24 1.24 1.18 1.20 1.17 1.16 1.35 1.35 1.36 1.36
N50-908 βi 0.77 0.77 0.77 0.77 0.85 0.89 0.89 0.88 0.64 0.63 0.62 0.63

βs 1.23 1.23 1.23 1.23 1.15 1.11 1.10 1.12 1.36 1.37 1.37 1.37

Torino
N45-024 βi 0.76 0.76 0.76 0.76 0.79 0.79 0.79 0.81 0.65 0.65 0.65 0.65

βs 1.24 1.24 1.24 1.24 1.21 1.21 1.21 1.19 1.34 1.35 1.35 1.35
N45-037 βi 0.77 0.77 0.76 0.77 0.89 0.87 0.85 0.89 0.63 0.63 0.64 0.63

βs 1.23 1.23 1.23 1.23 1.11 1.13 1.15 1.11 1.37 1.37 1.36 1.37
N45-124 βi 0.77 0.76 0.76 0.76 0.88 0.85 0.80 0.81 0.63 0.64 0.65 0.65

βs 1.23 1.23 1.24 1.24 1.12 1.15 1.20 1.19 1.37 1.36 1.35 1.35

Zurich
N47-377 βi 0.76 0.76 0.76 0.76 0.83 0.82 0.79 0.80 0.64 0.65 0.65 0.65

βs 1.24 1.24 1.24 1.24 1.17 1.18 1.21 1.20 1.36 1.35 1.34 1.35
N47-167 βi 0.76 0.76 0.76 0.76 0.81 0.83 0.85 0.81 0.65 0.64 0.64 0.65

βs 1.24 1.24 1.23 1.24 1.18 1.17 1.15 1.18 1.35 1.36 1.36 1.35
N47-230 βi 0.76 0.76 0.76 0.76 0.84 0.83 0.84 0.82 0.64 0.64 0.64 0.64

βs 1.24 1.24 1.24 1.24 1.16 1.17 1.16 1.18 1.36 1.36 1.36 1.35

4. Discussion

The values of the Hurst exponent H and fractal dimension Df summarized in table 1 will be compared with
those reported in previous works [10–17, 19, 20] in this section. Next, the exponent β of the scaling law Y ∼ Nβ

will be estimated by introducing the values of Df into the relationships worked out in [4–6].
As mentioned in the introduction, the fractal dimension Df has been estimated on cities by approaches

as diverse as box-counting, radial method isarithm and variogram. The Hurst exponent takes a unique value
hence allowing the comparison and linking results obtained by methods implemented over different embed-
ding dimensions d. Depending on the embedding Euclidean dimension d = 1, d = 2 and d = 3 of the fractal
set and using the equation (2), Df = d − H takes values respectively in the range (0 ÷ 1.0), (1.0 ÷ 2.0) and
(2.0 ÷ 3.0).

Values of the fractal dimension Df < 1 have been obtained in suburban fragmented areas when one-
dimensional fractal measures (e.g. the radial method) are adopted [17]. To understand how such Df < 1 values
emerge, one can think of the well-known Cantor set, a fractal obtained by repeatedly removing parts of a line
segments. Thus a fractal set with 0 < Df < 1 resembles a fragmented structure between a point (Df = 0) and
a line (Df = 1).

Fractal dimensions ranging between 1.28 � Df � 1.70 have been reported for Omaha and New York city
in [12], between 1.44 � Df � 1.62, and 1.68 � Df � 1.50, for Belgium’s 18 largest cities in [13]. Values in the
range 1 � Df < 1.26, for dispersed areas, 1.26 � Df < 1.54 for new seeds of urbanised areas, 1.54 � Df � 2
for densely urbanized and consolidated areas are reported for Lisbon in reference [14]. Several mega-cities and
mining cities of China are investigated over different periods: the fractal dimension ranges between 1.57 �
Df � 1.74 in 1990, and 1.57 � Df � 1.78 in 2000 [15] and between 1.62 � Df � 1.80 [16].

The fractal dimensions of built-up surfaces in central and peripheral parts of 40 European urban agglomer-
ations using satellite images of the CORINE land cover database has been analysed in [17]. The fractal measure
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Figure 9. Experimental exponents βs (filled symbols) and βi (hollow symbols) as defined by equation (8) (circle), equation (9)
(square) and equation (10) (diamond) for different areas of Torino, Zurich, Vienna and Prague. A different dependence of the
exponents on the fractal dimension is observed.

is implemented on the radial distribution density D(r) and cumulative population functions P(r) with the vari-
able r defined in a one-dimensional Euclidean dimension with d = 1, which for a fragmented urban structure
(detached suburban areas) provide fractal dimension lower than 1 in most of the cases.

Fractal dimensions of satellite images of cities are obtained by (i) isarithm, (ii) triangular prism and (iii)
variogram ranging respectively between (i) 2.80 � Df � 3.00; (ii) 2.60 � Df � 2.80, for urban, forest and
grass, 2.30 � Df � 2.80 for cropland and pasture; 2.20 � Df � 2.60 for water; (iii) 2.80 � Df � 3.00 for
cropland and water; Df � 3.00 for urban, forest and grass [19]. The triangular prism yields lower values
of Df compared to those obtained by isarithm and variogram methods. The images analysed by triangular
prism date back to 1975, while the other images were acquired in 2000 (isarithm and variogram). After 25
years, the city had become a large metropolis where manmade infrastructure with roads, highways, and build-
ings filled the area. Such changes in the urban landscape can reasonably explain the increased value of Df

and the corresponding decrease of H. The fractal dimension of red band satellite images of the Indianapo-
lis area ranges respectively between 2.72 � Df � 2.82 (isarithm), 2.78 � Df � 2.93 (triangular prism), and
2.88 � Df � 2.96 (variogram) [20]. On average the H values obtained by using satellite images are smaller
than those obtained by using traditional data sets as cartographic maps.

To further substantiate our study, the values of the Hurst exponent H and of the fractal dimension Df of
satellite images as those in figures 4–7 will be validated against the relationships linking β and Df deduced in
references [4–6] which are briefly recalled below.

Under the assumption of incremental network growth and bounded human effort, infrastructural
and socio-economic features are written as power laws of the population size Y ∼ Nβ respectively with
exponents [4]:

βi = 1 − Df

d(d + Df)
βs = 1 +

Df

d(d + Df)
. (8)

In reference [5], the interaction strength between individuals is modelled in terms of a scalar field varying
inversely with the distance. Based on this assumption, the total interaction intensity is obtained in the form of a
power law of the population size, for the infrastructural and socio-economic quantities with scaling exponents
respectively:

βi =
γ

Df
βs = 2 − γ

Df
, (9)

with γ varying in the range 1.0 ÷ 1.5 (noteworthy γ = 1.0 corresponds to the Newtonian gravitational law
in d = 2). The long-range interaction regime, with γ/Df < 1 and βs > 1, implies that superlinear socio-
economic scaling behaviour occurs when each individual can interact with all other individuals of the city.
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In reference [6] socio-economic interactions are assumed to occur in a three dimensional fractal cloud
rather than on the two-dimensional fractal infrastructure generated by the urban plan. According to this work,
since buildings extend into the third dimension, the population is distributed as a fractal in space, with dimen-
sion Dp, where Df � Dp � Df + 1. Under this assumption, the authors write the scaling exponents for the
infrastructures and the socio-economic activities as:

βi =
Df

Dp
βs = 2 − Df

Dp
. (10)

For the convenience of the discussion, the scaling exponents are plotted as a function of the fractal dimen-
sion Df in the bottom panel of figure 8. The empirical values of β i and βs reported in [3] and the relationships
(8)–(10) are given for the ease of comparison respectively in the second, third, fourth and fifth column of the
table in the top panel of figure 8.

One can note that the exponents βi and βs deduced in references [4–6] exhibit a different dependence on
Df . In particular, the exponent βs increases very slowly with the fractal dimension Df according to equation (8).
A steeper increase of βs is found according to the equation (9). Surprisingly, βs decreases with Df according to
equation (10) and reference [6]. Analogously, one can note that β i decreases according to equations (8) and
(9), whereas βi increases according to equation (10).

A few peculiar properties of the scaling law exponents deserve to be further outlined. The model [5] exhibits
a quite interesting physically sound behaviour. At the value Df = 1.5, βi and βs become respectively larger and
smaller than 1. One can bear in mind that a fractal dimension (1.0 < Df < 1.5) would correspond to a urban
area distributed mostly along a line (i.e. more similar to a one-dimensional geometrical structure), whereas a
fractal dimension (1.5 < Df < 2.0) would correspond to a urban area distributed almost over a square (i.e.
more similar to a two-dimensional geometrical structure). The inversion of the values of the exponents can be
related to the different constraints posed by a urban area mostly distributed along a line, with fractal dimen-
sion Df → 1. Such urban topology would clearly imply that the cost of the physical infrastructure exceeds over
the socio-economic advantage of the urban organization. Conversely, Df → 2 corresponds to a more compact
urban structure almost regularly distributed over a two-dimensional surface, where the costs of the physical
infrastructure are much better compensated by the socio-economic organization advantage. As a final com-
ment, we note that in the case of [6], the behaviour of betas does not exhibit the increasing dependence on
Df that would be expected on account of other studies and experiments and that seems to be grounded on
physically sound arguments related to the benefits of the urban organization.

The different behaviour of the scaling exponents provided by the models [4–6] is further discussed in terms
of the derivatives with respect to Df . Consider for example the derivative of βs (the derivative ∂βi/∂Df yield
similar expressions but with opposite sign). The calculation yields respectively for equation (8) (reference [4]):

∂βs/∂Df = 1/(d + Df)
2, (11)

for equation (9) (reference [5]):
∂βs/∂Df = γ/D2

f , (12)

for equation (10) (reference [6]):

∂βs/∂Df = −1/(1 + Df)
2 if Dp = Df + 1

otherwise
∂βs/∂Df = −1/D2

f if Dp = Df. (13)

The derivatives of the exponents βs exhibit a different dependence on Df , hence confirming the behaviour
shown by the curves in figure 8.

The fractal dimension values (ranging between 1.6 � Df � 1.8 and 1 < Df < 2) used for the scaling law
estimates were taken from third party sources in [4–6]. In this work, the exponents βi and βs are calculated by
introducing the values of Df (table 1) into the equations (8)–(10). Values are shown in table 2. Columns from 3
to 6 show the values obtained by equation (8); equation (9) with γ = 1.5 correspond to columns from 7 to 10;
equation (10) with Dp = Df + 1 correspond to columns from 11 to 14. The analysed areas have infrastructures
scaling sub-linearly and socio-economic interactions scaling super-linearly with exponents in the range of
empirical values according to reference [3] when equations (8) and (9) are used. The values of the exponent
yielded by equation (10) systematically exceed the expected values. The values are plotted in figure 9, where
the range of empirical values (column 2 of the table in figure 8) are also indicated by thin horizontal lines.
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5. Conclusions

This work enriches the existing literature on two fronts. First, it provides a new method for urban classification
capable of distinguishing different areas such as urban and suburban areas. In particular, the Hurst exponent H
(resp., the fractal dimension Df ) is smaller (larger) for highly urbanized areas and larger (smaller) for detached
rural areas. The Hurst exponent H of several large European cities has been estimated by implementing the
DMA algorithm on high resolution remotely sensed images (WorldView2 Urban Atlas database). The values of
H are linked to the fractal dimension Df through the relationship (2). Our estimates provide 0.10 � H � 0.30
for the Hurst exponent, which correspond to fractal dimensions ranging between 1.65 � Df � 1.90. Interest-
ingly, we obtain slightly smaller Hurst exponent and higher fractal dimension on average with respect to the
estimates of the urban fractal dimensions reported in [12–15]. Our values of the Hurst exponent are closer
to those provided in references [16, 19, 20]. This result seems to suggest that highly reproducible values are
obtained when satellite images are used as opposed to those provided by other data sets.

Second, the manuscript demonstrates that a geometrical approach to urban scaling theory, which exploit
the statistical structure of high resolution satellite images of cities, provides robust estimates and validation of
urban scaling laws. A rich theory has developed a number of models that describe the characteristic power law
behaviour of features exhibiting super-linear or sub-linear scaling respectively for socio-economic and infras-
tructural variables. Interestingly, for the quantification of such formulae, the theoretical framework relies on
fractal measures. By using the definitions of the scaling exponents reported in the table at the top of figure 8,
βi and βs can be calculated. The results for the images N45-024, N48-181, N47-377 and N50-090 of the cities
of Turin, Vienna, Zurich and Prague are reported in table 2 and plotted in figure 9. The outcomes are physi-
cally sound and could help to reconcile controversial perspectives to the ultimate purpose to achieve a shared
knowledge infrastructure for urban landscape analysis of broad interest. Thus, the proposed method can be
used alone or in combination with other measures and approaches to provide significant new insights in urban
scaling model analysis and in designing the related needs for intervention and policy-making activities.
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