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Abstract—An array of resistively and capacitively
shunted Josephson junctions with nonsinusoidal current-
phase relation is considered for modelling the resistive
transition in high-Tc superconductors. The emergence of
higher harmonics, besides the sinusoid Ic sinφ, is expected
for dominant d-wave symmetry of the Cooper pairs,
random distribution of potential drops and dirty grains,
or in nonstationary conditions. We show that additional
cosine term acts by modulating the global resistance, due
to the weak-links whose transition occurs through mixed
superconductive-normal states.

I. INTRODUCTION

Arrays of Josephson junctions are under intensive

investigation for their potential implementation as su-

perconductor quantum bits and ability to model several

fundamental phenomena in disordered superconductive

films [1]–[12]. In particular, the resistively and capaci-

tively shunted Josephson Junction model (RCSJ model)

has been adopted to describe the resistive transition in

granular superconductors [13]–[19]. In the conventional

RCSJ model, the Josephson current is the simple sinu-

soid IS(φ) = Ic sinφ, where Ic is the critical current and

φ = θ2 − θ1 the phase difference of the superconductor

order parameters Δ1 exp(iθ1) and Δ2 exp(iθ2) [20].

Sign and magnitude of Ic are affected by the gap

function symmetry and relative orientation of the su-

perconductor electrodes. According to the microscopic

approach, the current-phase relation can be expressed as:

IS(φ) ∝
∫ +∞

−∞
[1− 2f(E)]Im[IE(φ)]dE , (1)

with f(E) the electron energy distribution and

Im[IE(φ)] the spectral current, which depend on ma-

terial, geometry and nonequilibrium conditions. The

current-phase relation (1) can be written as an n-order

Fourier series [21], [22]:

IS(φ) =
∑
n≥1

[
Ĩn sin(nφ) + J̃n cos(nφ)

]
. (2)

When the sum is restricted to the 1st order, Ĩn sin(nφ)
reduces to the familiar sinusoidal Josephson current

Ic sinφ. The term J̃n cos(nφ) is the quasi-particle-pair-

interference current (QPIC). Deviations from the si-

nusoidal shape have been experimentally observed at

temperatures below Tc because, in general, these effects

are of the second order. In the vicinity of Tc, they have

been theoretically predicted and observed in normal-

metal weak-links, as a consequence of the depairing

either by proximity effect by supercurrent or in long

junctions or in far-from-equilibrium conditions [21]. A

disordered polycrystalline superconductor is a nonhomo-

geneous system with wide variability of the physical and

chemical properties of the grains. For current I ∼ Ic
and voltage 0 < V < Vc in the vicinity of the

transition, nonequilibrium effects arise in the weak-links

making their relevant properties spatially and temporally

dependent on the external drive [16]–[19], [23]–[29].

When a polycrystalline superconductor undergoes the

transition, far-from-equilibrium condition, due to the

abrupt voltage drops across the grains, may result in the

emergence of higher harmonics according to the local

voltage values, geometry and material composition of the

grains. In the presence of evolution equations which are

nonlinear -such as those of Josephson Junctions- intrinsic

localized modes (ILM) are obtained as solutions of sine-

Gordon equations. Theses solutions are characterized by

being time-dependent and spatially localized as opposed

to translationally invariant lattices, in the absence of

disorder or defects, where an initially localized excitation
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Fig. 1. Two-dimensional Josephson junction array representing
a granular superconductor. Circles represent superconducting grains
connected by weak-links. The bias current Ib is injected to the left
electrode and collected from the right electrode. Equivalent circuit of
the weak-link between the grains i and j is shown in the zoom. The
linear resistor Rij , the linear capacitor Cij , the nonlinear inductor
Ln,ij and memristor Mn,ij are connected in parallel. The current
Iij flows from grain i to grain j. Vij is the voltage drop across the
weak-link.

distributes its energy over the entire system. Deviations

from the simple sinusoidal shape in the I-V character-

istics of single Josephson junctions and arrays as an

effect of the formation of intrinsic localized modes have

been reported in [28], [29]. The-pair-interference current

J̃n cos(nφ) emerges when the pair-symmetry is broken

and it is expected to come into play when the junctions

are partly dissipative. This may occur in the mixed state,

i.e. in the vicinity of Tc, for current I ∼ Ic and voltage

0 < V < Vc.

In this work, we put forward a model of the

superconductive-resistive transition where a network

of resistively and capacitively shunted nonsinusoidal

Josephson junctions are considered. The network of

weak-links, modeled as nonsinusoidal Josephson junc-

tions, should be particularly relevant when the effect of

nonequilibrium in the presence of disorder and nonlin-

earity should be taken into account in the transition of

granular superconductors.

II. MODEL

A two-dimensional array of Josephson junctions is

sketched in Fig. 1. The bias current Ib is injected to

the left electrode and collected from the right electrode.

Circles represent superconducting grains connected by

weak-links. According to the RCSJ model, the current

Iij flowing through each junction is:

Iij = Cij
dVij

dt
+

Vij

R
+ IS,ij(φij) + δIL,ij . (3)

where Cij and Rij are the shunt capacitance and resis-

tance between grains i and j, IS,ij(φij) is the Josephson

current, δIL,ij is the Langevin fluctuation source. The

voltage drop across the junction is given by:

Vij = Vi − Vj =
�

2e

dφij

dt
, (4)

with φij the phase difference of the order parameters in

the grains i and j. In the usual RCSJ model, IS,ij(φij)
is a simple sinusoid, whereas in the present work the

nonsinusoidal form given by Eq. (2) is considered.

Therefore, the current Iij flowing through each junction

connecting the grains i and j writes as:

Iij = Cij
dVij

dt
+

Vij

Rij
+

+
∑
n≥1

[Ĩn,ij sin(nφij) + J̃n,ij cos(nφij)] + δIL,ij . (5)

Iij is given by the sum of the following contributions:

the charging current through the shunt capacitance Cij ,

the Ohmic current through the shunt resistance Rij ,

the n Josephson current sources Ĩn,ij sin(nφij) and

J̃n,ij cos(nφij) and the Langevin current.

The equivalent circuit of each junction is highlighted

in the circle of Fig. 1. It corresponds to a parallel

connection of a linear capacitor Cij , a linear resistor

Rij , a parallel of n inductors Ln,ij (related to the

Ĩn,ij sin(nφij) terms) and a parallel of n memristors

Mn,ij related to the J̃n,ij cos(nφij) terms (we use the

notation memristor after [30]). Eq. (5) can be written

more compactly as:

Iij = Cij
dVij

dt
+

Vij

R
+

+
∑
n≥1

Ic,n,ij sin(nφij + φo,n,ij) + δIL,ij , (6)

with:

Ic,n,ij =
√

Ĩ2n,ij + J̃2
n,ij (7)

and:

φo,n,ij = arctan(
J̃n,ij

Ĩn,ij
) (8)

Josephson junctions are usually classified in terms of

the Stewart-McCumber parameter βc = τRC/τJ with

τRC = RC and τJ = φo/2πIcRo, as overdamped

(βc � 1), general (βc � 1) and underdamped (βc � 1).
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Fig. 2. Josephson junction characteristics of a weak-link with
current-phase relation IS(φ) = Ic sin(φ) (the blue line), IS(φ) =
Ĩ1 sin(φ) + J̃1 cos(φ) with Ĩ1 = 1mA and J̃1 = 0.5mA (the pink
line). The generalized Stewart-McCumber parameter is β∗

c = 45.

For the nonsinusoidal junction described by Eq. (6),

the generalized Stewart-McCumber parameter can be de-

fined as β∗c = τRC/τ
∗
J , with τ∗J = φo/(2π

∑
n Ic,n,ijRo).

Eq. (6) can be numerically solved for an arbitrary

number n of harmonics. Nonetheless, we restrict our

discussion to the following case relevant to the physics

of superconductors:

IS,ij(φij) = Ĩ1,ij sin(φij) + J̃1,ij cos(φij) , (9)

The scheme of the current-voltage characteristics of an

underdamped (β∗c � 1) Josephson junction obtained by

solving Eq.(6) is shown in Fig. 2. In particular, the

blue line in Fig. 2 refers to the simple sinusoid, the

pink line to IS,ij(φij) given by Eq.(9). The intermediate

states are characterized by voltage drops in the range

0 < Vij < Vc,ij and current Iij = Ic,n,ij . Upon current

(voltage) decrease starting from the normal state, the

behavior is always resistive, implying that the system

reaches the superconductive ground state without explor-

ing the intermediate states.

For overdamped junctions (β∗c � 1), the intermediate

states are characterized by voltage drop and current

respectively in the range 0 < Vij < 2Vc,ij and Ic,n,ij <
Iij < Ic,n,ij [2Vc,ij ]. Upon increasing and decreasing the

external drive, the current-voltage behavior is the same,

hence no hysteresis is observed.

In the general case (β∗c ≈ 1), the I − V curve is

partly hysteretic. Upon increasing the external drive, the

intermediate states are characterized by a voltage drop

in the range 0 < Vij < Vc,ij and current equal to Ic,n,ij .
As the external drive decreases, the backward current

lies slightly below the forward current. It is worthy

of remarks that with the nonsinusoidal current phase

relation the capacitive effect is reduced in comparison

to the simple sinusoidal case.

III. RESULTS AND DISCUSSION

As stated above, the resistive transition is modeled

by using a network of weak-links, with Josephson

junction characteristics given by Eq. (6). The solution

of the network is obtained by a system of Kirchhoff

equations that has been already used for the simple

sinusoidal Josephson current characteristics in [?]. We

have routinely solved the Kirchhoff equations of the

networks by using the generalized RCSJ model Eq. (6)

with weak-links with nonsinusoidal current-phase rela-

tion given by Eq. (2) in the temperature range just

below Tc. The network is biased by constant cur-

rent Ib. The superconductor-insulator transition is sim-

ulated by solving the system of Kirchhoff equations

at varying temperature. The critical currents Ĩn,ij and

J̃n,ij are assumed to vary on temperature according to

the linearized equations Ĩn,ij = Ĩo,n,ij (1− T/Tc) and

J̃n,ij = J̃o,n,ij (1− T/Tc) , where Ĩo,n,ij and J̃o,n,ij
are the lowest temperature values of Ĩn,ij and J̃n,ij .
Hence, the critical current Ic,n,ij depends on temper-

ature according to Ic,n,ij = Ico,n,ij (1− T/Tc), with

Ico,n,ij =
√

Ĩ2o,n,ij + J̃2
o,n,ij . In order to take into account

the disorder of the array, Ĩn,ij and J̃n,ij are taken

as random variables, distributed according to Gaussian

functions with mean values Ĩo,n and J̃o,n and standard

deviations ΔĨo,n = ΔJ̃o,n.

By effect of the temperature increase and consequent

reduction of the critical current, the weak-link with the

lowest value of the critical current Ic,n,ij = Ic,min

switches to the intermediate state and, then, becomes

resistive when Vij > Vc. The resistive transition of the

first weak-link has the effect to set the value of the

voltage drop across the other weak-links in the same

layer. The result is the formation of a layer of weak-

links either in the resistive or in the intermediate state. As

temperature further increases, the critical current Ic,n,ij
further decreases. More and more weak-links gradually

switch from the superconductive to the intermediate state

and then to the resistive state. The term J̃n,ij acts by in-

creasing the critical current value of the weak-link in the

intermediate state in the layers undergoing the transition.

It is worthy to remark that the increase of critical current

is relative to the fraction of normal electrons in the mixed

states. The onset of J̃n,ij cos(nφij) is indeed triggered

by the elementary resistive transition of the weak-link
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Fig. 3. Resistive transition of a two-dimensional network with
current-phase relation of the form IS,ij(φij) = Ĩ1,ij sin(φij) +
J̃1,ij cos(φij). The average value of the critical current Ĩ1,ij is
1mA. The curves correspond to different average values of the
critical current J̃1,ij , namely J̃1,ij = 0mA, J̃1,ij = 0.5mA,
J̃1,ij = 0.75mA and J̃1,ij = 1mA. The normal resistance Ro is
1Ω equal for all the junctions.

with the lowest critical current, since it is related to

the partly broken pair-symmetry of the weak-links in

the intermediate state. It has no effect on the links in

the superconductive state, neither on those in the fully

resistive state.

Fig. 3 shows the curves of the resistive transi-

tions obtained with current-phase relation IS,ij(φij) =
Ĩ1,ij sin(φij)+ J̃1,ij cos(φij) for a two-dimensional 30×
30 network. The curves correspond to different values

of the term J̃1,ij . The values of the critical currents are

Ĩ1,ij = 1mA and J̃1,ij ranging from 0 to 1mA. The stan-

dard deviation of the critical currents is ΔIo,n = 0.5mA.

Initially, the weak-links are in the superconductive state,

thus the network resistance is negligible. As temper-

ature increases, the weak-link with the lowest critical

current switches to the intermediate state and then to

the resistive state with the consequent onset of the term

J̃n,ij cos(nφij) and redistribution of the currents. One

can notice that the curves overlap at the beginning of the

transition, whereas become more separated when T →
Tc, implying that the effect of the term J̃n,ij cos(nφij)
is more relevant as the transition approaches its end.

The amplification of the J̃n,ij cos(nφij) effect, as the

resistance increases, means that J̃n,ij acts as modulation

of the resistance. The modulation effect due to J̃n,ij can

be noted at the level of each elementary transition step.

IV. CONCLUSIONS

The nonsinusoidal current-phase relation has been

considered in the resistively shunted Josephson junction

model for describing the superconductive transition. By

solving a system of Kirchhoff equations for the array

of nonsinusoidal Josephson junctions, it is found that

additional cosine and sine terms modify the transition

curves by changing resistance and Josephson coupling.

The model might be relevant for Cooper pairs with d-

wave dominant over s-wave symmetry.
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