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Abstract

We consider the low-temperature thermodynamic and magnetic properties of an ideal gas of
particles obeying a generic fermion-like fractional statistics. The coefficients of the Sommerfeld
expansion are calculated in terms of the central moments of the derivative of the density of
entropy with respect to the occupational number.

PACS: 05.20.-y; 05.30.-d; 73.40.Hm; 71.30.+h

1. Introduction

In the recent years, the scientific community has shown a renewed interest towards
the fractional statistics. This is mainly related to the application of fractional spin and
statistics to the theory of the high 7, superconductivity, of the fractional quantum Hall
effect and of the mechanism of the spin and charge carrier separation in quantum
antiferromagnets [ 1-5]. In order to gain a better understanding of the behavior of
such systems, great attention has been devoted to the observables strongly dependent
on the statistics. Several papers [ 6—8] dealing with the thermodynamic and magnetic
properties have thus appeared besides the wide literature centered around first-principle
treatment of quantum mechanics and field theory for system with fractional spin and
statistics [9]. In particular, since the deviations from a pure bosonic or fermionic behav-
ior become more evident at low temperatures a considerable effort has been addressed
to the investigation of the low-temperature thermodynamic properties of such particles
[10-12].

The fractional statistics can be roughly divided in two classes: the boson-like, ad-
mitting the possibility that a site can host an arbitrary number of particles, and the
fermion-like, for which the number of particles is always subjected to a constraint.
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Let the following discussion be restricted to fermion-like particles. The first paper,
where a statistics interpolating between the Fermi and the Bose one appears, is dated
1940 [13]. There, Gentile, defining properly the N-fold occupancy of a site, obtained
the para-fermi statistics where the occupation number is given by

by 1 p+1
exp(e) — 1  expl{p+1)]—1
with ¢ = f(e — u). Recently, the parafermion statistics has been adopted to study
Frohlich’s one-dimensional superconductors [14]. About a decade later, Green [15], in
the framework of the second quantization, analyzed a class of intermediate statistics

by generalizing the commutation relations for the creation and annihilation operators.
The simplest generalization of the commutation relations is given by

(1)

aal —qaja; =9y, (2)

where —1<g<1. The Fermi and the Bose statistics are obtained, respectively, for
g = —1 and g = 1, while other values of ¢ yield the quon statistics [7,16,17]

1
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to which corresponds a density of entropy
1
S(n) = 6_1(] + gn)log(l +gn) —nlogn . (4)

In addition to the commutation relation (2), other forms of generalization have been
proposed leading to more general quon statistics [7]. A different approach was fol-
lowed by Haldane [18] . The Haldane fractional statistics was obtained resizing the
single-particle Hilbert space available for the nth particle proportionally to the num-
ber of added particles. The Haldane generalized exclusion principle can be written as
Ad(N) = —gAN where d(N) is the dimension of the single-particle Hilbert space
when N — 1 states are occupied and ¢ is the exclusion statistics parameter, 0 <g <1
(g = 1 for fermions and g = 0 for bosons). An explicit realization of the Haldane statis-
tics is the Calogero—Sutherland-Moser system [19,20], for which the paramer g can take
any value from 0 to oc. The density of entropy for the Haldane statistics is given by

S =11 +(1 ~ gyllog - ="

1 —gn

—(1 —gn)log . (5)

The occupation number is implicitly defined through the following relationship [6,21,22]:
(1 —gn¥[1+ (1~ gm]'™" = ne". (6)

A great number of papers deal with the thermodynamic properties of systems obeying
the Haldane statistics [ 10-12,23,24]. Many of these properties are common to the whole
class of the fermion-like statistics, while others are typical of the particular statistics
considered.
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The goal of the present paper is to investigate the low-temperature magnetic and
thermodynamic properties common to all the fermion-like fractional statistics. We shall
focus our attention on the analytical expression of the Sommerfeld series for the chemi-
cal potential, the internal energy and the Pauli paramagnetic susceptibility. In particular,
since the difference between the statistical and the purely thermodynamic interpretation
manifests itself in the existence of fluctuation processes, we shall show the link between
the coefficients of the Sommerfeld series and the cumulant expansion. To the best of
our knowledge this has not yet been evidenced in literature for fractional statistics,

2. Generalized Sommerfeld expansion

Let us consider a set of N free identical particles with total energy E occupying a
group of G states. Let N; be the number of particles of the ith species, with energy
g;, occupying G; states. It results in >N, = N, >.G; = G, > .Nig; = E. For
boson-like particles each of the G; states can arrange more than one particle, while for
fermion-like behavior the ith state contains at most one particle. For particles having
an intermediate behavior between bosons and fermions, the mechanism according to
which the N, particles occupy the G; states is different, resulting in a intermediate
statistics.

Let us now consider the system in the thermodynamic limit. The average occupation
number for the ith species is given by n; = N;/G;. Furthermore, we shall adopt a
dispersion relationship € = (k) where & is the modulus of the vector wave number.
The sum over the index i, reported above, can be transformed into an integration in
d”k where D is the dimension of the space. The density of states £(c) is given by the
relationship Q(e)de = [V/(2n)?)okP~'dk, where V is the volume of the system and
¢ = 2nP?/I'(D/2) is a number equal to the area of a sphere with unitary radius in a
D-dimensional space. The number N and the energy E of the particles will be given
by

T

N:/mwmma (7)
0

E = /EQ(E)n(E)ds. (8)
0

Before introducing the Pauli susceptibility y, a further distinction among the interme-
diate statistics is required. For physical systems in two spatial dimensions, the wave
function for a N-particle system under the exchange of the position of any two particles
can be written as ¥;; = exp(2mia)¥; where the statistics parameter x can take arbitrary
real values, and is equal to 0 or % respectively for symmetric wave functions (bosons)
and antisymmetric wave functions (fermions) [25]. A fractional electron charge, char-
acterising a quasiparticle which obeys a fractional statistics, has been invoked in several
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physical situations such as the fractional Hall effect and the high 7. superconductivity.
A different type of intermediate statistics are those describing particles having integer
or half-integer spin but satisfying a generalized exclusion principle (parafermion statis-
tics). For both cases, in the framework of the independent particle approximation and
neglecting the orbital response, 1.e. considering the fractional particle to carry only a
spin magnetic moment, the generalized Pauli susceptibility y defined for particles with
two spin degrees of freedom, following Ref. [26], can be obtained as

oo}

dQ
=28 / 2oy e 9)

0

where g is the Bohr magneton. The average occupation number is obtained by max-
imizing the entropy S of the system:

o0

S = /Q(E)S(n)ds. (10)

0

Keeping fixed the total number NV of particles and the total energy F of the system by
using the standard Lagrange multiplier method, the following variational problem has
to be solved:

i(S—ﬁEnL[f,uN):O, (11)
on

where 0/0n indicates the functional derivatives with respect to the function n(e). We
obtain

cS(n) o
o (12)

Eq. (12) defines n(¢) when S(n) is known.

Let m be the maximum value of the occupation number n(e) with 0 < m < oc . This
means that the ith state can host a number of particles lower than mG;. The constraint
0<n<m implies a generalization of the Pauli exclusion principle. The occupation
probability for the state with energy =« will be n(¢)/m, moreover, the non-occupation
probability of the state of energy ¢ is given by nu(e)/m and n(c) + n,(¢) = m holds.
Furthermore, if a dispersion relationship (k) = ak” is assumed [10], the density of
states can be written as Q(g) = 7=~ 'where d = D/b and y = Va/(2n)Pba?.

Here we shall consider the low-temperature properties of such a system. At T = 0 the
system presents a pseudo-fermi surface defined as n(z) = m(sr — ¢), and the number
of particles is conserved. From Eq. (7) we have N = ym fof g9~ 1 d=. The Fermi energy
€, = o 18 €, = ak’, where k, = 2n(pD/ma)""". Analogously from Egs. (8) and (9),
at T = 0, the ground-state energy £ and susceptibility yp are given, respectively, by
Eqy = Ne,d/(d + 1) and ¥y = 2dNu3/e,. Therefore, the T = 0 properties depend only
on the maximum value m of the occupation number, but are independent of the form
of the statistics. In particular, it results that the zero temperaturc values Ey and jq
for a system of particles obeying intermediate statistics are, respectively, lower and
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higher than for fermions. The gencralized exclusion principle is indeed more effective
than the Pauli exclusion principle to gather the particles at lower energy states. On the
contrary, the response to the application of an external magnetic field is higher than
that of fermions; the generalized exclusion principle results to be far less effective than
the Pauli one in suppressing the tendency of the spin to align with the magnetic field.
The Sommerfeld expansions at 7 = 0 for w(T), E(T) and y(7T') are given by [27]

d+1 o> J
Ho 1/d—1 kT
= =1+d M-—,(, )(—) , (13)
(u) ; AVES VAW
E u)"“ [ > 1( d )(kr)f
— = — l+(d+1)> M-| . — , 14)
Ey (uo i ;jj IEVANY N (
a—1 T 00 j
Lfd—2\ (kTY
l:(i‘_) 1+(d—l)ZM,-—,(_ )(—) W. (15)
A0 Ho i = AVEE' ! ]
The quantities M; are defined by:
Ve
M] = —— / Ej n,\(a) da, (16)
‘ m o
—oc
and limiting the integration variable range to positive values, one has
+oc
M; = # f e/ [n(e) + (= 1) (m — n(—¢))] de. (17)

0

We observe that the quantities M; are related to the coefficients C; introduced in
Ref. [10] by means of M, = j C;_/m.

3. Coefficients of the expansion

Let us change the integration variable from the energy to the occupational number
0<n<m in Eq. (16). This transformation will yield two results. The first consists in
a simplification of the calculation of the quantities 4{;, when the statistics is implicitly
defined. The Haldane statistics given by Eq. (6) is an example of an implicitly defined
statistics. In this case, the calculation of A, is not easy to be performed by using
Eqgs. (16) and (17) as observed in Refs. [10,12}].

The second is that it allows to understand better the meaning of the quantities M. In
particular, it will be shown that the coefficients of the Sommerfeld series are related to
the fluctuations of the derivative of the density of entropy which corresponds according
to Eq. (12) to the energy =(n) of a state whose occupation number is #n. At first we
define the average value (F) of a stochastic function F(n) as

m

(F)= %/F(n)dn,

0

(18)
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where the stochastic variable » is uniformly distributed in the range 0<n < <m. It is
straightforward to observe that the quantity M, is given by the following relationship:

23S\’
M, = <(%;) > (19)

that corresponds to the jth moment of the quantity dS(»)/dn . We can also introduce
the jth central moment through

C;=<(i‘§—<€5>)']>. (20)

’ cn (824)

The central moments C; are related to the moment M; by the following relationship:
¢ =3 -1y (’) MM, @)
= :

From Eq. (13) we can obtain a polynomial relationship approximating u(7) when
T — 0. By introducing the quantity 7 = kT/u, and neglecting the 0(7°) we have

2 3
Ko o MT —(d - )G — (d = 1)~ 2)Cs =
to 2 6
,, T*
—(d~1)(d—3)[(dr2)C4ﬁ3(d~I)Cg]az. (22)

For what concerns the quantities £ and y at 7 — 0, taking into account Egs. (14),
(15) and Eq. (22), one has

E T? 73
=1+ (d+ DG+ (d+ 1) = DG

Eq 3
n T

Hd* =1 [(d=2)C=3d = 1] + . (23)
i 7° T°

e R U 1)C2~2— —(d — 1)(d~2)C3T
7'4
~[(d = 1)(d —2)(d —3)Cs — (d — 1)2(3d-7)C22]?. (24)
The specific heat Cy = ¢E/0T becomes

C" k)
N_; ~ T +(d - 1CT?

3
+(d — 1)[(d—2)C4—3(d—l)C§]—€—. (25)

It can be observed that the quantities x| = M|, k3 = Ca, k3 = C3, Kg = C4 — 3C§2 are
the first four coefficients of the cumulant expansion [28,29].
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When d = 1, ie., for example, if the system is planar and the dispersion
relation is quadratic, ie., € oc k%, then u(T) = po since the dominant asymptotic
expansion vanishes. Obviously, this does not mean that u(7) is independent of 7,
but simply that in the Sommerfeld series, the subdominant terms z~! do not appear
(where z = exp(fu) is the fugacity and / > 0) [12]. This occurs also for y, while for
E we observe that it assumes a quadratic behavior and thus €, becomes linear.

In the following we shall analyze separately some of the coefficients of the Som-
merfeld expansion given by Egs. (19) and (20), which depend on the statistics and
in general on m. The first coefficient is given by M| = [S(m) — S(0)]/m. If we take
into account the definition of the statistical weight W given by S(n) = In W(n), the
previous relation indicates that W(m) is related to W(0) by W(m) = W(0)exp(m ).
On this account, if M, = 0 as it occurs for the Fermi, Haldane and para-fermi dis-
tributions, the maximum and the zero occupation states are equiprobable. Thus, M;
is strongly affected by the symmetry of the distribution n(e). Similar considerations
were obtained in Ref. [30] using a path-integral realization for systems with exclusion
statistics. Moreover, if M, = 0 the dependence of u on 7T is quadratic when 7 — 0.
Conversely, when M| # 0, u(7) is linear for T — 0. This occurs for the quon statistics
where m = —1/q, M} = —Inm and then W(m) =m™"™.

For what concerns the second central moment C;, it is the variance of 08(n)/0n.
It is positive and distinct from zero and determines the behavior at low temperature
of all the properties of the particle gas. For the Haldane statistics having m = 1/g,
C, = n?/3m, and for the parafermion particles where m = p, C; = 2n?/3(m + 1). By
the dependence of the coefficients C; on m we can deduce that the modulus of the
relative variation of both the energy and the Pauli susceptibility, when the temperature
varies around T = 0, decreases as m increases. On the contrary, for the quons where
m = —1/g we have that C, is independent of m and is equal to the value n%/3 as in
the case of fermions.

The central moments C; of higher order are less important in determining the behav-
ior with 7 for the above-described quantities. For the Haldane statistics in Ref. [12] it
is shown that for j>0, C; = mC;1,/(j + 1) are polynomials in g of order j — 1 and
are calculated for j = 1,2,3. For the para-fermi statistics it is possible to calculate all
the central moments C; obtaining the following results:

C2je1 =0, j=0
B 1
(p+ 1)¥!

where B; are the Bernoulli numbers.

Czj = (;Z?'E)zj’szll [1 ] , J > 0, (26)
P

4. Conclusions

As a conclusion we recall the results obtained here. We have derived the Sommer-
feld polynomial expansion up to the 7 order for an ideal gas of particles obeying to
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a generic fractional fermion-like statistics. The coeflicients of the polynomials obtained
depend on the particular statistics and can be calculated starting from the central mo-
ments of the first derivative of the density of entropy éS(n)/dn. Finally, in principle,
we can devise a realistic experiment that, starting from the measurement at 7 = O of
the susceptibility yo, can yield the value of m . By using this value of m, the statistics
can be selected by analyzing the behavior of C when T — 0.
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