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A three-dimensional multiscale spatial model of snow with evolving microstructure is presented. Many engineering
and environmental problems require a comprehensive understanding of snow behavior which arises as a consequence of
phenomena spanning a wide spectrum of spatial length scales. Snow is classically described as a granular heterogeneous
medium consisting of air and three water phases: ice, vapor, and liquid. The ice phase consists of grains arranged on a
matrix according to a random load-bearing skeleton. The challenge is to achieve a detailed description of the mechanical
and morphological characteristics of different snow microstructures that may have the same global density. Snow density
can be determined by in situ measurements with quite good accuracy, and by means of the box-counting method, the
fractal dimension of snow samples characterized by grains with different diameters could be determined. It was suggested
that the fractal dimension can be adopted as a relevant parameter for quantifying snow morphology, in terms of the
distribution of voids, and density over a wide range of spatial scales. In this work this concept is further developed.
Snow density is simulated by means of a lacunar fractal, namely, a generalized Menger sponge. Then, a fully three-
dimensional invasive stochastic fractal model is adopted. This model performs a three-dimensional mapping of the snow
density to a three-dimensional fractional Brownian field. In particular, snow samples with evolving microstructure are
quantified as a continuous function of the fractal dimension.
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1. INTRODUCTION

Understanding the fundamental phenomena by which snow microstructure evolves is becoming increasingly relevant
for scientific communities interested in environment, geophysics, and engineering. Snow is a porous material with a
solid ice crystal skeleton (grains) with air and water vapor mixture embedded in the pores (Blackford, 2007; Colbeck
et al., 1985). However, the classification of snow as a single material is difficult. Snow is a multifaceted material
exhibiting a multitude of forms. Due to its close existence to its melting point, snow microstructure changes with
time. The type, size, and shape of snow grains and inter-grain bonds change accordingly and affect the cohesive
strength of the snow cover. Snow metamorphism strongly depends on the temperature gradient within the snow,
according to various energy fluxes through the snow cover, for example, visible and infrared radiation, geothermic
heat. Ice sublimates in the snow cover, flows along existing vapor gradients, and condensates at colder positions of the
ice matrix. Physical and mechanical properties of snow greatly vary over space and rapidly evolve in time, affecting
density and texture. The former is defined as the mass per unit volume, while the latter defines the shape, size, and
bonds of the grains constituting the ice skeleton. Density and texture depend on meteorological conditions (essentially
temperature, but also humidity) which, together with the mechanical strains, cause metamorphism and, ultimately,
instability of snow cover. Both features strongly influence the natural porosity of snow and its thermal, chemical, and
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mechanical properties (Dadic et al., 2008; Fauve et al., 2008; Golubev and Frolov, 1998; Frolov and Fedyukin, 1998;
Kaempfer et al., 2005; Kaempfer et al., 2007; Kaempfer and Schneebeli, 2007; Kaempfer and Plapp, 2009). Density is
the parameter usually adopted to classify and assess snow properties, thanks to the simplicity of in situ measurements.
In general, the density is determined by excavating snow trenches and weighing given volumes of snow (Colbeck
et al., 1985). This procedure enables the density to be adopted as a parameter for quantifying snow characteristics
such as viscosity, shear stress and strength, cohesion, and mechanical properties, e.g., Young’s modulus, Poisson’s
ratio. However, completely different mechanical features might correspond to different types of snow having the
same density (Shapiro et al., 1997). Physical properties of snow are commonly described in terms of specific density,
which is defined as the ratio between snow densityρsnow and ice densityρice. In particular, Kirchner et al. (2001)
and Petrovic (2003) work out power-law relationships with noninteger exponents between mechanical properties (i.e.,
tension and shear strength, toughness, etc.) and specific density, suggesting fractal snow features.

Multiscale modelling and fractional calculus have been extensively adopted to characterize different classes of
materials (Ostoja-Starzewski 1998, 1999, 2006; Turcotte, 1997). In particular, snow crystals and snowflake shapes
have already been modelled by using the von Koch snowflake curves and iterated function systems. In the last two
decades, fractal snow cover has resulted in several applications: from the measure of fractal dimension of images,
to remote sensing and mapping of snow cover and depth distribution by satellite and Lidar images, from the study
of the roughness of the snowpack, to the determination of the air flux across snow surfaces, and the definition of
the spatial variation of the snow water equivalent (Deems et al., 2006, 2008; Emerson et al., 1999; Fassnacht et
al., 2006; Fassnacht et al., 2009; Shook et al., 1993). By analyzing three-dimensional tomographies obtained for
cubic samples with different densities, the granular structure and the spatial distribution of voids have been recently
investigated at the Centre Etudes de Neige of Mét́eo France (www.cnrm.meteo.fr/passion/neige1.htm) and their fractal
character clearly detected (Faillettaz, 2003). Chiaia and Frigo (2009) have described the probability of occurrence of
snow avalanche events by assuming scale invariance of the snowpack at the smallest scales with the consequent scale
invariance behavior at the largest scales, allowing the stability of the snow cover at larger scales.

By adopting a fully three-dimensional fractal description and analysis of the distribution of ice grains in a snow
cube (Carbone, 2007; Arianos and Carbone, 2009; Türk et al., 2010), the multiscale character of snow is quantified
in deeper detail. Considering the stochastic peculiarities of the grain distribution of snow samples, a fully three-
dimensional stochastic fractal model is presented, able to reproduce the local randomness of a real snow sample
microstructure. This fully three-dimensional stochastic fractal model is used to relate snow texture and density as a
function of Hurst exponent. The proposed model provides a fully three-dimensional analysis in terms of a continuum
fractional Brownian field as opposed to the discrete Menger model description. Within the framework of this model,
fractal dimensionD and Hurst exponentH optimally quantify ice distribution and accurately reproduce the values of
snow density for different microstructures.

The paper is organized as follows. In Section 2, snow density is simulated by means of the generalized Menger
sponge model, which is characterized by a discrete set of fractal dimension. In Section 3, the fully three-dimensional
stochastic fractional Brownian model is reported. This model has the advantage of reproducing the randomness of
the local microstructure of snow samples in a more realistic way. In particular, snow density has been mapped to a
three-dimensional Brownian field, with the Hurst exponentH continuously ranging from 0 to 1.

2. GENERALIZED MENGER SPONGE MODEL

The Menger sponge is a lacunar fractal generated according to the following procedure. First, a bulky cube is divided
into 3 × 3 × 3 = 27 equal subcubes. Then, seven subcubes are removed from the center of each face and from the
center of the cube, resulting inNf = 20 filled subcubes andNe = 33−Nf = 7 empty subcubes. This single step will
be repeatedly applied to the remaining cubes. For a solid cube with linear sizer0, the subcubes of the 1st-level Menger
sponge are characterized by linear sizer1 = r0/3. The 2nd-level Menger sponge is characterized by subcubes with
r2 = r0/9 [Fig. 1(a)].ri = r0/3

i is the linear dimension of the subcubes at the iterationi.
The Menger sponge has been used to model porous media, whose relevant parameter is the void index or porosity

ϕ (Turcotte 1997). For the Menger sponge, the porosityϕi, defined as the relative volume of voids per unit volume,
can be expressed by the following relationship:
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(a) (b)

FIG. 1: (a) Menger sponge at the second iteration where the size, density, and porosity are, respectively,r2 = 9r0,
ρ2 = (400/729)ρ0, andϕ2 = 329/729. (b) Three-dimensional invasive fractal generated with the Hurst exponent
H = 0.1 according to the three-dimensional fractional Brownian model. The densityρ(r) ranges between0 and917
kg/m3, with a size ratio of400× 400× 400 values.

ϕi = 1−
(
ρi

ρ0

)
, (1)

whereρ0 is the density of the initial cube, andρi is the density of the Menger sponge obtained at the iterationi. By
taking into account thatρi andρ0 are inversely proportional to the volumes and, then, to the linear sizesr0 andri,
Eq. (1) can be written as

ϕi = 1−
(
r0
ri

)3−D

(2)

whereD is the fractal dimension, that is the scale-independent parameter characterizing the morphology of a porous
material. The fractal dimension of the Menger sponge is given byD = lnNf/ ln 3. Here we assume self-similarity
which implies a linear relationshipH = 3 − D between fractal dimensionD and Hurst coefficientH (Gneiting
and Schlather, 2004; Mateu et al., 2007). Therefore, the density and void index of theith-level Menger sponge, as a
function of the linear dimension of cuber0 and subcubesri can be written as

ρi

ρ0
=

(
r0
ri

)3−D

=

(
r0
ri

)3−lnNf/ ln 3

=

(
r0
ri

)H

. (3)

For example, for the Menger sponge at the second iteration shown in Fig. 1(a), the porosity isϕ2 = 329/729 and the
density isρ2 = 400ρ0/729. The procedure described above for generating the Menger sponge can be generalized by
removing an arbitrary numberNe of subcubes (instead of seven) out of an arbitrary number of filled cubesNf (instead
of 20). This generalized construction results in fractal structures with a Hurst exponent different thanH = 0.273.

To model snow samples, a solid ice cube characterized by densityρice = ρ0 = 917 kg/m3 and linear size
rice grain = r0 is considered as the initial cube. Then snow is simulated as a Menger fractal form of ice characterized
by densityρsnow = ρi and linear sizersnow = ri at theith level. Thus Eq. (3) is rewritten as follows:

ρsnow

ρice
=

(
rice grain
rsnow

)3−lnNf/ ln 3

=

(
rice grain
rsnow

)3−D

=

(
rice grain
rsnow

)H

. (4)

Fractal dimensionD and Hurst exponentH can be used to characterize the microstructure of the medium, enabling
a measure of ice porosity of the snow sample. The fractal character of snow has recently been studied using images
obtained on various snow cubic samples with different densities. These images show the granular structure of snow and
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the spatial distribution of its voids. By means of the box-counting method, the fractal dimension of four snow samples,
characterized by grains with different diameter, could be determined (Faillettaz, 2003). By applying the generalized
Menger sponge model and using the same size of the samples:rice grain = 0.25 mm andrsnow = r0 = 100 mm, the
fractal dimensionD of different classes of snow can be calculated (Table 1). By analyzing the density and void index
as a function of the linear sample dimensionri, we observe that as the sample size increases, snow differs more and
more from ice. At small scales, ice and snow approximately show the same behavior, while the spatial variability of
the density does not greatly influence the mechanical properties. Therefore we argue that snow density is a function of
the scale and the probability to find large defects (e.g., superweak zones in a weak layer) increases with the dimension
of the snow cover, as, for example, providing more intrinsic brittleness for large snow slopes (Chiaia and Frigo, 2009;
Chiaia et al., 2008). Numerical results reported in Table 1 confirm thatD is an accurate measure of the distribution
of the ice mass into snow samples. We also observe that the values of the fractal dimension measured by the box-
counting method (Faillettaz, 2003) are consistent with the values calculated by the generalized Menger sponge model
(Table 2).

3. RANDOM FRACTAL MODEL

Stochastic fractals, generated through the randomization of deterministic fractals for example, might have the advan-
tage to reproduce the microstructure of disordered materials with higher accuracy and richer details. In the previous
section the generalized Menger sponge model and its fractal dimension concept, characterized by scale invariant
porosity, is used to describe the density of snow samples with different microstructures. However, even if this model
is of significant practical relevance, it does not fully capture the randomness of the local fractal structure of snow
samples. It is due to the discrete set of fractal dimension values. Moreover, the porosity of a real-world fractal should
be free of scale, requiring an infinite number of iterations of the process generating the sponge, which is practically
impossible to achieve. On account of these limitations and keeping in mind that snow can be described as a sin-

TABLE 1: Fractal dimensionD and Hurst exponentH for snow samples with
rice grain = 0.25 mm andrsnow = 100 mm calculated according to the generalized
Menger sponge model.

Snow type Density (kg/m3) Fractal dimension Hurst exponent

Dry snow 50 < ρ < 200 2.5145 < D < 2.7458 0.4855 < H < 0.2542

Snow 200 < ρ < 550 2.7458 < D < 2.9147 0.2542 < H < 0.0853

Firn 550 < ρ < 820 2.9147 < D < 2.9813 0.2542 < H < 0.0853

Porous ice 820 < ρ < 917 2.9813 < D < 3.0000 0.0186 < H < 0.0000

Ice 917 3 0

TABLE 2: Fractal dimension and Hurst exponent for different snow samples. The
values obtained by means of the box-counting method are in the 3rd and 4th column
(Faillettaz, 2003). The values reported the 5th and 6th columns have been calculated
by using the generalized Menger sponge model of Section 2.

Snow samples Density (kg/m3) DBox HBox DSponge HSponge

Fine grains 200 2.62 0.38 2.805 0.195

Fine grains (Huez) 200 2.83 0.17 2.805 0.195

Fine grains 300 2.80 0.20 2.857 0.143

Rounded grains 300 3.00 0.00 2.857 0.143
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tered porous material consisting of a continuous ice network and a continuous pore space (Heggli et al., 2009; Flin
et al., 2003), in this work a three-dimensional generalization of the random midpoint displacement algorithm is im-
plemented (T̈urk et al., 2010) to model snow as a three-dimensional fractal heterogeneous medium. The method for
generating compact fractal disordered media is based on fractional Brownian functions, which are characterized by a
correlation function depending, as a power law, on the distance between the points on a square or cubic grid. Here the
random midpoint displacement algorithm is applied over a three-dimensional grid and a fractal cube is obtained. The
procedure is based on the function which defines the values of the equally spaced three-dimensional lattice as

fH(r) =
1

23

∑
k

fk(r) + σj,3, (5)

with r = (i1, i2, i3) and lattice sizeN = (N1, N2, N3). The sum is calculated over thek end points of the lattice, and
the quantityσj,3 is a random variable defined at each iterationj as

σ2
j,3 = σ2

0

(√
3N

2j

)2H [
1− 22(H−3)

]
, (6)

whereσ0 is drawn from a Gaussian distribution with zero mean and unit variance. The Hurst exponentH is the input
and ranges from 0 to 1. Initially, the lattice is fully homogeneous, with the function describing the fractal property
taken as a constant, e.g.,fH(r) = 0. Then the algorithm is implemented at each iterationj according to the following
procedure: the values of the functionfH,j(r) are seeded as random variables at the eight vertices defining the cube;
the value assigned to the central point is obtained by means of Eqs. (5) and (6), by using the eight vertices as input; the
values located at the center of each face are assigned in the same way, but with the sum over the corresponding four
vertices; finally, the midpoint of each of the 12 edges are calculated with the sum taken over the vertices at the end
points of the edges. The first iteration of this algorithm results in 27 subcubes, and these steps, except for the initial
seeds of the eight vertices, are iteratively repeated for each of the 27 subcubes. Eventually, the number of subcubes
will become(3j)d, wherej is the iteration number andd = 3.

By employing the detrending moving average (DMA) algorithm (Carbone, 2007; Carbone and Stanley, 2007),
the Hurst exponent of the three-dimensional fractal structure can be subsequently checked. The core of the DMA
algorithm is based on the generalized varianceσ2

DMA(s), that ford = 3 is written

σ2
DMA(s) =

1

V

∑
V

[
fH(r)− f̃n1,n2,n3(r)

]2
, (7)

wherefH(r) = fH(i1, i2, i3) is the fractional Brownian field withi1 = 1, 2, ..., N1, i2 = 1, 2, ..., N2, andi3 =
1, 2, ..., N3. The functionf̃n1,n2,n3(r) is given by

f̃n1,n2,n3
(r) =

1

ν

∑
k1

∑
k2

∑
k3

fH(i1 − k1, i2 − k2, i3 − k3), (8)

with the size of the subcubes(n1, n2, n3) ranging from(3, 3, 3) to the maximum values(n1max, n2max, n3max).
ν = n1n2n3 is the volume of the subcubes. The quantityV = (N1 − n1max)(N2 − n2max)(N3 − n3max) is the
volume of the fractal cube over which the averagef̃ is defined. Equations (7) and (8) are defined for any geometry of
the subarrays. However, in practice it is computationally more suitable to work withn1 = n2 = n3 to avoid spurious
directionality and biases in the calculations. The generalized varianceσ2

DMA(s) scales as(n2
1+n2

2+n2
3 )

H because of
the fundamental property of fraction Brownian functions. In Fig. 2, the log-log plots ofσ2

DMA(s) vs s are shown for
fractal cubes generated according to the procedure described above. The cubes have a Hurst exponent ranging from
0.1 to 0.9 with step0.1, and the plots ofσ2

DMA(s) as a functions are linear according to the expected power-law
behavior

σ2
DMA(s) ∝ (n2

1 + n2
2 + n2

3)
H ∝ sH . (9)
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FIG. 2: Log-log plot of the functionσDMA as a function of scales. The Hurst exponent is estimated by the slope of
the curves, varying from0.1 to 0.9 with step0.1.

Hence, the fractality of snow structure can be related to the density by mapping the fractional Brownian fieldfH(r)
to a density fieldρ(r). Consequently, in this representation, the Hurst exponent, varying as a continuous parameter,
should be intended as an index of specific snow compactness. Different snow textures are obtained by setting the Hurst
exponent as a constant input parameter and varying the minimum value of the densityρmin between0 and917 kg/m3,
while the maximum density is constant and equal to the ice densityρmax = ρice = 917 kg/m3.

In Fig. 1(b) snow structure corresponding to a cube with sizer0 = 100 mm and granular sizerice grain = 0.25 mm
is shown generated by using the algorithm withH = 0.1 and density range of0 − 917 kg/m3. One can observe how
the ice structure is represented by an almost fully porous media featured by several areas of lower density. Colors
are scaled in such a way that darker areas correspond to higher densities. The average densitiesρaverage have been
calculated by takingρmax as the ice densityρ0 = 917 kg/m3, while ρmin is varied from0 to 900 kg/m3, as shown
in Fig. 3. One can notice that the average density decreases more rapidly with lower values ofρmin as the Hurst
exponent decreases. In fact, both the structure and average density are practically unchanged asH is changed, by

FIG. 3: Snow density as a function of the Hurst exponent. The different curves have been obtained by generating
fractal cubes with different Hurst exponent. Then the fractal function has been mapped to a density function. In order
to simulate different snow microstructures, the minimum value of the densityρmin has been varied between0 and
917 kg/m3, while the maximum value of the density is constant and equal to the ice densityρmax = ρice = 917 kg/m3.
Different curves, from bottom to top, correspond to values ofρmin ranging from0 and917 kg/m3 with step100 kg/m3.
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settingρmin = 900 kg/m3. On the other hand, by settingρmin = 0 kg/m3, the average density significantly changes
as the Hurst exponent changes.

4. CONCLUSIONS

In order to capture the local heterogeneity of real snow samples, a three-dimensional random fractal model has been
implemented with the ability to relate the snow microstructure variability to its density. Several physical and mechani-
cal properties of snow are commonly expressed as a function of the density (or the related porosity and specific density)
due to its simplicity of in situ measurements. Unfortunately, the density is not uniquely related to the microstructure
of snow (different snow microstructure exhibits the same global density) and it varies with the scale. Thanks to this
model, one should be able to investigate how the local structure changes according to the fractal dimension in relation
to other physical properties. The present work is addressed to the development of the multiscale modelling of snow in
a fully three-dimensional fractal framework (Carbone, 2007; Arianos and Carbone, 2009; Türk et al., 2010), relevant
to the validation of experimental results, such as those reported by Gay et al. (2002) and Nakamura et al. (2001), and
the description of the physical and mechanical properties which are of great importance for many applications.

The aim is the definition of a unique scale invariant parameter able to quantify the degree of snow metamorphism.
The multiscale character of snow density and porosity has been analyzed by (i) a generalized Menger sponge and (ii)
a stochastic fractional Brownian field. The former underlines that the Hurst exponent should be intended as a measure
of the space-filling properties of snow, which can be related to the specific density. By comparison with data obtained
from in situ measurements, the present approach shows that different Hurst exponents correspond to the same value
of density, implying that density alone does not yield a complete information about snow microstructure.
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