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Abstract. A method for estimating the cross-correlation Cxy(τ) of long-range
correlated series x(t) and y(t), at varying lags τ and scales n, is proposed. For
fractional Brownian motions with Hurst exponents H1 and H2, the asymptotic
expression for Cxy(τ) depends only on the lag τ (wide-sense stationarity) and
scales as a power of n with exponent H1 + H2 for τ → 0. The method is illustrated
on: (i) financial series, to show the leverage effect; (ii) genomic sequences, to
estimate the correlations between structural parameters along the chromosomes.
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1. Introduction and overview

Interdependent behaviour and causality in coupled complex systems continue to attract
considerable interest in fields as diverse as solid state science, biology, physiology,
and climatology [1]–[8]. Coupling and synchronization effects have been observed for
example in cardiorespiratory interactions, in neural signals, in glacial variability and
in Milankovitch forcing [9]–[11]. In finance, the leverage effect quantifies the cause–
effect relation between return r(t) and volatility σT (t + τ) and eventually financial
risk estimates [12]–[23]. In DNA sequences, causal connections among structural and
compositional properties such as intrinsic curvature, flexibility, stacking energy, and
nucleotide composition are sought to unravel the mechanisms underlying biological
processes in cells [24]–[26].

Many issues still remain unsolved mostly due to problems with the accuracy and
resolution of coupling estimates in long-range correlated signals. Such signals do not
show the wide-sense stationarity needed to yield statistically meaningful information when
cross-correlations and cross-spectra are estimated. In [27, 28], a function Fxy(n), based on
the detrended fluctuation analysis—a measure of autocorrelation of a series at different
scales n—has been proposed for estimating the cross-correlation of two series x(t) and
y(t). However, the function Fxy(n) is independent of the lag τ , since it is a straightforward
generalization of the detrended fluctuation analysis, which is a positive-defined measure
of autocorrelation for long-range correlated series. Therefore, Fxy(n) holds only for τ = 0.
Unlike the autocorrelation, the cross-correlation of two long-range correlated signals is a
non-positive-defined function of τ , since the coupling could be delayed and have any sign.

In this work, a method for estimating the cross-correlation function Cxy(τ) between
two long-range correlated signals at different scales n and lags τ is developed. The
asymptotic expression for Cxy(τ) is worked out for fractional Brownian motions BH(t), H
being the Hurst exponent, whose interest follows from their widespread use for modelling
long-range correlated processes in different areas [29]. Finally, the method is used to
investigate the coupling between (i) returns and volatility of the DAX stock index and
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(ii) structural properties, such as deformability, stacking energy, position preference and
propeller twist, of the Escherichia coli chromosome.

The proposed method operates: (i) on the integrated rather than on the increment
series, thus yielding the cross-correlation at varying windows n, as opposed to the standard
cross-correlation; (ii) as a sliding product of two series, thus yielding the cross-correlation
as a function of the lag τ , in contrast to the method proposed in [27, 28]. The features
(i) and (ii) imply higher accuracy, n-windowed resolution while capturing the cross-
correlation at varying lags τ .

2. Method

The cross-correlation Cxy(t, τ) of two nonstationary stochastic processes x(t) and y(t) is
defined as

Cxy(t, τ) ≡ 〈[x(t) − ηx(t)][y
∗(t + τ) − η∗

y(t + τ)]〉, (2.1)

where ηx(t) and η∗
y(t+τ) indicate time-dependent means of x(t) and y∗(t+τ), the symbol

∗ indicates the complex conjugate and the brackets 〈 〉 indicate the ensemble average
over the joint domain of x(t) and y∗(t + τ). This relationship holds for space-dependent
sequences, for example the chromosomes, by replacing time with the space coordinate.
Equation (2.1) yields sound information provided the two quantities in square parentheses
are jointly stationary and thus Cxy(t, τ) ≡ Cxy(τ) is a function only of the lag τ .

In this work, we propose to estimate the cross-correlation of two nonstationary signals
by choosing for ηx(t) and η∗

y(t + τ) in equation (2.1), respectively, the functions

x̃n(t) =
1

n

n
∑

k=0

x(t − k) (2.2)

and

ỹ∗
n(t + τ) =

1

n

n
∑

k=0

y∗(t + τ − k). (2.3)

2.1. Wide-sense stationarity

The wide-sense stationarity of equation (2.1) can be demonstrated for fractional Brownian
motions. On taking x(t) = BH1(t), y(t) = BH2(t), ηx(t) and η∗

y(t+τ) calculated according
to equations (2.2) and (2.3), Cxy(t, τ) is

Cxy(t, τ) = 〈[BH1(t) − ˜BH1(t)][B
∗
H2

(t + τ) − ˜B∗
H2

(t + τ)]〉. (2.4)

When writing x(t) = BH1(t) and y(t) = BH2(t), we assume the same underlying generating
noise dB(t) to produce a sample of x and y. Equation (2.4) is calculated in the limit of
large n (calculation details are reported in the appendix). One obtains

Cxy(τ̂ ) = nH1+H2DH1, H2

[

−τ̂H1+H2 +
(1 + τ̂)1+H1+H2 + (1 − τ̂ )1+H1+H2

1 + H1 + H2

− (1 − τ̂)2+H1+H2 − 2τ̂ 2+H1+H2 + (1 + τ̂)2+H1+H2

(1 + H1 + H2)(2 + H1 + H2)

]

, (2.5)
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where τ̂ = τ/n is the scaled lag and DH1, H2 is defined in the appendix. Equation (2.5) is
independent of t, since the terms in square parentheses depend only on τ̂ = τ/n, and thus
equation (2.1) is made wide-sense stationary. It is worthy of note that, in equation (2.5),
the coupling between BH1(t) and BH2(t) reduces to the sum of the exponents H1 + H2.
Equation (2.5), for τ = 0, reduces to

Cxy(0) ∝ nH1+H2 , (2.6)

indicating that the coupling between BH1(t) and BH2(t) scales as the product of nH1 and
nH2 . The property of the variance of fractional Brownian motion BH(t) of scaling as n2H

is recovered from equation (2.6) for x = y and H1 = H2 = H , i.e.,

Cxx(0) ∝ n2H . (2.7)

Equation (2.7) has been studied in [30]–[34].

3. Examples

3.1. Financial series

The leverage effect is a stylized fact of finance. The level of volatility is related to
whether returns are negative or positive. Volatility rises when a stock’s price drops
and falls when the stock goes up [12]. Furthermore, the impact of negative returns on
volatility seems much stronger than the impact of positive returns (the down market
effect) [16, 17]. To illustrate these effects, we analyse the correlation between returns and
volatility of the DAX stock index P (t), sampled every minute from 2 January 1997 to 22
March 2004, shown in figure 1(a). The returns and volatility are defined respectively as

r(t) = ln P (t + t′) − ln P (t) and σT (t) =
√

∑T
t=1[r(t) − r(t)T ]2/(T − 1).

Figure 1(b) shows the returns for t′ = 1 h. The volatility series are shown in
figures 1(c) and (d) respectively for T = 300 h and 660 h. The Hurst exponents, calculated
from the slope of the log–log plot of equation (2.7) as a function of n, are H = 0.50 (return),
H = 0.77 (volatility T = 300 h) and H = 0.80 (volatility T = 660 h). Figure 2 shows the
log–log plots of Cxx(0) for the returns (squares) and volatility with T = 660 (triangles).
The scaling law exhibited by the DAX series guarantees that its behaviour is a fractional
Brownian motion. The function Cxy(0) with x = r(t) and y = σT (t) with T = 660 h is
also plotted at varying n in figure 2 (circles). From the slope of the log–log plot of Cxy(0)
versus n, one obtains H = 0.65, i.e. the average between H1 and H2 as expected from
equation (2.6).

Next, the cross-correlation is considered as a function of τ . The plots of Cxy(τ) for
x = r(t) and y = σT (t) with T = 300 h and T = 660 h are shown respectively in
figures 3(a) and (b) at different windows n.

The function Cxy(τ) for x = r(t) and y = σT (t+τ)2 is shown in figure 3(c). The cross-
correlation takes negative values at small τ and reaches the minimum at about 10–12 days.
This indicates that the volatility increases with negative returns (i.e. with price drops).
Then Cxy(τ) changes sign relaxing asymptotically to zero from positive values at large
τ . The positive values of Cxy(τ) indicate that the volatility decreases when the returns
become positive (i.e. when price rises) and are related to the restored equilibrium within
the market (positive rebound days). It is worthy of remark that the (positive) maximum of

doi:10.1088/1742-5468/2009/03/P03037 4

http://dx.doi.org/10.1088/1742-5468/2009/03/P03037


J.S
tat.M

ech.
(2009)

P
03037

Cross-correlation of long-range correlated series

Figure 1. DAX stock index: (a) prices; (b) returns with t′ = 1 h; (c) volatility
with T = 300 h; (d) volatility with T = 660 h.

Figure 2. Log–log plot of Cxx(0) for the DAX return (squares) and volatility
(triangles) and of Cxy(0) with x = r(t) and y = σT (t) (circles). Red lines are
linear fits. The power-law behaviour is consistent with equations (2.6) and (2.7).
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Figure 3. Cross-correlation Cxy(τ) with x = r(t) and y = σT (t) with (a) T =
300 h and (b) T = 660 h; (c) with x = r(t) and y = σT (t)2 with T = 660 h. n
ranges from 100 to 500 with step 100.

the cross-correlation is always smaller than the (negative) minimum. This is the stylized
fact known as the down market effect. A relevant feature exhibited by the curves in
figures 3(a)–(c) is that the zeros and the extremes of Cxy(τ) occur at the same values
of τ , which is consistent with wide-sense stationarity for all the values of n. A further
check of wide-sense stationarity is provided by the plot of the function Cxy(τ)n−(H1+H2).
In figure 4, Cxy(τ)n−(H1+H2) is plotted with x = r(t) and y = σT (t) with T = 300 h,
H1 = 0.5 and H2 = 0.77; n ranges from 100 to 500 with step 100. One can note that the
five curves collapse in accord with the invariance of the product Cxy(τ)n−(H1+H2) with n.

In figure 5, the leverage correlation function L(τ) = 〈σT (t + τ)2r(t)〉/〈r(t)2〉2,
according to the definition put forward in [18], is plotted for different volatility windows T .
The function 〈σT (t+τ)2r(t)〉 has been calculated by means of equation (2.1). The negative
values of cross-correlation (at smaller τ) and the following values (positive rebound days)
at larger τ can be clearly observed for several volatility windows T . The function L(τ)
for the DAX stock index, estimated by means of the standard cross-correlation function,
is shown in figures 1 and 2 of [20]. By comparing the curves shown in figure 5 to those
of [20], one can note the higher resolution related to the possibility of detecting the
correlation at smaller lags (note that the τ unit is hours, while in [18]–[21] it is days) and
at varying windows n, implying the possibility of estimating the degree of cross-correlation
at different frequencies. As a final remark, we mention that the cross-correlation function
between a fractional Brownian motion and its own width can be computed analytically
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Figure 4. Plot of the function Cxy(τ)n−(H1+H2) with x = r(t) and y = σT (t)
with T = 300 h. H1 = 0.5 and H2 = 0.77 n ranges from 100 to 500 with step
100. One can note that the five curves collapse, within the numerical errors of the
parameters entering the auto-correlation and cross-correlation functions. This is
in accord with the invariance of the product Cxy(τ)n−(H1+H2) with the window n.

Figure 5. Leverage function with volatility windows T = 100 h, 300 h, 660 h,
1000 h. The value of n is 400 equal for all the curves.

in the large n limit, following the derivation in the appendix for two general fBms. The
width of a fBm is one possible definition for the volatility; therefore the derivation in the
appendix provides a straightforward estimate of the leverage function.

3.2. Genomic sequences

Several studies are being addressed to quantify cross-correlations among nucleotide
position, intrinsic curvature and flexibility of the DNA helix, that may ultimately shed
light on biological processes, such as protein targeting and transcriptional regulation [24]–
[26]. One problem to overcome is the comparison of DNA fragments with dinucleotide and
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Figure 6. Structural sequences of the Escherichia coli chromosome.

trinucleotide scales; hence the need for using high-precision numerical techniques.
We consider deformability, stacking energy, propeller twist and position preference
sequences of the Escherichia coli chromosome. The sequences, with details about the
methods used to synthesize/measure the structural properties, are available at the CBS
database—Centre for Biological Sequence Analysis of the Technical University of Denmark
(http://www.cbs.dtu.dk/services/genomeAtlas/). In order to apply the proposed method,
the average value is subtracted from the data, that are subsequently integrated to obtain
the paths shown in figure 6. The series are 4938 919 bp long and have Hurst exponents
H = 0.70 (deformability), H = 0.65 (position preference), H = 0.73 (stacking energy),
H = 0.70 (propeller twist).

The cross-correlation functions Cxy(τ) between deformability, stacking energy,
propeller twist and position preference are shown in figures 7(a)–(e). There is in general a
remarkable cross-correlation along the DNA chain indicating the existence of interrelated
patches of the structural and compositional parameters. The high level of correlation
between DNA flexibility measures and protein complexes indicates that the conformation
adopted by the DNA bound to a protein depends on the inherent structural features
of the DNA. It is worthy of remark that the present method provides the dependence
of the coupling along the DNA chain rather than simply the values of the linear
correlation coefficient r. In table 4 of [26] one can find the following values of the linear
correlation coefficient obtained by either numerical analysis or experimental measurements
(in parentheses) over DNA fragments: (a) r = −0.80 (−0.86); (b) r = 0.06 (0.00);
(c) r = −0.15 (−0.22); (d) r = −0.74 (−0.82); (e) r = −0.80 (−0.87). Moreover,
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Figure 7. Cross-correlation Cxy(τ) between (a) deformability and stacking
energy; (b) position preference and deformability; (c) propeller twist and position
preference; (d) propeller twist and stacking energy; (e) propeller twist and
deformability. n ranges from 100 to 500 with step 100.

also for the genomic sequences the function Cxy(τ)n−(H1+H2) is independent of n within
the numerical errors of the parameters entering the auto-correlation and cross-correlation
functions. In figure 8, Cxy(τ)n−(H1+H2) is shown for x(t), the deformability, y(t), the
stacking energy, H1 = 0.7 and H2 = 0.73. n ranges from 100 to 500 with step 100.

4. Conclusions

A high-resolution, lag-dependent non-parametric technique based on equations (2.1)–(2.3)
for measuring cross-correlation in long-range correlated series has been developed. The
technique has been implemented on (i) financial returns and volatilities and (ii) structural
properties of genomic sequences [35]. The results clearly show the existence of coupling
regimes characterized by positive–negative feedback between the systems at different lags
τ and windows n. We point out that—in principle—other methods might be generalized
in order to yield estimates of the cross-correlation between long-range correlated series
at varying τ and n. However, techniques operating over the series by means of a box
division, such as DFA and R/S method, are a priori excluded. The box division causes
discontinuities in the sliding product of the two series at the extremes of each box, and
ultimately incorrect estimates of the cross-correlation. The present method is not affected
by this drawback, since equations (2.1)–(2.3) do not require a box division.
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Figure 8. Plot of the function Cxy(τ)n−(H1+H2) with x(t), the deformability, y(t),
the stacking energy, H1 = 0.7 and H2 = 0.73. n ranges from 100 to 500 with
step 100. One can note that the five curves collapse, within the numerical errors
of the parameters entering the auto-correlation and cross-correlation functions.
This is in accord with the invariance of the product Cxy(τ)n−(H1+H2) with the
window n.

Appendix. Details of the calculation

Let us start from equation (2.4):

Cxy(t, τ) = 〈[BH1(t) − ˜BH1(t)][B
∗
H2

(t + τ) − ˜B∗
H2

(t + τ)]〉, (A.1)

that, after multiplying the terms in parentheses, becomes

Cxy(t, t + τ) = 〈[BH1(t)B
∗
H2

(t + τ) − BH1(t) ˜B∗
H2

(t + τ) − ˜BH1(t)B
∗
H2

(t + τ)

+ ˜BH1(t) ˜B∗
H2

(t + τ)]〉. (A.2)

In general, the moving average may be referred to any point of the moving window,
a feature expressed by replacing equations (2.2) and (2.3) with

x̃n(t) =
1

n

n−θn
∑

k=−θn

x(t − k) ỹn(t + τ) =
1

n

n−θn
∑

k=−θn

y(t + τ − k) (A.3)

with 0 ≤ θ ≤ 1. In the limit of n → ∞, the sums can be replaced by integrals, so

x̃(t) =

∫ 1−θ

−θ

x(t̂ − k̂) ỹ(t + τ) =

∫ 1−θ

−θ

y(t̂ + τ̂ − k̂), (A.4)

where t = nt̂, τ = nτ̂ , k = nk̂. For the sake of simplicity, the analytical derivation
will be done by using the harmonizable representation of the fractional Brownian
motion [36, 37, 39]:

BH(t) ≡
∫ +∞

−∞

eitξ − 1

|ξ|H+(1/2)
dB̄(ξ), (A.5)
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where dB̄(ξ) is a representation of dB(t) in the ξ domain. In the following we will consider
the case of t > 0 and t + τ > 0. On using equation (A.5), the cross-correlation of two
fBms BH1(t) and BH2(t + τ) can be written as

〈BH1(t)B
∗
H2

(t + τ)〉 =

〈∫ +∞

−∞

eitξ − 1

|ξ|H1+(1/2)
dB̄(ξ)

∫ +∞

−∞

e−i(t+τ)η − 1

|η|H2+(1/2)
dB̄(η)

〉

. (A.6)

Since dB̄ is Gaussian, the following property holds for any f, g ∈ L2(R):
〈∫ +∞

−∞
f(ξ) dB̄(ξ)

(∫ +∞

−∞
g(η) dB̄(η)

)∗〉
=

∫ +∞

−∞
f(ξ)g∗(ξ) dξ. (A.7)

On using equation (A.7), after some algebra equation (A.6) is

〈BH1(t)B
∗
H2

(t + τ)〉 = DH1, H2

(

tH1+H2 + (t + τ)H1+H2 − |τ |H1+H2
)

, (A.8)

where DH1, H2 is a normalization factor which depends on H1 and H2. In the harmonizable
representation of fBm, DH1, H2 takes the following form [38]:

DH1, H2 = DH1+H2 = −2

π
cos

[

(H1 + H2)π

2

]

Γ[−(H1 + H2)], (A.9)

normalized such that DH1, H2 = 1 when H1 = H2 = 1
2
. Different representations of the

fBm lead to different values of the coefficient DH1, H2 [39, 40].
Equation (A.8) can be used to calculate each of the four terms in the right-hand side

of equation (A.2). The mean value of each term in equation (A.2) is obtained from the
general formula in equation (A.8); thus, substituting the right-hand side of equations (A.8)
and (A.4) into each term in equation (A.2) we obtain

Cxy(t̂, τ̂ , θ) = DH1, H2n
H1+H2

[

(

t̂H1+H2 + (t̂ + τ̂ )H1+H2 − |τ̂ |H1+H2
)

−
(

t̂H1+H2 +

∫ 1−θ

ĥ=−θ

|t̂ − ĥ + τ̂ |H1+H2 dĥ −
∫ 1−θ

ĥ=−θ

|t̂ − ĥ|H1+H2 dĥ

)

−
(∫ 1−θ

k̂=−θ

|t̂ − k̂|H1+H2 dk̂ + (t̂ + τ̂ )H1+H2 −
∫ 1−θ

k̂=−θ

|t̂ + k̂|H1+H2 dk̂

)

+

(∫ 1−θ

k̂=−θ

|t̂ − k̂|H1+H2dk̂ +

∫ 1−θ

ĥ=−θ

|t̂ − ĥ + τ̂ |H1+H2 dĥ

−
∫ 1−θ

ĥ=−θ

∫ 1−θ

k̂=−θ

|τ̂ − ĥ − k̂|H1+H2 dĥ dk̂

)]

, (A.10)

where each term in round parentheses corresponds to each of the four terms in
equation (A.2). Summing the terms in equation (A.10), one can notice that time t cancels
out; thus one finally obtains

Cxy(τ̂ , θ) = nH1+H2DH1, H2

[

−τ̂H1+H2 +

∫ 1−θ

−θ

|τ̂ − ĥ|H1+H2 dĥ

+

∫ 1−θ

−θ

|τ̂ + k̂|H1+H2 dk̂ −
∫ 1−θ

−θ

|τ̂ − ĥ + k̂|H1+H2 dĥ dk̂

]

. (A.11)
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Consistently with the large n limit, we take τ < n, namely τ̂ < 1. The integral (A.11)
admits four different solutions, depending on the values taken by the parameters τ̂ and θ.
Let us consider each case separately.

Case 1 : τ̂ < θ and τ̂ + θ < 1:

Cxy(τ̂ , θ) = nH1+H2DH1, H2

[

−τ̂H1+H2 − (1 − τ̂ )2+H1+H2 − 2τ̂ 2+H1+H2 + (1 + τ̂ )2+H1+H2

(1 + H1 + H2)(2 + H1 + H2)

+
(1 + τ̂ − θ)1+H1+H2 + (θ − τ̂ )1+H1+H2 + (1 − τ̂ − θ)1+H1+H2 + (τ̂ + θ)1+H1+H2

1 + H1 + H2

]

. (A.12)

Case 2 : τ̂ < θ and τ̂ + θ > 1:

Cxy(τ̂ , θ) = nH1+H2DH1, H2

[

−τ̂H1+H2 − (1 − τ̂ )2+H1+H2 − 2τ̂ 2+H1+H2 + (1 + τ̂ )2+H1+H2

(1 + H1 + H2)(2 + H1 + H2)

+
(1 + τ̂ − θ)1+H1+H2 + (θ − τ̂ )1+H1+H2 − (τ̂ + θ − 1)1+H1+H2 + (τ̂ + θ)1+H1+H2

1 + H1 + H2

]

. (A.13)

Case 3 : τ̂ > θ and τ̂ + θ < 1:

Cxy(τ̂ , θ) = nH1+H2DH1, H2

[

−τ̂H1+H2 − (1 − τ̂ )2+H1+H2 − 2τ̂ 2+H1+H2 + (1 + τ̂ )2+H1+H2

(1 + H1 + H2)(2 + H1 + H2)

+
(1 + τ̂ − θ)1+H1+H2 − (τ̂ − θ)1+H1+H2 + (1 − τ̂ − θ)1+H1+H2 + (τ̂ + θ)1+H1+H2

1 + H1 + H2

]

. (A.14)

It is easy to see that this case includes the equation (2.5) treated in the paper.

Case 4 : τ̂ > θ and τ̂ + θ > 1:

Cxy(τ̂ , θ) = nH1+H2DH1, H2

[

−τ̂H1+H2 − (1 − τ̂ )2+H1+H2 − 2τ̂ 2+H1+H2 + (1 + τ̂ )2+H1+H2

(1 + H1 + H2)(2 + H1 + H2)

+
(1 + τ̂ − θ)1+H1+H2 − (τ̂ − θ)1+H1+H2 − (τ̂ + θ − 1)1+H1+H2 + (τ̂ + θ)1+H1+H2

1 + H1 + H2

]

. (A.15)
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