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Abstract. Long-range correlation properties of stochastic time series y(i) have been investigated by in-
troducing the function σ2

MA = 1
Nmax−n

�Nmax
i=n [y(i) − �yn(i)]2, where �yn(i) is the moving average of y(i),

defined as 1/n
�n−1

k=0 y(i − k), n the moving average window and Nmax is the dimension of the stochastic
series. It is shown that, using an appropriate computational procedure, the function σMA varies as nH

where H is the Hurst exponent of the series. A comparison of the power-law exponents obtained using re-
spectively the function σMA and the Detrended Fluctuation Analysis has been also carried out. Interesting
features denoting the existence of a relationship between the scaling properties of the noisy process and
the moving average filtering technique have been evidenced.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.Tp Time
series analysis

1 Introduction

Long-memory stochastic processes, owing to their intrigu-
ing statistical properties, continue to attract the interest
of the physicist community. These processes, which are en-
countered in fields as different as condensed matter, bio-
physics, social science, climate change, finance, are usually
characterized either by the fractal dimension D, or by the
Hurst H or by the scaling exponent α of their power law
statistics.

Since the scaling exponents are related to the univer-
sality class of the system, their knowledge allows to un-
derstand the fundamental processes ruling the system dy-
namics. Conversely, these parameters appear to be very
helpful also for practical purposes. For example, it has
been observed that the scaling exponent can distinguish
between healthy and sick heart beat rate. Hurst exponents
H � 1/2 have also been found in financial time series,
where the knowledge of H can help to identify markets
with higher degree of persistence [1–8].

A number of frequency, time and, even, integrated do-
main approaches have been proposed to estimate these
exponents from random data sequence [8–13]. The pro-
cedures to measure the scaling exponents of a stochastic
sequence y(i) consist in calculating appropriate statistical
functions from the whole signal. These functions show a
power-law dependence on the scale size. Restricting our
discussion to time domain, Detrended Fluctuation Anal-
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ysis (DFA) and Rescaled Range Analysis (R/S) are the
most popular scaling methods to estimate power-law cor-
relation exponents from random signals. The R/S tech-
nique consists in the following steps. The stochastic time
series y(i) with (i = 1, 2, ....Nmax) is divided into boxes of
equal size n. The functions:

Xi =
i∑

j=kn+1

[y(j) − 〈y〉] (1)

and

S =

√√√√ 1
n

n∑
j=1

[y(j) − 〈y〉]2 (2)

are calculated in the kth box. In equations (1, 2), 〈y〉
represents the average value of the time series y(i) over
each box and is given by 1/n

∑(k+1)n
i=kn+1 y(i). The Rescaled

Range function is defined by:

R/S = 1/S

[
max

kn+1�i�(k+1)n
Xi − min

kn+1�i�(k+1)n
Xi

]
. (3)

The function R/S is then averaged over all the boxes
of equal size n. By iterating the calculation of 〈R/S〉 for
different box amplitudes n, a relationship between 〈R/S〉
and n is obtained, that in the presence of scaling is of
power-law type. According to the DFA technique, after
dividing the series in equal size boxes as done for the R/S
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technique, a polynomial function ypol(i) interpolating the
sequence in each box is calculated. The interpolating curve
ypol(i) represents the local trend in each box. The average
value of the function:

DFA =

√√√√ 1
Nmax

Nmax∑
i=1

[y(i) − ypol(i)]2, (4)

is calculated over all the boxes of equal size. Repeating
the calculation over boxes of different size, a relationship
as DFA ∝ nH is obtained for long-memory correlated
processes. In particular, 0 < H < 0.5 and 0.5 < H < 1
correspond respectively to negative (antipersistence) and
positive correlation (persistence), while H = 0.5 corre-
sponds to fully uncorrelated signals.

In a recent paper, Vandewalle and Ausloos reported on
interesting features of the moving average ỹn(i) of a time
series y(i) [14]. Moving average is a well-known low-pass
filter defined, for discrete signals, by:

ỹn(i) =
1
n

n−1∑
k=0

y(i − k). (5)

They observed that the density ρ of crossing points be-
tween moving averages with time windows respectively
equal to n1 and n2 can be indeed expressed as:

ρ =
1
n2

[(∆n)(1 − ∆n)]H−1 (6)

with ∆n = (n2 − n1)/n2 and (n2 � n1). The authors
used the equation (6) to extract the Hurst exponent of
correlated time series obtaining results comparable with
the DFA ones. On this account, they concluded that, even
though not yet rigorously established from a theoretical
point of view, moving averages show unexpected physical
meaning deserving further investigation.

The results of paper [14] motivated our work. In the
limit of n → 0, the moving average tends to the series itself
(i.e. ỹn(i) → y(i)). The crossing points correspond to the
zeroes of the first-order difference between y(i) and ỹn(i).
In the following section we will report on a systematic
analysis of the properties of the second-order difference of
the process y(i) with respect to ỹn(i). The results will shed
more light on the basic idea of Vandewalle and Ausloos
derived from equation (6).

2 Moving average technique and stochastic
series scaling

In Figure 1, a random sequence y(i) with H = 0.3 is
plotted (solid lines). Dotted and dashed lines correspond
respectively to the moving averages ỹn(i) calculated for
n = 10 and n = 30. In Figure 2, a random sequence y(i)
with H = 0.7 is plotted (solid lines). Dotted and dashed
lines correspond respectively to the moving averages ỹn(i)
calculated for n = 500 and n = 5000. The series have
been generated using the Random Midpoint Displacement
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Fig. 1. Stochastic series yn(i) obtained by using the Random
Midpoint Displacement algorithm with H = 0.3. The size of
the series is Nmax = 219. Curves (1) and (2) are the moving
averages �yn(i), calculated using equation (5) respectively with
n = 10 and n = 30.
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Fig. 2. Stochastic series yn(i) obtained by using the Random
Midpoint Displacement algorithm with H = 0.7. The size of
the series is Nmax = 219. Curves (1) and (2) are the moving
averages �yn(i), calculated using equation (5) respectively with
n = 500 and n = 5000.

(RMD) algorithm. Both the series of Figures 1 and 2 have
size Nmax = 219.

As stated in the introduction, in this paper we will
report on a study of the second-order difference of the
noisy signal y(i) with respect to the moving average ỹn(i)
defined by:

σ2
MA =

1
Nmax − n

Nmax∑
i=n

[y(i) − ỹn(i)]2 (7)

i.e. the variance of y(i) with respect to the moving aver-
age ỹn(i). By using equation (7), we have performed the
following computational procedure:

1. a stochastic series y(i) with an assigned Hurst expo-
nent has been generated (as already specified, in this
work we have used the RMD algorithm),
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Fig. 3. Power-law dependence of the function σMA, defined
by equation (8), on the moving average box n. Curves have
been obtained using the procedure proposed in Section 2, with
artificially generated series having Nmax = 218 and Hurst co-
efficient H varying between 0.05 and 0.95.

2. the moving averages ỹn(i) with different values of n
have been calculated for the series y(i). The values of
n range from 2 to 15000. In the following we will refer
to the maximum value of n used as nmax,

3. the function σMA, defined by the equation (7), is then
calculated over the time interval [nmax, Nmax], i.e.:

σMA =

√√√√ 1
Nmax − nmax

Nmax∑
i=nmax

[y(i) − ỹn(i)]2 (8)

for each moving average ỹn(i),
4. the values of σMA corresponding to each ỹn(i) are plot-

ted as a function of n on log-log axes.

The described algorithm has been applied to a number
of artificially generated random series with different sizes.

Results shown in Figure 3 refer to stochastic series with
Nmax = 218 and Hurst coefficients varying from 0.05 to
0.95 with step 0.05. For these curves, it is nmax = 8000 as
it can be seen in Figure 3. Analogous behaviour has been
observed with different values of nmax.

The most remarkable property of the curves plotted in
Figure 4 is the power-law dependence on n, i.e.:

σMA ∝ nH . (9)

The function σMA allows to estimate the scaling expo-
nents analogously to the DFA and the to the R/S function.

In Figure 4, power-law exponents obtained using the
σMA algorithm have been compared with the DFA ones.
Data refer to artificial series with Nmax = 217 and nmax =
10000. Dashed line represents the ideal behaviour, i.e.
Hout = Hin. Both the σMA and the DFA curves deviate
from the ideal behaviour and a crossover with the dashed
line occurs. The onset of crossovers is a main concern of
DFA and R/S scaling techniques, reducing the range of
applicability of the algorithms and the accuracy of the
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Fig. 4. Comparison between the estimated power-law expo-
nents from artificially generated series using the technique σMA

(curve (1)), proposed in Section 2, and the Detrended Fluctu-
ation Analysis (DFA) (curve (2)). Dashed line represents the
ideal behaviour (Hout = Hin). The occurrence of a crossover
at H = 0.49 and at H = 0.67 respectively for the σMA and for
the DFA curve can be observed.

estimation. It has been therefore extensively investigated
by several authors [15–17]. By observing the results of
Figure 4, the crossover between the σMA curve and the
dashed line occurs at a value of H � 0.49, while the
crossover of the DFA curve occurs at H � 0.67. This could
be due to a better smoothing and detrending of the mov-
ing average filter respect to the polynomial fitting used by
the DFA. We have ascribed the better performance of our
algorithm to the following reasons. When using the DFA
technique, linear or cubic polynomials fitting the stochas-
tic series in the corresponding boxes, are used. Moving
average filter adjusts the fitting curve dynamically (i.e.
every time the discrete index i increases by a unity, the
box window n adjust its position accordingly). Due to the
continuous adjusting of the box position to the series, a
higher accuracy should be expected.

3 Discussion and conclusion

We have reported on the scaling properties of long-range
correlated stochastic series y(i) as obtained by the compu-
tational procedure described in the previous section. This
procedure makes use of the function σMA defined by the
equation (7). We have found the remarkable result that
the function σMA varies as a power-law of the amplitude n
of the moving average window. The results obtained us-
ing the σMA algorithm are strictly related to the property
of the density of crossing points between y(i) and ỹn(i)
reported by [14]. However, the relationship σMA ∝ nH ,
satisfied by the function σMA, better evidences the link
between ỹn(i) and the scaling properties of y(i).
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To the best of our knowledge, this behaviour has never
before been evidenced in the literature. In order to attain
a full understanding of these results, a detailed analysis of
the statistical properties of σMA and other related quan-
tities is required.

The results of the present work confirm that a deeper
theoretical insight of moving average filtering could reveal
other interesting properties for both fundamental and ap-
plication purposes.
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