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Abstract. We analyze the distribution of grains in solid cubes of ice in terms of deterministic and 
stochastic 3d fractal models. We argue that the fractal dimension D or the Hurst exponent H 
optimally describe the void distribution in the snow sample and can be used as a parameter to 
describe the mechanical properties of snow at different scales. 

Introduction 

Snow is described as a porous medium consisting of air and three water phases (ice, vapour or 
liquid), while the ice phase consists of an assemblage of grains (the ice matrix), initially arranged on 
a random load bearing skeleton. For a proper description of snow behavior, it would be necessary to 
know all its physical-mechanical properties. Unfortunately these properties are very difficult to 
measure in situ and in the laboratory. Therefore, the density is practically the only parameter used to 
determine the physical properties of snow in situ. However, it is not sufficient to define the 
mechanical characteristics of different snow microstructures, that can yield the same global density 
[1, 2].  

Fractal geometry has already been used to model snow crystals and for the construction of 
geometrical topography of snowflakes (von Koch snowflake curves). Thanks to 3d radiographies of 
cubic samples, with different sizes and densities, the fractal character of snow has been recently 
studied by the Centre Etudes de Neige of Météo France (C.E.N.) [3]. These images show the 
granular structure of snow and the spatial distribution of its voids. By means of the box-counting 
method [4, 5], the fractal dimension D of four snow samples characterized by grains with different 
diameters could be determined. The fractal dimension D was used to describe the distribution of the 
voids in each sample with good accuracy. 

The density of  snow can be simulated by means of a deterministic sponge model. Here, we 
introduce a stochastic model that can capture the randomness of the local fractal structure of snow 
samples. In particular, we have developed two 3d fractal generators: the pseudo random fractal 
algorithm and the random midpoint displacement algorithm, to estimate snow density. 

Deterministic fractal model 

The intergranular porosity of snow exhibits fractal behaviour. The fractal model, known as the 
Menger sponge, can be used to characterise the scale invariant porosity, which is ultimately related 
to the density of snow. Fig. 1 illustrates the basic generator. A bulky cube is divided into 3 × 3 × 3 = 
27 equal subcubes. Then, one removes each subcube at the middle of every face plus the one in the 
centre of the cube. As a result, one gets the 2nd order deterministic Menger sponge. In the general 
process, this single step will be repeatedly applied, creating at each iteration i, a Menger sponge of 
level i. 

Let us consider a solid cube with a given initial density ρ0 and linear size r0. The void index or 
porosity φi, is defined as the relative volume of voids per unit volume, at a given iteration i. φi, is 
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related to ρ0  and ρi (density at each i) according to: 

φi =1−
ρi

ρ0
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By generating the 1st level sponge, characterized by linear size r1 = r0/3, the void index φ1 = 7/27 
and the density ρ1 = 20ρ0/27 (Fig. 1.b). Then we can construct the 2nd level Menger sponge (Fig. 
1.c). This iteration shows the fractal cube as r2 = r0/9, with porosity φ2 = 329/729 and density ρ2 = 
400ρ0/729. 
 

 
 

                      (a)             (b)                (c) 
 

Fig. 1. Deterministic Menger sponge after two iterations: (a) r0 , ρ0 and φ0 = 0; (b) r1 = r0/3, ρ1 = 
20ρ0/27 and φ1 = 7/27; (c) r2 = r0/9, ρ2 = 400ρ0/729 and φ2 = 329/729. 
 
This procedure can be generalized by removal of an arbitrary number �e of subcubes. In this case, 
the basic generator starts from a bulky cube, which is then divided into 3 × 3 × 3 subcubes, where 
�f out of them are filled, while �e = (33 − �f ) are empty. ri = r0/3i is the linear dimension of the 
sample considered. Therefore, the density and void index of the ith level Menger sponge are defined 
respectively as: 
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or, as a function of the linear dimension of cube r0 and subcubes ri: 
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Note that Eq. 3 is a fractal relation, with the fractal dimension D = lnN f ln3 appearing in the 
exponent. D is related to the Hurst exponent by H = 3 – D. To model snow samples, we consider a 
solid ice cube characterized by density, ρice = ρ0 = 917 kg/m3, and linear size rice = r0. We can 
simulate the snow as a fractal form of ice [1] characterized by density ρsnow = ρi, and linear size 
rsnow= ri at the ith scale. In the case of snow, we can thus rewrite Eq. 3 as follows: 
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The fractal dimension D (or the Hurst exponent H) is the scale-independent parameter 
characterizing the topology of the solid microstructure and enables a measure of ice lacunarity in the 
snow sample. The fractal character of snow has recently been studied by C.E.N. [3], using images 
obtained from the 3d radiographies on various snow samples, cubic samples with size 2.5 mm and 
different densities. These images show the granular structure of snow and the spatial distribution of 
its voids. By means of the box-counting method, the fractal dimension of four snow samples, 
characterized by grains with different diameter, could be determined [4].  
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By applying this model and using the same size of the samples: rsnow = 2.5 mm and rice = r0 = 1 
m, we can calculate the fractal dimension D of different classes of snow, see Table 1. Hence, D = 
2.727 corresponds to dry snow, with density equal to 178,65 kg/m3, while D = 2.893 corresponds to 
snow with density equal to 483,53 kg/m3. By analyzing the density and void index as a function of 
the linear sample dimension ri, we observe that as the sample size increases, snow differs more and 
more from ice. At small scales, ice and snow approximately show the same behaviour while the 
spatial variability of the density does not greatly influence the mechanical properties. Therefore, we 
argue that snow density is a function of the scale and the probability to find large defects (e.g. super-
weak zones in a weak layer) increases with the dimension of the snow cover, as for example 
providing more intrinsic brittleness for large snow slopes [6, 7]. The numerical results reported in 
Table 1 confirm that D is a measure of the distribution of the ice mass into the snow sample. We 
also observe that the values of the fractal dimension measured by the box-counting method [4] are 
consistent with the values calculated by the deterministic sponge model, see Table 2. 
 
Table 1. Classification of snow and ice according to the density with D and H for a sample with 
linear size rsnow = 2.5 mm [4, 8]. 

 
Snow type Density [kg/m3] Fractal dimension Hurst exponent 
Dry snow 50 < ρ < 200 2.5145 < D < 2.7458 0.4855 < H < 0.2542 
Snow 200 < ρ < 550 2.7458 < D < 2.9147 0.2542 < H < 0.0853 
Firn 550 < ρ < 820 2.9147 < D < 2.9813 0.0853 < H < 0.0187 
Porous ice 820 < ρ < 917 2.9813 < D < 3.0000 0.0186 < H < 0.0000 
Ice 917 3 0 

 
 
Table 2. The fractal dimension of different snow samples: comparison between box counting 
method [4] and the deterministic sponge model. 

 
Snow samples Density 

[kg/m3] 
Box counting Deterministic sponge 
D H D H 

Fine grains 200 2.62 0.38 2.7458 0.2542 
Fine grains (Huez) 200 2.83 0.17 2.7458 0.2542 
Fine grains 300 2.80 0.20 2.8135 0.1865 
Rounded grains 300 3.00 0.00 2.8135 0.1865 

 

Random fractal model 

Stochastic fractals, generated from the randomization of deterministic fractals, have the advantage 
to be closer to real materials, as they are partially disordered. We have seen that the deterministic 
Menger sponge model, characterised by a scale invariant porosity, could be used to define the 
density of different snow samples (both the type and microstructure). Still, this model does not 
capture the randomness of the local fractal structure of real snow samples, since it has a limited 
fractal dimension. Therefore, we propose a method, the pseudo random fractal algorithm, to 
construct a snow sponge from a solid cube by an iterative process of cube removal and rescaling. 
The porosity of a “true” fractal should be free of scale. This is obtained by iterating the generating 
process an infinite number of times. This property is not fulfilled for such a cube removal process. 
By introducing a lower cut-off size meaning that the iteration process is iterated only i times, we can 
define such a structure as a  “pseudo fractal” [9].  

On the account of these limitations, we therefore present a new more rigorous method, which is a 
generalization to 3d of the random midpoint displacement algorithm. This recursive generating 
technique provides a porosity which is exactly scale invariant [10].  
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Pseudo random 3d fractals. This method is an extension of the deterministic Menger sponge 
model where the generator is modified by randomly removing a given number of subcubes at each 
iteration step. As an example, at the first iteration step, the cube is divided into 3 × 3 × 3 subcubes. 
We then randomly remove a fixed number of subcubes �e = (33 − �f ). We can take, for example (33 
− �f) = 7 as shown in Fig 2. At the next level, this procedure is repeated on the �f = 20 remaining 
subcubes. However, each of the 20 remaining subcubes undergoes a randomly distributed removal 
process. The process is iterated only i times, corresponding to the cut-off size, so that we can 
achieve a realistic porosity. If we would continue with an infinite number of iterations, and 
removing a large number of subcubes (33 − �f) at each step, the sponge would at some point vanish 
(there are no fixed boundaries). The random based evolution for the first two iterations is shown in 
Fig. 2. We see that the local structure changes while preserving the fractal dimension D = 2.727. As 
we change the fixed number of subcubes to be removed, one can not only construct various types of 
sponges, but also get different fractal dimensions. 
 
 

 
             (a)     (b)            (c) 
 
Fig. 2. Random sponge generator obtained by randomly removing 7 subcubes at each iteration step: 
(a) r0 , ρ0 and φ0 = 0; (b) r1 = r0/3, ρ1 = 20ρ0/27 and φ1 = 7/27; (c) r2 = r0/9, ρ2 = 400ρ0/729 and φ2 = 
329/729. The fractal dimension D is 2.727. 
 
3d random midpoint displacement algorithm. The random midpoint displacement algorithm 
(RMDA) is a recursive generating technique and is a natural extension of the von Kock structure. 
The execution speed of the RMDA and its ability to add “details” to an euclidean regular shape 
makes it suitable to model various fractals. Here, we propose the first 3d implementation of the 
RMDA. The 3d fractal obtained by the proposed method holds the property to be scale invariant. 
According to the present method, one defines the midpoints at level l of n points as: 
 

pmid
(l ,n ) =

1
n

p1 + p2 + ...+ pn( )+ ∆ l  ,          (5) 

 
where ∆l is a Gaussian random variable with zero mean and variance level l: 
 

∆ l
2 =

σ 2

2l( )2H 1− 22H −2( ).            (6) 

 
The Hurst exponent H is the input for the generator, which determines the stochastic variability of 
the obtained microstructure and therefore, the granularity of the resulting fractal. To generate 3d 
random fractal, we first seed a cube defined by its eight vertices and we determine the center. We 
assign to this point a value pmid

1,8( ) according to Eq. 5, by using the eight vertices as input. Then, we 
generate a point at the center of each face, by using the four corners and we determine the value 
pmid

1,4( ). Finally, we generate the middle point of each of the 12 cube edges and assign them the value 
pmid

1,2( ). The first run of this routine would result in eight subcubes. The second one will result in 64 
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subcubes. In general, the number of subcubes will be equal to 2l( )d
, where l is the number of 

iterations and d = 3. A RMDA sponge is shown in Fig. 3.a, with H = 0.2542. The values are scaled 
in such a way that darker areas correspond to higher densities. The average density ρm of the sponge 
has been evaluated by using the initial density ρ0 = 917 kg/m3 and for several realizations of the 
fractal. We obtain ρm = 421.99 kg/m3 for the snow sponge. 
 

 
            (a)                 (b) 

 
Fig. 3. (a) Sponge generated by the RMDA with H = 0.2542. The values are scaled in such a way 
that darker areas correspond to higher densities. (b) Log-log plot of σ DMA

2  for the 3d sponge 
generated by 3d RMDA. The data refer to a sponge with H = 0.2542 (D = 2.7458). The estimated 

value for full linearity, i.e. the log-log plot of a curve varying as sH fit = n1
2 + n2

2 + n3
2[ ]

2H fit

, results 

into Hfit = 0.1854 (continues line). 
 
 

To estimate the Hurst exponent of the obtained RMDA sponge, we consider the 3d detrending 
moving analysis algorithm (DMA) proposed in [11, 12, 13]. The DMA algorithm is based on a 
generalized high-dimensional variance σ DMA

2  around a moving average low-pass filter defined by: 
 

σ DMA
2 =

1
Ν i1 = n1 −m1

N1 −m1

∑
i2 = n2 −m2

N2 −m2

∑ ... f i1,i2,...,id( )− f n1 ,n2 ,...nd
i1,i2,...id( )[ ]2

id = nd −md

Nd −md

∑ ,     (7) 

 
where f i1,i2,...id( )= f i( ) is a fractional Brownian field defined over a discrete d-dimensional 
domain, with sizes �1, �2, …, �d. It is  i1 = 1, 2, …, �1, i2 = 1, 2, …, �2 and id = 1, 2, …, �d. n = 
(n1, n2, …,nd) defines the subarrays vd of the fractal domain with maximum values n1max = max{n1}, 
n2max = max{n2} and ndmax = max{nd}; m1 = int(n1θ1), m2 = int(n2θ2) and md = int(ndθd) where θ1, θ2 
and θd are parameters ranging from 0 to 1; Ν = (�1 - n1max)(�2 - n2max)…(�d - ndmax). The function 
f n1 ,n2 ,...nd

i1,i2,...id( ) is given by: 
 

f n1 ,n2 ,...nd
i1,i2,...id( )=

1
n1n2 ...nd k1 =−m1

n1 =1−m1

∑
k2 =−m2

n2 =1−m2

∑ ...
kd =−md

nd =1−md

∑ f i1 − k1,i2 − k2,...id − kd( ),   (8) 

 
which is an average of f calculated over the subarrays vd. By taking d = 3, Eq. 7 allows to estimate 
the Hurst exponent H of the 3d RMDA sponge above described, as seen in Fig. 3.b. 
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Conclusions 

In this paper we have modelled snow granularity by means of different fractal models. Most 
properties of snow are defined as functions of the specific density ρsnow/ρice [1, 2]. The multiscale 
character of snow, its density and porosity, have been analyzed by the deterministic Menger sponge 
model. This model allows to define the fractal dimension D as a measure of the space-filling 
properties of snow, which can be related to the specific density. Moreover, in order to capture the 
randomness of the local structure of a real snow sample, we have introduced two 3d random fractal 
models. With these models we were able to investigate how the local structure changes according to 
a given fractal dimension. Different grain arrangements and cell densities have been explored by 
varying the fractal dimension. 

These models are the first step towards the investigation of the scaling properties of snow in a 
fully 3d fractal framework and will be relevant to validate experimental results reported in the 
literature [14, 15]. 
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