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ABSTRACT

The fractal properties of the clusters C corresponding to the regions whose contour is a fractional brownian path
y(i), with Hurst exponent H , and the function eyn(i) � (1=n)

Pn�1
k=0 y(i � k), i.e. the moving average of y(i)

with window n, have been extensively investigated. The clusters C form a stationary sequence, which has been
characterized by analyzing the length `, the lifetime � and the area s of the single cluster. The length and the
area are related to the duration by : ` � � ` and s � � s , where  ` = 1 and  s = 1 +H . Moreover, we have
found that P (`) � `��, P (�) � ��� and P (s) � s� , with � = � = 2�H and  = 2=(1 +H). This means that
the probability distribution functions of `, � , and s are power-law with exponents depending on H . Furthermore,
the rich fractal structure of the patterns C has allowed to determine the time dependent Hurst exponent with
great accuracy. We have also demonstrated that the cluster area, length and lifetime exhibit the characteristic
scaling behavior of systems evolving through self-organized critical states.
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1. INTRODUCTION

Fractional Brownian processes have been proposed as a mathematical model for a wide diversity of stochastic
phenomena occurring in real extended physical systems exhibiting di�erent degrees of correlation. The variance
at large t scales as a power law,

�2 � t2H ; (1)

where H is the Hurst exponent, ranging from 0 to 1. The value H = 0:5 corresponds to the ordinary uncor-
related Brownian motion, while H < 0:5 and H > 0:5 correspond respectively to anticorrelated and correlated
signals. The analysis of the Hurst exponent is nowadays considered a practical instrument in �elds as biophysics
(DNA sequence, gait uctuations), econophysics, cloud breaking and many others.1{21 For example, one can
discriminate heartbeat intervals of healthy and sick hearts on the basis of the value of H . Stock price volatility
shows a degree of persistence (0:7 < H < 0:8) larger than that of the return series (H � 0:5), a fact which is
exploited when practical investment tools have to be developed. The validation of climate models is based on
the analysis of long-term correlation of atmospheric series.

In order for the above mentioned classi�cations to be reliable, several techniques have been thus proposed with
the main purpose to extract as accurate as possible values of the Hurst exponent from the data set. Among the
number of di�erent techniques that have been proposed to estimate the correlation exponent of fractal stochastic
signals we only mention the spectral analysis, the correlograms and semivariograms, the rescaled range analysis,
the Fano factor, the Allan variance, the Detrended Fluctuation Analysis and very recently the Detrended Moving
Average analysis. These techniques calculate appropriate statistical functions over the signal in the time or in the
frequency domain. We will briey review here only the Rescaled Range Analysis and the Detrending Fluctuation
Analysis that can be considered as precursors of the Detrending Moving Average Analysis.
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2. DETRENDING MOVING AVERAGE ALGORITHM

The Rescaled Range Analysis (R/S), was proposed by Hurst and was motivated by a systematic analysis of the
records of water discharges from the Lake Albert.2 The stochastic time series y(i) with i = 1; 2; ::::Nmax is
divided into boxes of equal size n. The functions:

Xi =

iX
j=kn+1

[y(j)� < y >] (2)

and

S =

vuut 1

n

nX
j=1

[y(j)� < y >] (3)

are calculated in the kth box, < y > represents the average value of the time series y(i) over each box and is

given by 1=n
P(k+1)n
i=kn+1 y(i). The Rescaled Range R=S function is given by:

R

S
=

1

S
[max(Xi)�min(Xi)] ; (4)

where the functions max(Xi) and min(Xi) are calculated over the intervals kn+ 1 << i << (k + 1)n. The
function R=S is then averaged over all the boxes of equal size n. By iterating the calculation of R=S for di�erent
box amplitudes n, a relationship between R=S and n is obtained,that in the presence of scaling is of power-law
type.

The technique named Detrended Fluctuation Analysis (DFA) has been developed later. According to the DFA,
after dividing the series y(i) in boxes of equal size n, a polynomial �t ypol(i) is calculated in each box.5, 6, 15, 16

Then, the generalized variance �DFA about the polynomial �t ypol(i)

�DFA �

vuut 1

Nmax

NmaxX
i=1

[y(i)� ypol(i)]2 ; (5)

is calculated over di�erent size boxes. Nmax is the length of the series. The relationship �DFA / nH is obtained
for long-memory correlated processes. The advantage of the DFA over the R/S method is that it allow to detect
the correlation exponent in nonstationary time series avoiding the spurious detection of long-range correlation
which are an artifact of nonstationarity.

The Detrended Moving Average (DMA) analysis has been recently developed .9{11 The DMA technique is
based on the following function:

�DMA �

vuut 1

Nmax � n

NmaxX
i=n

[y(i)� eyn(i)]2 ; (6)

which is still a generalized variance but now about the function eyn(i):

eyn(i) � 1

n

n�1X
k=0

y(i� k) : (7)

eyn(i) is the moving average of window size n, i.e. the average of the signal over n points. It is a linear operator,
which basically performs a discrete convolution of the signal. The outputs are the low-frequency components of
the signal, �ltered according to the window amplitude n. The function �DMA shows a power-law dependence on
n, i.e. �DMA � nH , when the series is long-range correlated.9{11
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Figure 1. Stochastic series y(i) obtained by the random midpoint displacement algorithm with H = 0:5. The moving
average eyn(i) with window n = 1000 is also shown. The shaded region represents the area of the cluster. The lifetime
and the length of the cluster have been also indicated.

Thanks to the higher accuracy of the moving average �lter compared to the polynomial �lter, the DMA
algorithm exhibit better performances in detrending the nonstationary series. Furthermore, the DMA algorithm
requires shorter execution time than the DFA algorithm because in each box n (or equivalently for each moving
average window n)(a) it does not need to estimate the coeÆcients of the polynomial trend and (b) the moving
average function is updated at each point by adding the last and discarding the �rst element of the sequence.

We have also shown that the DMA can be dynamically implemented to get the local scaling properties of
non-stationary stochastic series. In this section, we will show how it is possible to determine the local correlation
degree of the series (i.e. the dependence of the the Hurst exponent on time) using the DMA algorithm. This
task has been ful�lled by local implementation of the DMA algorythm over partially overlapping subsets of the
analyzed series. In practice, we apply the DMA algorithm on the ensemble of points obtained by the intersection
of the signal with a sliding window Ws of size Ns, moving along the series with step Æs. The scaling exponent
is calculated for each subset according to the procedure described in the previous section. Thus, a sequence of
values of the Hurst exponent is obtained. The size of this sequence ranges from 1 (in the trivial case of a unique
subset coinciding with the entire series) to Nmax�Ns (in the case of a sliding window Ws moving point-by-point
along the series: i.e. with Æmin

s = 1). The minimum size Nmin
s of each subset is de�ned by the condition that

the scaling law �DFA / nH holds in the subset (typically Nmin
s = 2000� 3000). The maximum resolution of the

technique is achieved with Nmin
s and Æmin

s .

First, we have tested the feasibility and the accuracy of the dynamic detrending algorithm on arti�cial series.
Such series have been generated by the random midpoint displacement (RMD) algorithm, which produces signals
behaving as fractional Brownian paths with assigned Hurst exponent.42

Then, we have applied the DMA algorithm to the log-return of German �nancial series (tick-by-tick sampled
every minute): the DAX (stock market index), the BUND and the BOBL (government bond)24{36 . If p(t)
indicates the price at the time t, the log-return r(t) is

r(t) = log p(t+�t)� log p(t) (8)

Figure 2 shows the log-log plots of the Hurst of the function �DMA (Eq.(6)) for the returns and for the volatility
of the DAX, of the BUND and of the BOBL. It has been found that the Hurst exponent is approximately equal
for the three return series (it is equal to 0:49� 0:05). Conversely, the Hurst exponent of the volatility series is
respectively (a) 0:70� 0:05 for the BOBL; (b) 0:72� 0:05 for the BUND ; (c) 0:78� 0:05 for the DAX.
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Figure 2. Log-log plots of the function (�DMA / nH for the return and for the volatility of german �nancial series (Bobl,
Bund, Dax).
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Figure 3. (a) Time-dependent Hurst exponent H(t) for the series of log-returns of the DAX stock index (black), of the
BOBL bond index (blue), of the BUND bond index (red).

Figure 3 shows the exponent H(i) for the returns of the DAX, of the BUND and of the BOBL. The size of
the subsets is Ns = 5000 and the step is Æs = 100. The parameter n varies from 10 to 1000 with step 2.

It is apparent on comparing Fig. 3(a) with Figs. 3(b) and 3(c) that the arti�cial series are characterized
by a local variability of the correlation exponent weaker than those of the BOBL and DAX series. The small
uctuations exhibited by the H(i) of the arti�cial series should be considered as the limits of accuracy of the
technique. Table (1) shows the means and the standard deviations relative to the average value of the scaling
exponents �(t) for the arti�cial series and for the �nancial series.



Table 1. Average value of the Hurst exponent H for the log-return and for the volatility respectively for the DAX stock
market index, for the BUND and the BOBL government bond. The standard deviation (relative to the mean) of the
time dependent Hurst exponent H(i) is reported in the last column. The results provide evidence that a more complex
dynamics characterizes the formation of the DAX returns compared to BOBL and BUND bonds, a fact that might be also
responsible for the higher value of the Hurst exponent of the volatility of the DAX compared to the BOBL and BUND
series.

Series log-return volatility �H(i)

DAX 0:49� 0:05 0:78� 0:05 0.041

BUND 0:49� 0:05 0:72� 0:05 0.034

BOBL 0:49� 0:05 0:70� 0:05 0.032

It is interesting to compare the DAX (german stock market index) to the BUND and the BOBL (german
governative bond) behaviors. We have found a higher degree of time variability in the DAX than in the Bund and
in the BOBL. By comparing the solid curves in Fig. 3, one can notice that the H(i) for the DAX is asymmetric
with respect to the reference value H = 0:5 (dashed lines). The regions corresponding to anticorrelated values of
H(i) (i.e. H(i) < 0:5) should be responsible for the clustering e�ect leading to the stronger long-range positive
correlation of the volatility of the DAX compared to the BUND and the BOBL.31 We have also calculated the
Hurst exponent of the absolute value of the return and also of the square of the absolute value of the return (that
are two possible de�nitions of the volatility). We found respectively H = 0:70�0:05 and H = 0:66�0:05 for the
BOBL series,H = 0:72�0:05 and H = 0:68�0:05 for the BUND series while it is respectivelyH = 0:78�0:05 and
H = 0:73�0:05 for the DAX series. It is well know that the value of the Hurst exponent is slightly dependent on
the analytical form of the volatility and on the sampling interval (high-frequency or daily). However, the results
obtained by the dynamic detrending moving average algorithm have systematically indicated a strong correlation
between the average Hurst exponent H of the volatility and the standard deviation of the time-dependent H(i)
of the log-return. Conversely, no correlation seems to exist between H(i) and the average Hurst exponent of the
log-return, which, as already discussed, is equal to 0:49� 0:05 for all the analyzed �nancial series. The higher
degree of multifractality exhibited by the DAX compared to the BUND and to BOBL series might be related to
richer complexity of the stock market index compared to the atness and stability of the government bond.

3. SCALING LAW OF THE AREA S, LENGTH ` AND LIFETIME � OF THE
CLUSTERS

In order to gain a deep insight in the mechanism allowing the function �MA to capture the scaling properties of
long-range correlated signals, we have analyzed the local scaling features of the function Cn(i):

Cn(i) = yn(i)� eyn(i) : (9)

Cn(i) generates, for each eyn(i), a sequence of clusters C, corresponding to the areas delimited by y(i) andeyn(i) between two consecutive intersections(see Fig. 1).

Three measures have been used to characterize each cluster: the length or the diameter:

`j �

ic(j+1)X
i=ic(j)

eyn(i) ; (10)

the lifetime:

�j � ic(j + 1)� ic(j) ; (11)



                                        

                                        

                                        

                                        

                                        

                                        

100 101 102 103
10-5

10-4

10-3

10-2

10-1

                                        

                                        

                                        

                                        

                                        

                                        

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

 β=2-H

 

 

ββββ

H

 P(τ)      

τ

Figure 4. First return probability distribution function P (� ) of the crossing points between eyn(i) and y(i). The arti�cial
series has been generated with Hurst exponent H = 0:5. The pdf is a power-law P (�) � ��. The saturation at low values
of � is a numerical artifact due to the lack of accuracy for small window n. The inset shows the exponent � obtained
for arti�cially generated series (dots) having di�erent Hurst exponent (ranging from 0.05 to 0.95). The continuous line
corresponds to the theoretical values � = 2�H.

the area:

sj �

ic(j+1)X
i=ic(j)

jy(i)� eyn(i)j�i : (12)

In Eqs. (10,11,12), ic(j) and ic(j+1) are the values of the index i corresponding to two consecutive intersections
between eyn(i) and y(i) and �i is the time interval corresponding to the elementary instance of uctuation.

Let ` and s indicate the value of the length and of the area obtained by averaging `j and sj over the subset of
clusters C having the same average lifetime � . The log-log plots of ` and s vs. � have been found to be consistent
with linearity over more than two decades, i.e., with the power law relationships

` � � ` [ ` = 1] ; (13)

and
s � � s [ s = 1 +H ] : (14)

The probability density function (pdf) of the cluster lifetime � , of the cluster length ` and of the cluster area
s have been also investigated. The results are consistent with power-law behavior, i.e.:

P (�) � ��� : (15)

P (�) is the �rst return probability distribution of the intersections between eyn(i) and y(i). Thus, the exponent
� can be calculated, it is:

� = 2�H : (16)
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Figure 5. Probability distribution function P (s) of the cluster area s. The arti�cial series has Hurst exponent H = 0:5.
The pdf shows a linear behavior in log-log scales, consistent with a power law P (s) � s . The inset shows the exponent
 obtained for arti�cially generated series (dots) having di�erent Hurst exponents (ranging from 0.05 to 0.95). The
continuous line corresponds to the theoretical values  = 2=(1 +H).

Using Eqs. (13) and (14) , the probability density functions P (`) and P (s) can be expressed in terms of P (�),

P (`) = P (�)
d�

d`
� `�� (17)

P (s) = P (�)
d�

ds
� s� : (18)

Using Eqs. (13) and (17) and taking into account Eq.(16), the exponent � can be written in terms of � and
Hurst exponent as

� = � ; (19)

and

� = 2�H : (20)

Analogously, using Eqs. (14) and (18) and taking into account Eq.(16),  can be expressed in terms of � and
 s

 =
� + 1�  s

 s
; (21)

and in terms of H :

 =
2

1 +H
: (22)

We have calculated the exponents �, �, and  for a wide range of parameters: Nmax ranges from 214 to 221

while n ranges from 23 up to 213. The exponents � and  are plotted against H in the insets of Figs. 4 and 5,
and compared with the theoretical expected values of Eqs. (20) and (28).



4. FINGERPRINTS OF DIRECTED SELF-ORGANIZED CRITICALITY IN THE
CLUSTERS C

It is noteworthy that the scaling properties of the C clusters have the same mathematical strtucture of those
proposed within the self-organized criticality (SOC) model .47{62 In recent years, there has been a huge interest
in the study of many variants of the sandpile models mainly because SOC has demonstrated the ability to
describe time-space correlated evolution of several critical systems.

Sandpile models are cellular automata (CA) with an integer or continuous variable zi de�ned on a d-
dimensional lattice of size L . At each time step a particle (or energy) is added to a randomly chosen site,
until the variable zi, which denotes the number of grains (or the energy) at site i reaches the threshold value zc.
When this occurs the site \relaxes," i.e.,

zi ! zi � zc ; (23)

and the particles are isotropically transferred to the nearest neighbors

zi0 ! zi0 + yi0 : (24)

The instability of a site can induce a number of other sites to become unstable, because of the particles
received, they exceed the threshold. From the moment a site topples, the addition of particles stops until all
sites have relaxed (zi < zc for all i). This condition assures that the driving force is `slow' being the driving time
exceedingly longer than the characteristic time of toppling instances. The sequence of toppling events during
this interval constitutes an avalanche. For conservative models, the number of transferred particles equals the
number of particles lost by the relaxing site (

P
yj = zc) and dissipation occurs only at boundary, from which

particles can escape the system. Under these conditions the system reaches a stationary state characterized by
a sequence of avalanches. Since the SOC algorithm is implemented basically as a cellular automaton, the cluster
growth is intrinsically of di�usive nature.

The total number of toppling sites s, the avalanche diameter l and the lifetime � are conveniently adopted
to characterize the dynamics ruling the avalanche evolution. The quantities s, l and � are related by power law:
s � �Ds=z and l � �z , Ds and z respectively being the avalanche size exponent and the dynamical exponent.

The avalanche pdf 0s for s, l and � scale respectively as:

P (s) � s��sf(s=sc) ; (25)

P (l) � l��lf(l=lc) ; (26)

P (�) � ���tf(�=�c) : (27)

As usual, the quantities sc, lc and �c are the cut-o� values respectively of the area, length and duration.

Using the above set of equations, one obtains the following relationships among the SOC exponents:

�t = z�l ; (28)

(�t � 1)z = (�s � 1)Ds ; (29)

By comparing the characteristic exponents z, Ds �l, �t, �s with those obtained for the clusters C, it is evident
that our system behaves as a self-organised critical system, it is indeed:

z = 1 ; (30)

Ds = 1 +H ; (31)

�l = 2�H ; (32)



�t = 2�H ; (33)

�s =
2

1 +H
: (34)

It is also worthy of note that the previous exponents, for the case of uncorrelated Brownian motion i.e. the
simple random walk with H = 0:5, coincide with the exponents of the Dhar-Rawasmany model.

5. CONCLUSION

In summary, the statistical properties of the sequence of stationary self-aÆne clusters C generated by the inter-
sections of the time series y(i) with the moving average eyn(i) have been analyzed. For model series of length
up to Nmax = 1021 we have calculated the lifetime � , the length ` � � ` and the area s � � s and the pdfs
P (`) � `��, P (�) � ��� and P (s) � s� of the clusters C. Our results are consistent with power laws whose
exponents agree with the predictions  l = 1,  s = 1 +H , � = � = 2�H , and  = 2=(1 +H) for a wide range
of H (0:05 < H < 0:95).

We have also reported on the local scaling exponent H(i) of �nancial and arti�cial series. We calculated H(i)
using the DMA technique.9{11, 38 The ability of the DMA technique to perform such analysis relies on the local
scaling properties of the function (9). The DMA algorithm allows to calculate the exponent H(i), without any a
priori assumption on the stochastic process and on the probability distribution function of the random variables
entering the process, as in the case of the Kitagawa grid and of the extended Kalmann �ltering methods.44

The proposed technique examines the local scaling around a given instant of time. This is a main advance
with respect to the standard wavelet transform or the higher-order power spectrum technique, which instead
operate on the global properties of the series by Legendre or Fourier transform of qth-order moments. Our study
indicates several directions for future research. Using the dynamic algorithm here presented, or a variant under
development, the multifractal properties of long-range correlated nonstationary series can be analyzed locally
rather than globally. We have found a stronger variability of the exponent H(i) in �nancial time compared to
monofractal arti�cial series, consistent with the possibility of a multiscaling mechanism of the price formation.

Finally, we have also shown that the function Cn(i) generates fractal directed patterns showing spatio-temporal
complexity, arguing that the cluster area, length and duration exhibit the characteristic scaling behavior of SOC
clusters. The function Cn(i) acts as a magnifying lens, zooming in (or out) the `avalanches' formed by the cluster
construction rule, where the magnifying power of the zoom is set by the value of the amplitude window n. On the
basis of the construction rule of the clusters Cn(i) � y(i)� eyn(i) and of the relationship among the exponents,
we hypothesize that our model might be considered as a generalized stochastic directed model, including the
Dhar-Rawasmany (DR) and the stochastic models as particular cases. As in the DR model, the growth and
annihilation of our clusters are obtained from the set of intersections of two random walk paths, and we argue
that our model is a variant of the directed self-organized criticality scheme of the DR model.
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