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Abstract

We calculate the Hurst exponent HðtÞ of several time series by dynamical implementation of

a recently proposed scaling technique: the detrending moving average (DMA). In order to

assess the accuracy of the technique, we calculate the exponent HðtÞ for artificial series,

simulating monofractal Brownian paths, with assigned Hurst exponents H. We next calculate

the exponent HðtÞ for the return of high-frequency (tick-by-tick sampled every minute) series

of the German market. We find a much more pronounced time-variability in the local scaling

exponent of financial series compared to the artificial ones. The DMA algorithm allows the

calculation of the exponent HðtÞ, without any a priori assumption on the stochastic process

and on the probability distribution function of the random variables, as happens, for example,

in the case of the Kitagawa grid and the extended Kalmann filtering methods. The present

technique examines the local scaling exponent HðtÞ around a given instant of time. This is a

significant advance with respect to the standard wavelet transform or to the higher-order

power spectrum technique, which instead operate on the global properties of the series by

Legendre or Fourier transform of qth-order moments.
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1. Introduction

Modeling and forecasting price return and volatility is a main task of

financial research, whose possibility to be successful has been fueled by the

demonstration of the persistent behavior of many financial series [1–8]. The long-

memory properties of the financial time series entered the econometrics literature in

the celebrated autoregressive conditional heteroskedasticity model (ARCH) [3], in its

generalization (GARCH) [4] and in the many variants which followed later (see [5]

for a review). The ARCH/GARCH models exhibit weak persistent behavior

especially on long-horizons, where the time correlation disappears and a simple

uncorrelated Itô process is recovered. Stronger long-range correlation is displayed by

the fractionally integrated generalized autoregressive conditional heteroskedasticity

(FIGARCH) model [6–8]. The main purpose of the present work is to show how to

calculate the time-dependent Hurst exponent HðtÞ using the detrending moving

average (DMA) technique. The technique will be applied to artificially generated

monofractal series and to two financial series of the German market, a stock market

index and a government bond. Our study indicates that the Hurst exponent of

financial series shows a much richer time-variability than that of monofractal

artificial series.

2. Local detrending and scaling of nonstationary stochastic time series

For the sake of clarity, we begin with a summary of the DMA algorithm [9]. The

computational procedure is based on calculating the standard deviation about the

moving average

sDMA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmax � n

XNmax

t¼n

½yðtÞ � eynðtÞ�2
vuut ; ð1Þ

where eynðtÞ � ð1=nÞ
Pn�1

k¼0yðt� kÞ is the moving average with time window n. The

function sDMA is calculated for different values of the moving average window n over

the interval n;Nmax½ �, where Nmax is the size of the series. The values of sDMA

corresponding to each eynðtÞ are plotted as a function of n on log–log axes. The

function sDMA exhibits a power-law dependence with exponentH on n (sDMA / nH ).

In particular, the exponents 0:0oHo0:5 and 0:5oHo1:0 correspond, respectively
to negative (anti-persistence) and positive (persistence) correlation, while H ¼ 0:5
corresponds to an uncorrelated Brownian process.

According to the DFA method [10–12], after dividing the series yðtÞ in

boxes of equal size n, a polynomial fit ypolðtÞ is calculated in each box. Then, the

function

sDFA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmax

XNmax

t¼1

½yðtÞ � ypolðtÞ�
2

vuut ; ð2Þ
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representing a variance about the polynomial fit, is calculated over different size

boxes. The relationship sDFA / nH is obtained for long-memory correlated

processes. The DMA algorithm presents higher execution speed and accuracy

compared to DFA, due to the better low-pass performance of the moving average

compared to the polynomial filter [13].

3. Test on artificial series

In this paper, we will use the DMA algorithm to determine the local correlation

degree of the series by calculating the local scaling exponent over partially

overlapping subsets of the analyzed series. We apply the DMA algorithm on the

ensemble of points obtained by the intersection of the signal and a sliding window

W s of size Ns, which moves along the series with step ds. The scaling exponent is

calculated for each subset according to the procedure described above. Thus, a

sequence of Hurst exponent values is obtained. The size of this sequence ranges from

1 (in the trivial case of a unique subset coinciding with the entire series) to Nmax �Ns

(in the case of a sliding windowW s moving point-by-point along the series: i.e., with

d
min
s ¼ 1). The minimum size Nmin

s of each subset is defined by the condition that the

scaling law sDFA / nH holds in the subset (typically Nmin
s ¼ 2000–3000). The

maximum resolution of the technique is achieved with Nmin
s and d

min
s .

First, we test the feasibility and the accuracy of the dynamic detrending technique

on artificial series generated by the random midpoint displacement (RMD)

algorithm, which produces signals behaving as fractional Brownian paths with

assigned Hurst exponent [14].

4. Application to a stock index and a bond index

Next, we apply the DMA algorithm to the log-return of German financial series

(tick-by-tick sampled every minute): the DAX (stock index) and the BOBL

(government bond). If pðtÞ indicates the price at the time t, the log-return rðtÞ is

rðtÞ ¼ log pðtþ DtÞ � log pðtÞ. Fig. 1 shows the exponent HðtÞ for (a) an artificial

series having H ¼ 0:5, (b) the returns of the DAX, and (c) the returns of the BOBL.

For the results plotted in Fig. 1, the size of the artificial series is Nmax ¼ 220. The size

of the subsets is Ns ¼ 5000 and the step is ds ¼ 100. The parameter n varies from 10

to 1000 with step 2. It is apparent on comparing Fig. 1(a) with Figs. 1(b) and (c) that

the artificial series are characterized by a local variability of the correlation exponent

weaker than those of the BOBL and DAX series. The small fluctuations exhibited by

the HðtÞ of the artificial series should be considered as the limits of accuracy of the

technique. Table 1 shows the means and the standard deviations relative to the

average value of the scaling exponents HðtÞ for the artificial series and for the

financial series. The results provide evidence that a more complex evolution

dynamics characterizes the financial returns compared to artificial series having the

same average value of the Hurst exponent.
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5. Discussion

We have reported preliminary results concerning the local scaling exponent HðtÞ

of financial series and artificial series. We calculated HðtÞ using the DMA technique

[9,15,16]. The ability of the DMA technique to perform such analysis relies on the

local scaling properties of function (1). The DMA algorithm allows us to calculate

the exponent HðtÞ, without any a priori assumption on the stochastic process and on

the probability distribution function of the random variables entering the process, as

in the case of the Kitagawa grid and of the extended Kalmann filtering methods [17].

The proposed technique examines the local scaling around a given instant of time.

This is a main advance with respect to the standard wavelet transform or the higher-

order power spectrum technique, which instead operate on the global properties of
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Fig. 1. (a) Time-dependent Hurst exponent HðtÞ for artificial series with average value H ¼ 0:5. (b) Same,

but for log-returns of the DAX stock index. (c) Same, but for log-returns of the BOBL bond index.

Table 1

Average value H and standard deviation (relative to the mean) of the Hurst exponent HðtÞ for the RMD

generated artificial series [Fig. 1(a)], for the DAX stock index [Fig. 1(b)], and for the BOBL bond index

[Fig. 1(c)]

H DHð%Þ

RMD 0:5 1:47

DAX 0:490 4:16

BOBL 0:486 3:23
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the series by Legendre or Fourier transform of qth-order moments. Our study

indicates several directions for future research. Using the dynamic algorithm here

presented, or a variant under development, the multifractal properties of long-range

correlated nonstationary series can be analyzed locally rather than globally (as done

by the wavelet transform or the higher-order power spectrum technique).
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