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Abstract

The Hurst exponent H of long range correlated series can be estimated by means of the detrending moving average

(DMA) method. The computational tool, on which the algorithm is based, is the generalized variance

s2DMA ¼ 1=ðN � nÞ
PN

i¼n½yðiÞ � eynðiÞ�
2, with eynðiÞ ¼ 1=n

Pn
k¼0yði � kÞ being the average over the moving window n and N

the dimension of the stochastic series yðiÞ. The ability to yield H relies on the property of s2DMA to vary as n2H over a wide

range of scales [E. Alessio, A. Carbone, G. Castelli, V. Frappietro, Eur. J. Phys. B 27 (2002) 197]. Here, we give a closed

form proof that s2DMA is equivalent to CH n2H and provide an explicit expression for CH . We furthermore compare the

values of CH with those obtained by applying the DMA algorithm to artificial self-similar signals.

r 2007 Published by Elsevier B.V.
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1. Introduction

Long-memory stochastic processes are ubiquitous in fields as different as condensed matter, biophysics,
social sciences, climate changes, finance [1–4]. The development of methods able to quantify the statistical
properties and, in particular, to extract the Hurst exponent of long-range correlated signals continue therefore
to draw the attention not only of the physicist community [5–15]. For long-memory correlated processes, the
value of the Hurst exponent H ranges from 0oHo0:5 and from 0:5oHo1, respectively, for negative and
positive persistence; H ¼ 0:5 is found in fully uncorrelated signals. Several techniques have been proposed in
the literature to study the scaling properties of time series. We limit ourselves to mention here only a few of
them such as the seminal work by Hurst on rescaled range statistical (R/S) analysis, the modified R/S analysis,
the multi-affine analysis, the detrended fluctuation analysis (DFA), the periodogram regression (GPH)
method, the ðm; kÞ-Zipf method, the detrended moving average (DMA) analysis. The challenge is to get the
Hurst exponent H, that is related to the fractal dimension D ¼ 2�H, by means of more and more accurate
e front matter r 2007 Published by Elsevier B.V.
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and fast algorithms. The methods of extraction of the scaling exponents from a random signal exploit suitable
statistical functions of the series itself.

Recently, a method called DMA technique for the analysis of the persistence has been proposed. The
striking difference between the DMA and other (R/S, DFA) variance methods is that the DMA algorithm
does not need a division of the series in boxes. The scaling property is obtained by using a simple continuous
function: the moving average. This fact makes the DMA algorithm highly efficient from the computational
point of view. The scaling properties of the DMA variance have been studied and applications have been
demonstrated in previous work [13,14].

The purpose of this work is to derive a closed form approximation of the scaling behavior of the DMA
variance at large n, i.e., s2DMA�CHn2H . Furthermore, the expression CHn2H is compared with the data
obtained by applying the DMA algorithm to surrogate series with assigned H. For such comparison, we use 30
samples of surrogate series with N ¼ 223. Very long signals assure the consistency of the simulation results
with the expression CHn2H holding at large n. The surrogate series are generated by the random midpoint
displacement (RMD) algorithm [16], that is preferable over other signal generators for its high execution speed
though it suffers of poorer accuracy [17].
2. Method

First we describe the main steps of the DMA algorithm. The technique is based on the function:

s2DMA ¼
1

N � n

XN

i¼n

½yðiÞ � ~ynðiÞ�
2, (1a)

~ynðiÞ ¼
1

n

Xn

k¼0

yði � kÞ. (1b)

Eq. (1a) defines a generalized variance of the random path yðiÞ with respect to the moving average eynðiÞ

(Eq. (1b)). The function eynðiÞ is calculated by averaging the n-past value in each sliding window of length n. In
so doing, the reference point of the averaging process is the last point of the window. The dynamic averaging
process and the DMA algorithm can be, however, referred to any point within the window, by generalizing
Eqs. (1a), (1b) as follows:

s2DMA ¼
1

N � n

XN�ny

i¼nð1�yÞ

½yðiÞ � ~ynðiÞ�
2, (1c)

~ynðiÞ ¼
1

n

Xnð1�yÞ
k¼�ny

yði � kÞ. (1d)

Upon variation of the parameter y in the range ½0; 1�, the reference point of eynðiÞ is accordingly set within the
moving window n. In particular, we will consider the following three relevant cases: (i) y ¼ 0 corresponding to
calculate eynðiÞ over all the past points within the window n; (ii) y ¼ 1

2
corresponding to calculate eynðiÞ over n=2

past and n=2 future points within the window n and (iii) y ¼ 1 corresponding to calculate eynðiÞ over all the
future points within the window n.

In order to calculate the Hurst exponent of the series, the DMA algorithm is implemented as follows.
The moving average eynðiÞ is calculated for different values of the window n, with n ranging from 2 to a
maximum value nmax depending upon the size of the series. The sDMA, defined by Eqs. (1), is then calculated
for all the windows n over the interval ½n;N�. For each eynðiÞ, the value of sDMA corresponding to each eynðiÞ

is plotted as a function of n on log–log axes. The most remarkable property of the log–log plot is to exhibit
a power-law dependence on n, i.e., s2DMA�n2H , allowing thus to calculate the scaling exponent H of the
signal yðiÞ.
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3. Derivation of the scaling relationship at large n

A closed form approximation of Eqs. (1) will be deduced in the limit of large n using the properties of the
fractional Brownian path. We will obtain the following expression:

s2DMA�CHn2H ; nb1, (2)

with

CH ¼
ð1� yÞ2Hþ1

þ y2Hþ1

2H þ 1
�

1

2ðH þ 1Þð2H þ 1Þ
. (3)

By simple transformations, Eq. (1c) can be written as

ðN � nÞs2DMA ¼
XN�yn

i¼n�yn

y2ðiÞ �
2

n

XN�yn

i¼n�yn

yðiÞ
Xn�yn

k¼�yn

yði � kÞ þ
1

n2

XN�yn

i¼n�yn

Xn�yn

k¼�yn

yði � kÞ

 !2

. (4)

Let us consider each term on the right-hand side of Eq. (4) separately. The first term writesXN�yn

i¼n�yn

y2ðiÞ ¼
XN�yn

i¼n�yn

i2H ’
1

2H þ 1
½ðN � ynÞ2Hþ1

� ðn� ynÞ2Hþ1
�. (5)

The second term writes

�
2

n

XN�yn

i¼n�yn

yðiÞ
Xn�yn

k¼�yn

yði � kÞ ¼ �
2

n

XN�yn

i¼n�yn

yðiÞ
Xiþyn

j¼i�nþyn

yðjÞ

’ �
1

2H þ 1
½ðN � ynÞ2Hþ1

� ðn� ynÞ2Hþ1
�

�
1

2ðH þ 1Þð2H þ 1Þ

1

n
½N2Hþ2 � n2Hþ2 � ðN � nÞ2Hþ2

�

þ
n2H

2H þ 1
ð1� yÞ2Hþ1

þ y2Hþ1
� �

ðN � nÞ. ð6Þ

The third term writes

1

n2

XN�yn

i¼n�yn

Xn�yn

k¼�yn

yði � kÞ

 !2

¼
1

n2

XN�yn

i¼n�yn

Xiþyn

j¼iþyn�n

yðjÞ

" #2
’

1

2ðH þ 1Þð2H þ 1Þ

1

n
½N2Hþ2 � n2Hþ2 � ðN � nÞ2Hþ2

�

�
n2H

2ðH þ 1Þð2H þ 1Þ
ðN � nÞ. ð7Þ

Summing the contributions from each term, one obtains

s2DMA ’
ð1� yÞ2Hþ1

þ y2Hþ1

2H þ 1
�

1

2ðH þ 1Þð2H þ 1Þ

� �
n2H . (8)

One can easily check that the term in square brackets in Eq. (8) takes, respectively, the following expressions:
�
 for y ¼ 0 or y ¼ 1, i.e., when the moving average is referred to the last or to the first point of the window,
it is:

CH ¼
1

2ðH þ 1Þ
, (9)
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Fig. 1. (Color online). Log–log plot of the function sDMA defined by the Eq. (1) for artificial series generated by the random midpoint

displacement (RMD) algorithm. The series have length N ¼ 223 and Hurst exponent varying from 0:1 to 0:9 with step 0:1. The parameter y
is taken equal to 0, 0:5 and 1, respectively.
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for y ¼ 1 (i.e., when the moving average is referred to the center of the window) it is:
�

2

CH ¼
1

2ðH þ 1Þ
�

1� 2�2H

2H þ 1
(10)

The above calculations have been performed for a fractional Brownian motion with variance s2 ¼ t2H . For the
general case of a fractional Brownian motion with variance s2 ¼ DHt2H , Eq. (8) asymptotically behaves as s2DMA ¼

DHCHn2H :

4. Results and discussion

In this section, the values of CH obtained by calculating the DMA variance of artificial fractional Brownian
motions are compared with those calculated using Eq. (8).

In Fig. 1, the results of the DMA algorithm implemented over artificial fractional random walks generated
by the RMD algorithm are shown. We apply the DMA algorithm to 30 samples of random walks with
N ¼ 223 and the Hurst exponent ranging from 0:1 to 0:9 with step 0:1. The curves in the three figures refer,
respectively, to three values of the parameter y, namely y ¼ 0, y ¼ 0:5 and y ¼ 1. The slopes of the logarithms
of the data plotted in Fig. 1 are shown in Fig. 2. The slopes and the intercepts of the logarithms of the data
plotted in Fig. 1 are reported in Table 1. From the data shown in Table 1, it is possible to deduce that the
DMA with y ¼ 0:5 performs better with positively correlated signals with 0:5oHo1, while the DMA with
y ¼ 0 and y ¼ 1 performs better with negatively correlated signals with 0oHo0:5. In Fig. 3, the theoretical
values of CH , calculated by using Eq. (8), are compared with those obtained by the intercepts of the curves
plotted in Fig. 1 for y ¼ 0:5 (data of the 2nd column of Table 1). Since the fractional Brownian motions, used
for the simulations plotted in Fig. 1, have been generated by the RMD algorithm, in the calculation of CH it
must be kept in mind that s2RMD ¼ ð1� 22H�2Þ=22Hns2Gauss, n being the number of steps of the RMD algorithm.

It is interesting to compare Eqs. (9), (10) with the corresponding ones obtained for the DFA algorithm.
According to the DFA method, the integrated profile yðiÞ is divided into boxes of equal length n. In each box,
the signal yðiÞ is best-fitted by an ‘-order polynomial yn;‘ðiÞ, which represents the local trend in that box. The
different order of the DFA-‘ (e.g., DFA-0 if ‘ ¼ 0, DFA-1 if ‘ ¼ 1, DFA-2 if ‘ ¼ 2, etc.) is obtained according
to the order of the polynomial fit. Finally, the variance:

s2DFA�‘ �
1

N

XN

i¼1

½yðiÞ � yn;‘ðiÞ�
2 (11)
. 2. (Color online). Values of the slopes of the function sDMA plotted in Fig. 1 for three different values of the parameter y, respectively,
al to 0, 0:5 and 1.
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Table 1

Intercept (A) and slope (B) of the logarithms of the data plotted in Fig. 1

H y ¼ 0 y ¼ 0:5 y ¼ 1

A B A B A B

0:1 �0.73211 0.13220 �0.84280 0.14151 �0.71759 0.12861

0:2 �1.48755 0.21675 �1.62576 0.22023 �1.47214 0.21294

0:3 �2.23912 0.30962 �2.41792 0.30952 �2.22270 0.30555

0:4 �2.99192 0.40900 �3.20887 0.40212 �2.97326 0.40421

0:5 �3.72180 0.50752 �4.00245 0.50058 �3.70336 0.50301

0:6 �4.45987 0.61307 �4.80327 0.60187 �4.44063 0.60843

0:7 �5.17084 0.71296 �5.60555 0.70333 �5.14974 0.70776

0:8 �5.84043 0.79625 �6.40763 0.79829 �5.82297 0.79277

0:9 �6.51500 0.87257 �7.27298 0.89698 �6.49215 0.86705

Fig. 3. (Color online). Values of CH for the DMA with y ¼ 0:5 (red squares) and for the DFA-1 (blue circles) algorithms applied to the

same series. The solid lines represent the values of CH calculated by using expressions (8) and (14), respectively.
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is calculated for each box n. The calculation is then repeated for different box lengths n, yielding the behavior
of sDFA�‘ over a broad range of scales. For scale-invariant signals with power-law correlations, the following
relationship between the function sDFA�‘ and the scale n holds:

s2DFA�‘�n2H . (12)

The asymptotic behavior of the DFA� 0 and DFA� 1 functions has been derived in [17,18]. The following
relation (Eq. (21) of Ref. [18]) has been worked out for the sDFA�0 function:

s2DFA�0 ’
1

2H þ 1
�

1

2ðH þ 1Þ

� �
n2H . (13)

It is easy to check that the ‘‘scaled windowed variance without any trend correction’’ in Ref. [18] is indeed
equivalent to the DFA� 0 variance. The function obtained by fitting the random walks yðiÞ by constant
segment in each box corresponds indeed to a zero-order approximation of the trend of yðiÞ.

The asymptotic behavior of the DFA-1 function, as reported in the Appendix of Ref. [17], is

s2DFA�1 ’
2

2H þ 1
þ

1

H þ 2
�

2

H þ 1

� �
n2H . (14)
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In Fig. 3, the values of CH for the DMA (with y ¼ 0:5) and the DFA� 1 are shown. It can be observed that
the behavior of CH obtained from the simulations (square and circles) follows quite well the analytical curves
(solid lines) around H ’ 0:5. Deviations are observed at the extrema of the H range. Such deviations might be
related to the accuracy either of the DFA and DMA techniques or of the RMD signal generator.

5. Conclusions

We have derived the asymptotic scaling behavior of the DMA algorithm (Eq. (8)) for an arbitrary value of
the reference point of the function ~ynðiÞ. The values of CH are compared with those yielded by the simulations
of fractional Brownian paths with assigned values of H generated by the RMD algorithm. A comparison
between the behavior of CH for the DMA (with y ¼ 0:5) and the DFA (with ‘ ¼ 1) functions is also provided.
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