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In this work, higher-order moving average polynomials are defined by straightforward generalization of the
standard moving average. The self-similarity of the polynomials is analyzed for fractional Brownian series and
quantified in terms of the Hurst exponent H by using the detrending moving average method. We prove that the
exponent H of the fractional Brownian series and of the detrending moving average variance asymptotically agree
for the first-order polynomial. Such asymptotic values are compared with the results obtained by the simulations.
The higher-order polynomials correspond to trend estimates at shorter time scales as the degree of the polynomial
increases. Importantly, the increase of polynomial degree does not require to change the moving average window.
Thus trends at different time scales can be obtained on data sets with the same size. These polynomials could be
interesting for those applications relying on trend estimates over different time horizons (financial markets) or
on filtering at different frequencies (image analysis).
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I. INTRODUCTION

Statistical physics is increasingly recognized and explored
for unraveling complexity in diverse systems. Self-similarity
and long-range correlations have been investigated in finan-
cial series [1–7], other than in systems as biological and
physiological [8–11], solar, geophysical, environmental, and
solid state [12–16]. In particular, stock markets are complex
dynamical systems operating in synchronization to other social
activities. Thus financial time series exhibit patterns related
to such activities, which are under intense investigation by
statistical physics approaches. Technical traders sell and buy
stocks near the top and close to the bottom of the trend.
Occurrence of maximum and minimum of the price trend
and trend reversal trigger trading decisions. The golden cross
(buy stocks) and dead cross (sell stocks) rule exploits the
intersections of long-term and short-term moving averages by
adjusting the moving average window n to the characteristic
behavior of a particular stock market. Technical rules based
on moving averages are under continuous investigation and
improvement [4–7]. Correlations are quantified in terms of
scaling exponents by using estimators suitably defined for
such systems [17–20]. For nonstationary time series, the
detrended fluctuation analysis (DFA) [21–27], the rescaled
range statistical analysis (R/S), and the detrending moving
average analysis (DMA) [28–31] can be adopted to explore
long-range autocorrelations, multifractal features [32–37],
cross correlation [38,39], and higher dimensional fractals
[40–42]. The DMA algorithm operates through the estimate
of a generalized variance of the long-range correlated series
y(i) around the moving average:

ỹn(i) = 1

n

n−1∑
k=0

y(i − k), (1)

with n the moving average window. The reference point
of the moving average window can be changed by the
introduction of a parameter θ with 0 � θ � 1. Accordingly,
Eq. (1), which corresponds to θ = 0, is generalized as

ỹn(i) = 1/n
∑n−1−θn

k=−θn y(i − k). By repeating the calculation
for different values of the window n, the power law dependence
of the generalized variance σDMA is obtained:

σ 2
DMA ∼ n2H , (2)

where H is the Hurst exponent which is related to the
correlation properties of y(i) (H = 0.5, H < 0.5 and H > 0.5
hold for uncorrelated, negatively, and positively correlated
signals, respectively).

The DMA algorithm is a remarkable example of integration
between finance tools and complex system concepts. Self-
similarity and long-range correlations are estimated by means
of a generalized variance around the moving average, which
is a popular instrument of technical analysis.

In this work, a generalization of Eq. (1) is proposed and
higher-order moving average polynomials are introduced. The
scaling behavior of such polynomials is then investigated by
means of the detrending moving average algorithm (Sec. II).
Furthermore, it is analytically proved that the asymptotic be-
havior of the exponents H of the moving average polynomials
and of the detrending moving average variance agree. This
implies that the application of the DMA method does not
alter the value of H at large n (Sec. III). Finally, we note
that the higher-order polynomials correspond to estimates of
trends at smaller and smaller time scales: as the degree of the
polynomial increases (decreases), more (less) low-frequency
components are filtered out. The advantage of the proposed
approach is to operate at constant value of the moving average
window n. Thus trends at different time spans are calculated
over data set with the same size. These polynomials could
improve the accuracy of trends estimated over different space
or time horizons.

II. HIGHER-ORDER MOVING AVERAGE POLYNOMIALS

The proposed procedure is based on a generalization of
the least-square method, which is commonly applied for the
best fit of random data by minimizing the sum of the squares
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of the deviations of a set of N data points, with respect to a
polynomial ŷm(i) of degree m. For a first degree polynomial
ŷ1(i) = a0 + a1i, the coefficients a0 and a1 that minimize the
sum of the squares, are

a1 =
∑N

i=1 y(i)i − 1
N

∑N
i=1 i

∑N
i=1 y(i)∑N

i=1 i2 − 1
N

(∑N
i=1 i

)2 , (3a)

a0 = 1

N

N∑
i=1

y(i) − a1
1

N

N∑
i=1

i. (3b)

One can note that the moving average defined by Eq. (1) can
be obtained by Eq. (3b) when the sum is performed over a
moving window of size n rather than over the whole data set
N and a1 = 0. Therefore, one can generalize Eqs. (3a) and
(3b) with the sum calculated over a moving window:

ãn,1(i)

=
∑n−1

k=0 y(i − k)(i − k)− 1
n

∑n−1
k=0 y(i − k)

∑n−1
h=0(i−h)∑n−1

k=0(i − k)2 − 1
n

[∑n−1
k=0(i − k)

]2 ,

(4a)

ãn,0(i) = 1

n

n−1∑
k=0

y(i − k) − 1

n
ã1(i)

n−1∑
k=0

(i − k) . (4b)

The quantities ãn,0(i) and ãn,1(i) are function of i, as opposed
to a0 and a1 in Eqs. (3a) and (3b) which are constant. One
can note that if ãn,1(i) is zero, Eq. (4b) coincides with Eq. (1).
By using Eqs. (4a) and (4b), the first order moving average
polynomial can be written as

ỹn(i) = ãn,0(i) + ãn,1(i)i. (5)

Furthermore, we observe that the reference point of the
moving average window may be changed to any point within
the window n by the introduction of a parameter θ with
0 � θ � 1. The general expressions of ãn,0(i) and ãn,1(i)
with the sum extremes depending on θ are written in the
Appendix.

By following the approach described above, higher-order
moving average polynomials of the form

ỹn(i) = ãn,0(i) + ãn,1(i)i + · · · + ãn,m(i)im (6)

can be thus generated, where the coefficients ãn,0(i),
ãn,1(i), . . . ,̃an,m(i) are obtained by generalizing the corre-
sponding terms of the least-square expansion. Higher-order
moving average polynomials, defined by Eq. (6), have been
simulated by means of artificial long-range correlated series
with scaling exponent H by the random midpoint displace-
ment (RMD) and the Cholesky-Levinson factorization (CLF)
algorithms [43]. Moving average polynomials of order m = 0,
m = 1, m = 2, and m = 3 are shown in Fig. 1 with window
size n = 400 referred to the midpoint of the window (θ = 0.5).
One can note that the fit improves for higher order polynomials.
Next, we consider the variance

σ 2
DMA = 1

N − n

N∑
i=n

[y(i) − ỹn(i)]2, (7)

where y(i) is a long-range correlated series with Hurst
exponent H . The log-log plots of σ 2

DMA vs n for m = 0, m = 1,
m = 2, and m = 3 are shown in Fig. 2. The polynomials
are calculated for artificial series generated by the RMD
method and are centered in the first (θ = 1), in the middle
(θ = 0.5), and in the last (θ = 0) point of the window. The

FIG. 1. (Color online) Moving average polynomials of degree m = 0, m = 1, m = 2, and m = 3 for self-similar series with Hurst exponent
H = 0.5 generated by the random midpoint displacement algorithm. The window size is n = 400 and the reference is θ = 0.5.
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FIG. 2. (Color online) Log-log plots of σ 2
DMA vs n for moving average polynomial degree m = 0, m = 1, m = 2, and m = 3, referred,

respectively, to the endpoints (θ = 1; θ = 0) and to the midpoint (θ = 0.5) of the window n. The series have been generated by the random
midpoint displacement algorithm. The nominal Hurst exponent is H = 0.3, H = 0.5, and H = 0.7. The values of H obtained on five samples
of such series are shown in Table I.

values of the Hurst exponents estimated as the slopes of
the curves plotted in Fig. 2 are summarized in Table I.
The length of the series is N = 220. In order to check the
self-similarity of the moving average polynomials for shorter
series, samples with length equal to N = 216, N = 214 N =
212 N = 210 with H = 0.5 have been analyzed for θ = 0.5 and

m = 0, m = 1, m = 2, and m = 3. The results are shown in
Table II.

The Hurst exponent is estimated through a linear best fit
of the numerical data (similarly to those plotted in Fig. 2).
Such a linear dependence does not hold exactly for small n,
particularly for θ = 0 and θ = 1. The deviations occurring at

TABLE I. Estimation of the Hurst exponent and relative error.

m = 0 �H0 m = 1 �H1 m = 2 �H2 m = 3 �H3

θ = 0 0.32 0.07 0.35 0.17 0.40 0.33 0.39 0.30
H = 0.3 θ = 0.5 0.31 0.03 0.31 0.03 0.31 0.03 0.31 0.03

θ = 1 0.32 0.07 0.35 0.17 0.40 0.33 0.40 0.33
θ = 0 0.51 0.02 0.54 0.08 0.58 0.16 0.56 0.12

H = 0.5 θ = 0.5 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00
θ = 1 0.51 0.02 0.54 0.08 0.58 0.16 0.57 0.14
θ = 0 0.72 0.03 0.74 0.06 0.78 0.11 0.74 0.06

H = 0.7 θ = 0.5 0.69 −0.01 0.69 −0.01 0.69 −0.01 0.69 −0.01
θ = 1 0.72 0.03 0.74 0.06 0.78 0.11 0.75 0.07
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TABLE II. Estimation of the Hurst exponent for series with
different length N with H = 0.5. The reference for the moving
window is θ = 0.5.

N = 216 N = 214 N = 212 N = 210

m = 0 0.48 0.48 0.43 0.35
m = 1 0.48 0.48 0.43 0.35
m = 2 0.50 0.49 0.45 0.38
m = 3 0.50 0.49 0.45 0.38

short scales are quite generally reported for the zeroth order
polynomials (see [40] and references therein). It is plausible
that higher-order polynomials are more strongly affected by
the nonlinearities, which may explain why the discrepancies

TABLE III. Asymptotic values of the DMA variances with ỹn(i)
of order zero and one. The reference point is in the first point of
the window (θ = 1), in the midpoint (θ = 0.5), and in the endpoint
(θ = 0). The factor n2H has been omitted everywhere.

σDMA0 σDMA1

θ = 0 1
2(H + 1)

1 − H
(H + 1)(H + 2)

θ = 0.5 21−2H (H + 1) − 1
2(H + 1)(2H + 1)

21−2H (H + 1) − 1
2(H + 1)(2H + 1)

θ = 1 1
2(H + 1)

1 − H
(H + 1)(H + 2)

in the estimations of H increase with m. For θ = 0.5, the
data for m = 0 and m = 1 practically overlap, as well as those

FIG. 3. (Color online) Prefactor CH of the scaling laws (8) for m = 0 (left column) and m = 1 (right column), respectively, with θ = 1,
θ = 0.5, and θ = 0. Circles are numerical estimations obtained by using self-similar series generated by the random midpoint displacement
algorithm. Continuous lines are analytical values obtained by using the CH expressions given respectively by Eqs. (9a) and (9b). The different
values of CH at the extremes of the curves are due to the H overestimation in the linear fits of the curves plotted in Fig. 2. The errors can be
estimated by the data of Table I where nominal and experimental values of H are reported.
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for m = 2 and m = 3. This can be understood on the basis
of the following reasoning. The moving average acts as a
discrete integral over the series; since for θ = 0.5 the reference
point is in the center of the moving window, all the sums are
performed over a symmetric interval. In this condition, the odd
terms of the polynomials do not contribute to the sums, as can
be inferred by thinking of the integral of odd functions over
symmetric intervals. This cancellation mechanism may also
explain the fact that low scale nonlinearities are smoothed out
for θ = 0.5, as shown in Fig. 2.

III. ASYMPTOTIC BEHAVIOR

In this section the asymptotic behavior of the generalized
variance defined by Eq. (7) is investigated with ỹn(i) defined
by Eq. (5) for m = 1. The asymptotic behavior of Eq. (7) yields
a closed-form approximation of the scaling law of the form

σ 2
DMA = CHn2H (8)

at large n. The whole process is technically easy but quite
cumbersome, thus more details are provided in the Appendix.
The motivation for working out expression (8) is to prove that
the self-similarity index of the time series is kept unchanged
after implementing each step of the algorithm. This kind of
investigation has been performed for the DFA in [44,45], for
the DMA in [46], and for the R/S in [47]. We report three
cases of particular interest extracted from Eq. (A16) of the
Appendix:

θ = 0; θ = 1 CH = 1 − H

(H + 1)(H + 2)
, (9a)

θ = 0.5 CH = 1

2(H + 1)
− 1 − 2−2H

2H + 1
. (9b)

In Table III the prefactors of the scaling laws (9a) and (9b)
are summarized in the third column. In the second column
those obtained for the zeroth order σ 2

DMA are also reported [46].
As for the zeroth order σ 2

DMA, the asymptotic values
coincide at the endpoints of the moving window (i.e., with
θ = 0 and θ = 1). For moving average polynomial referred to
the middle of the window (θ = 0.5), the zeroth and first order
exhibit the same value of the variance. For θ = 0 and θ = 1,
and in general ∀ θ �= 0.5, the fit of order one is more accurate
than that of order zero (the variance is smaller). Finally, we

compare the analytical results reported in the last column of
Table III with those obtained by numerical estimation shown in
Fig. 2. The behavior of the σ 2

DMA expected from the asymptotic
limit is in very good agreement with the numerical estimates.
In Fig. 3 the theoretical values of CH , calculated by using
Eqs. (9a) and (9b), are compared with those obtained by the
intercepts of the curves plotted in Fig. 2 for θ = 0, θ = 0.5,
and θ = 1. Since the fractional Brownian motions have been
generated by the RMD algorithm, in the calculation of CH

it must be kept in mind that σ 2 = (1 − 22H−2)/22Hνσ 2
Gauss, ν

being the number of steps and σ 2
Gauss the variance defined for

the RMD algorithm.

IV. CONCLUSIONS

The relationship for the calculation of the standard moving
average Eq. (1) has been generalized allowing the definition of
higher-order moving average polynomials Eqs. (5) and (6). The
scaling behavior of such polynomials has been characterized
by means of the detrending moving average algorithm. The
proof of self-similarity rules out the existence of characteristic
times and cut-off frequencies in the trend estimation. Fur-
thermore, the asymptotic behavior of the exponents H of the
moving average polynomials and of their detrending moving
average variance agree, meaning that DMA algorithm does not
change the value of H . The asymptotic values are compared
with the results obtained by the simulations. The higher-order
polynomials provide to trend estimates at smaller and smaller
time scales. As the degree m of the polynomial increases,
the low-frequency components are filtered out accordingly.
Remarkably, polynomials with different degrees are obtained
with constant moving average window n, thus trends at
different time spans can be calculated over data set having
the same size. These polynomials could improve the accuracy
of trend estimates over different space or time horizons as
needed for example in financial markets and image texture
analysis.

APPENDIX: ASYMPTOTIC BEHAVIOR: DERIVATION OF
THE EQUATIONS

We consider the coefficients a0(i) and a1(i) in their general
form where the sum extremes contains the term θn, with θ a
parameter ranging from 0 to 1,

ã1(i) =
∑n−1−θn

k=−θn y(i − k)(i − k) − 1
n

∑n−1−θn
k=−θn y(i − k)

∑n−1−θn
h=−θn (i − h)∑n−1−θn

k=−θn (i − k)2 − 1
n

[∑n−1−θn
k=−θn (i − k)

]2 , (A1a)

ã0(i) = 1

n

n−1−θn∑
k=−θn

y(i − k) − 1

n
ã1(i)

n−1−θn∑
k=−θn

(i − k). (A1b)

The coefficients a0(i) and a1(i) can be simplified and rewritten as

ã1(i) = 12

n3

[
n−1∑
k=0

y(i − k)(i − k) +
(

n

2
− i

) n−1∑
k=0

y(i − k)

]
, (A2a)

ã0(i) = 1

n

n−1∑
k=0

y(i − k) + n

2
ã1(i) − iã1(i), (A2b)
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where the change of variables k → k + θn and i → i − θn has also been implemented. With these notations Eq. (7)
becomes

σ 2
DMA = 1

N − n

N∑
i=n

[y(i − θn) − ã0(i) − (i − θn)̃a1(i)]2. (A3)

The procedure is now to substitute Eqs. (A2a) and (A2b) into (A3) and to compute all the summations in the large n limit, which
formally amounts to replace summations with integrals.

(N − n)σ 2
DMA =

N∑
i=n

[y(i − θn) − a0(i) − (i − θn)a1(i)]2

=
N∑

i=n

[
y2(i − θn) + a2

0(i) + i2a2
1(i) − 2a0(i)y(i − θn) − 2ia1(i)y(i − θn) + 2ia0(i)a1(i)

]
+

N∑
i=n

[
θ2a2

1(i) − 2θia2
1(i) + 2θa1(i)y(i − θn) − 2θa0(i)a1(i)

]
=

N∑
i=n

y2(i − θn) + 16

n2

N∑
i=n

[
n∑

k=0

y(i − k)

]2

+ 36

n4

N∑
i=n

[
n∑

k=0

y(i − k)(i − k)

]2

+36

n4

N∑
i=n

i2

[
n∑

k=0

y(i − k)

]2

− 48

n3

N∑
i=n

i

[
n∑

k=0

y(i − k)

]2

+48

n3

N∑
i=n

n∑
k=0

y(i − k)(i − k)
n∑

h=0

y(i − h) − 72

n4

N∑
i=n

i

n∑
k=0

y(i − k)(i − k)
n∑

h=0

y(i − h)

−8

n

N∑
i=n

y(i − θn)
n∑

k=0

y(i − k) − 12

n2

N∑
i=n

y(i − θn)
n∑

k=0

y(i − k)(i − k)

+12

n2

N∑
i=n

iy(i − θn)
n∑

k=0

y(i − k) + 144

n6
(θ2n2 − θn2)

N∑
i=n

⎧⎨⎩
[

n∑
k=0

y(i − k)(i − k)

]2

+
(

n

2
− i

)2
[

n∑
k=0

y(i − k)

]2

+ 2

(
n

2
− i

) n∑
k=0

y(i − k)(i − k)
n∑

h=0

y(i − h)

⎫⎬⎭
+ 24

n2
θ

N∑
i=n

⎧⎨⎩y(i − θn)
n∑

k=0

y(i − k)(i − k) +
(

n

2
− i

)
y(i − θn)

n∑
k=0

y(i − k)

− 1

n

n∑
k=0

y(i − k)(i − k)
n∑

h=0

y(i − h) − 1

n

(
n

2
− i

) [
n∑

k=0

y(i − k)

]2
⎫⎬⎭ . (A4)

Taking the large n limit (n → ∞), while keeping n � N , of Eq. (A4) implies that we can approximate summations with integrals:

N∑
i=n

� n

∫ N
n

1
dx, with i = nx,

(A5)
n∑

k=0

� n

∫ 1

0
dx, with k = nx.

It is convenient to compute each sum separately, and then substitute the results into (A4). For the sake of clarity, let us stress that
in the following equations the equality signs are intended up to higher-order corrections in the large n expansion:

N∑
i=n

y2(i − θn) = n2H+1

2H + 1

[(
N

n
− θ

)2H+1

− (1 − θ )2H+1

]
, (A6)
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N∑
i=n

[
n∑

k=0

y(i − k)

]2

= n

2(H + 1)(2H + 1)
[N2H+2 − n2H+2 − (N − n)2H+2] − n2H+2

2(H + 1)(2H + 1)
(N − n), (A7)

N∑
i=n

i

[
n∑

k=0

y(i − k)

]2

= n

(2H + 1)(2H + 3)
[N2H+3 − n2H+3 − (N − n)2H+3]

− n2

2(H + 1)(2H + 1)
(N − n)2H+2 − n2H+2

4(H + 1)(2H + 1)
(N2 − n2), (A8)

N∑
i=n

i2

[
n∑

k=0

y(i − k)

]2

= n

2(2H + 1)(H + 2)
[N2H+4 − n2H+4 − (N − n)2H+4] − 2n2

(2H + 1)(2H + 3)
(N − n)2H+3

− n3

2(H + 1)(2H + 1)
(N − n)2H+2 − n2H+2

6(H + 1)(2H + 1)
(N3 − n3), (A9)

N∑
i=n

[
n∑

k=0

y(i − k)(i − k)

]2

= n

4(H + 1)(H + 2)
[N2H+4 − n2H+4 − (N − n)2H+4] − n2

2(H + 1)(2H + 3)
(N − n)2H+3

− n2H+2

6(H + 1)(2H + 1)
(N3 − n3) − n2

4(H + 1)(2H + 3)
[N2H+3 − n2H+3 − (N − n)2H+3]

+ n2H+3

4(H + 1)(2H + 1)
(N2 − n2) − n2H+4

4(H + 1)(2H + 1)(H + 2)
(N − n), (A10)

N∑
i=n

[
n∑

k=0

n∑
h=0

y(i − k)(i − k)y(i − h)

]
= n

4(H + 1)(2H + 3)
[N2H+3 − n2H+3 − (N − n)2H+3] + n

2(2H + 1)(2H + 3)

× [N2H+3 − n2H+3 − (N − n)2H+3] − n2

4(H + 1)(2H + 1)
(N − n)2H+2

− n2

8(H + 1)(2H + 1)
[N2H+2 − n2H+2 − (N − n)2H+2] − n2H+2

4(H + 1)(2H + 1)

× (N2 − n2) + n2H+3

4(H + 1)(2H + 1)
(N − n), (A11)

N∑
i=n

[
n∑

k=0

n∑
h=0

iy(i − k)(i − k)y(i − h)

]
= n

8(H + 1)(H + 2)
[N2H+4 − n2H+4 − (N − n)2H+4] − n2

4(H + 1)(2H + 3)

× (N − n)2H+3 + n

4(2H + 1)(H + 2)
[N2H+4 − n2H+4 − (N − n)2H+4]

− n2

(2H + 1)(2H + 3)
(N − n)2H+3 − n3

8(H + 1)(2H + 1)
(N − n)2H+2

− n2

4(2H + 1)(2H + 3)
[N2H+3 − n2H+3 − (N − n)2H+3]

− n2H+2

6(H + 1)(2H + 1)
(N3 − n3) + n2H+3

8(H + 1)(2H + 1)
(N2 − n2), (A12)

N∑
i=n

[
n∑

k=0

y(i − θ )y(i − k)

]
= n

2(2H + 1)
[(N − θ )2H+1 − (n − θ )2H+1] + n

4(H + 1)(2H + 1)

× [N2H+2 − n2H+2 − (N − n)2H+2] − 1

2(2H + 1)
[(n − θ )2H+1 + θ2H+1](N − n), (A13)
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N∑
i=n

[
n∑

k=0

y(i − θ )y(i − k)(i − k)

]

= 1

4(H + 1)(2H + 3)
[N2H+3 − n2H+3 − (N − n)2H+3] − N2

4(2H + 1)
[(N − θ )2H+1 − (n − θ )2H+1]

+ n

4(H + 1)
[(N − θ )2H+2 − (n − θ )2H+2] + nθ

2(2H + 1)
[(N − θ )2H+1 − (n − θ )2H+1] − (n − θ )2H+1

4(2H + 1)
(N2 − n2)

+θ (n − θ )2H+1

2(2H + 1)
(N − n) + (n − θ )2H+2

4(H + 1)
(N − n) − θ2H+1

4(2H + 1)
(N2 − n2) + θ2H+2

2(2H + 1)
(N − n) − θ2H+2

4(H + 1)
(N − n),

(A14)

N∑
i=n

[
n∑

k=0

y(i − θ )(i − θ )y(i − k)

]

= n

4(H + 1)
[(N − θ )2H+2 − (n − θ )2H+2] + 1

2(2H + 1)(2H + 3)
[N2H+3 − n2H+3 − (N − n)2H+3]

− θ

4(H + 1)(2H + 1)
[N2H+2 − n2H+2 − (N − n)2H+2] − n

4(H + 1)(2H + 1)
(N − n)2H+2 − (n − θ )2H+1

4(2H + 1)
(N2 − n2)

+ θ (n − θ )2H+1

2(2H + 1)
(N − n) − θ2H+1

4(2H + 1)
(N2 − n2) + θ2H+2

2(2H + 1)
(N − n) + nθ

2(2H + 1)
[(N − θ )2H+1 − (n − θ )2H+1]

− θ

2(2H + 1)
[(N − θ )2H+1 − (n − θ )2H+1](N − n) + θ

4(H + 1)(2H + 1)
[N2H+2 − n2H+2 − (N − n)2H+2]. (A15)

Plugging all these partial results into Eq. (A4), after some algebra one obtains

n−2H σ 2
DMA

= 4

(H + 1)(H + 2)
− 9

(H + 1)(H + 2)(2H + 1)
+ 4

2H + 1
[θ2H+1 + (1 − θ )2H+1] + 3

H + 1
[θ2H+2 − (1 − θ )2H+2]

− 6

2H + 1
θ (1 − θ )2H+1 − 6

2H + 1
α2H+2 + 18H

(H + 1)(H + 2)(2H + 1)
θ (θ − 1) + 6

H + 1
θ (1 − θ )2H+2

+ 6

(H + 1)(2H + 1)
θ2H+3 − 6

2H + 1
θ2H+2 − 6

2H + 1
θ (1 − θ )2H+1 + 12

2H + 1
θ2(1 − θ )2H+1. (A16)
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