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Abstract
The effect of disorder is investigated in granular superconductive materials with strong- and
weak-links. The transition is controlled by the interplay of the tunneling g and intragrain gintr

conductances, which depend on the strength of the intergrain coupling. For g � gintr, the
transition first involves the grain boundary, while for g ∼ gintr the transition occurs into the
whole grain. The different intergrain couplings are considered by modeling the superconducting
material as a disordered network of Josephson junctions. Numerical simulations show that on
increasing the disorder, the resistive transition occurs for lower temperatures and the curve
broadens. These features are enhanced in disordered superconductors with strong-links. The
different behavior is further checked by estimating the average network resistance for
weak- and strong-links in the framework of the effective medium approximation theory. These
results may shed light on long standing puzzles such as: (i) enhancement of the
superconducting transition temperature of many metals in the granular states; (ii) suppression of
superconductivity in homogeneously disordered films compared to standard granular systems
close to the metal–insulator transition; (iii) enhanced degradation of superconductivity by
doping and impurities in strongly linked materials, such as magnesium diboride, compared to
weakly linked superconductors, such as cuprates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interplay of superconductivity and disorder has intri-
gued scientists for several decades [1]. Disorder is expected
to enhance the electrical resistance, while superconductivity
is associated with a zero-resistance state [2]. Bardeen,
Cooper and Schrieffer explained the microscopic foundation
of superconductivity in terms of pairing of electrons
and the emergence of a many-body coherent macroscopic
wavefunction [3]. Electron pairing defines a global
order parameter � whose amplitude tends to zero with
increasing temperature, current or magnetic field thus
destroying the superconducting state. Anderson showed that
weak disorder cannot lead to the destruction of the pair
correlations. The transition temperature Tc is insensitive

to the elastic impurity scattering under the hypothesis that
Coulomb interaction effects and mesoscopic fluctuations are
negligible [4, 5]. However, experiments performed on thin
films have demonstrated a transition from the superconducting
to insulating state with increasing disorder or magnetic field. In
sufficiently disordered metals, these effects become important
and the Anderson theorem is violated [6–10].

Studies performed on homogeneously disordered conven-
tional materials show, upon increasing disorder, suppression
of the superconducting critical temperature Tc, enhancement
of the spatial fluctuations in � and growth of the �/Tc

ratio [11–13]. More recently, impurity effects have been in-
vestigated in unconventional d-wave superconductors, with the
disorder causing pair breaking and suppression of Tc [14–19].
The two-gap superconductivity is also affected by disorder.
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Experiments in neutron-irradiated MgB2 show that the two-
gap feature is evident in the temperature range above 21 K,
while single-gap superconductivity is well established as a bulk
property, not associated with local disorder fluctuations, when
Tc is lowered to 11 and 8.7 K. The irradiation yields samples
with an extremely homogeneous defect structure so that the
superconducting transition remains extremely sharp even in the
heavily irradiated samples [20, 21].

A still open issue in superconductivity is the enhancement
of the critical transition temperature Tc when some metals
are in granular form rather than as a homogeneous
bulk. It has been found that the enhancement is strongly
dependent upon the intergrain coupling by varying the
pressure [22, 23], with many experiments confirming this
phenomenon [24–30]. Suppression of superconductivity in the
vicinity of the metal–insulator transition has been observed in
homogeneous superconductors such as amorphous AuxSi1−x

and NbxSi1−x [31]. Chemical substitutions and impurities
in MgB2 have resulted in superconductivity degradation and
broadening of the R(T ) curve, pointing to an increasing
effect of disorder in such a strongly linked class of
superconductors [32–47].

Arrays of Josephson junctions with well controlled
parameters are a very active field of research. As well as
being of interest in their own right, they are also being used to
model complex phenomena as a tool to investigate the effects
of disorder in granular films [48–59].

This work is aimed at investigating the role of disorder in
granular superconductors with different intergrain couplings,
due to the presence of either strong- or weak-links. A
parameter relevant to charge-carrier transport in such materials
is the dimensionless tunneling conductance g = G/(e2/h̄),
where G is the average tunneling conductance between
adjacent grains and e2/h̄ the quantum conductance. Films
with g � 1 can be modeled as arrays of resistively shunted
Josephson junctions, whose state is controlled only by the
value of the normal resistance rather than by the Josephson
and Coulomb energies which are, respectively, defined as EJ =
(π/2)g� and Ec = e2/C , with C the grain capacitance. The
tunneling of normal electrons, which additionally takes place,
results in the screening of the Coulomb energy, which reduces
to the effective Coulomb energy Ẽc = �/(2g). By comparing
the Josephson energy to the effective Coulomb energy, one
can notice that EJ is always larger than Ẽc for g � 1. This
condition ensures the onset of the superconducting state at low
temperature. Experiments indeed show that samples with a
normal state conductance larger than the quantum conductance
(i.e. with g � 1) always become superconducting at low
temperature.

A second parameter relevant to the understanding of
the behavior of different granular materials is the intragrain
conductance gintr. For standard granular systems, the condition
g � gintr holds. The intragrain region remains in the
superconducting state, with the resistive transition occurring
only at the grain boundaries. The condition g ∼ gintr holds
for tightly coupled grains, corresponding to homogeneously
disordered materials having comparable values of the bulk and
grain boundary conductances [32–34, 60–62].

The different role played by the tunneling and intragrain
conductances is determined by the strength of the coupling
between the grains. In this paper, the conditions g � gintr

and g ∼ gintr are considered in detail.
An array of Josephson junctions with different intergrain

couplings and degrees of disorder is used to model the granular
superconductor. The different contributions of g and gintr are
accounted for by a proper circuit representation of the grain
and its boundary within the network. The study is carried
out by means of a numerical simulation whose main steps are
summarized in section 2. It is worth noting that the simulations
reported in this work are carried out by the same numerical
approach as in [55], where the different correlations shown by
the current noise power spectra as a function of the intergrain
coupling were investigated. The numerical results concerning
the transition in weak- and strong-link networks as a function
of the disorder are reported in section 3. The transition
temperature Tc is lowered and the shape of the transition curve
becomes smoother by increasing the disorder. Importantly,
it is found that the disorder affects more dramatically those
networks with strong intergrain coupling. In section 4, the
results are quantitatively accounted for by estimating the
resistive changes in weakly and strongly linked networks
according to the effective medium approximation.

2. Numerical model

As stated in section 1, the main purpose of this work is the
investigation of the role of disorder in the resistive transition of
granular superconductors with different intergrain couplings.
The study will be carried out by adopting the numerical
approach reported in [55], whose main steps are summarized
here below.

The resistive transition is simulated by solving a system
of Kirchhoff equations for a network of nonlinear resistors
biased by direct current, as shown in figure 1(a). Two
types of networks are considered for describing the different
intergrain couplings. The first type is the weak-link network
for simulating materials, whose transition occurs in two
subsequent stages. First, at low temperatures, the weak-links
and, then at slightly higher temperatures, the whole grain
undergoes the transition reaching the normal state. The weak-
link network is used to model the first stage of the transition
occurring at the grain boundary, while the grain interior still
remains superconducting. The strong-link network is used for
modeling the transition involving the whole grain.

Grains are represented by a couple (triple) of nonlinear
resistors for two-dimensional (three-dimensional) networks of
Josephson junctions as shown respectively in figures 1(b)
and (c). The nonlinear resistors provide a basis of independent
components of the current density able to reproduce the current
flowing through the grain in arbitrary directions. The nonlinear
resistors have current–voltage characteristics as shown in
figure 2 for underdamped (a), overdamped (b) and general (c)
Josephson junctions. The Stewart–McCumber parameter βc =
τRC/τJ , where τRC and τJ are respectively the capacitance and
the Josephson time constants, identifies the three types, namely
βc � 1 (a), βc � 1 (b) and βc ∼ 1 (c). The dependence of
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Figure 1. Scheme of a two-dimensional network representing the granular superconductor (a). Grains correspond to the nodes of the arrays.
Each resistor of the network behaves as a Josephson junction with characteristics schematically shown in figure 2. For weak-link networks
(YBCO-like materials), the grains remain in the superconducting state during the first stage of the transition. For strong-link networks
(MgB2-like materials), the transition is a single-stage process involving the grains. The nonlinear resistors, characterizing each grain, are
respectively shown for the two-dimensional (b) and three-dimensional (c) case.

Figure 2. Current–voltage characteristics for underdamped (a), overdamped (b), and general (c) Josephson junctions. For the general case (c),
Imin,i j depends on the Stewart–McCumber parameter βc and ranges between Ic,i j and 0, where βc = τRC /τJ , and τRC and τJ are the
capacitance and Josephson time constant, respectively. βc � 1 (a), βc � 1 (b) and βc ∼ 1 (c).

critical current Ic,i j and magnetic field Hc,i j on temperature can
be written in the simplified form as:

Ic,i j (T ) = Ico,i j

[
1 −

(
T

Tc

)γ ]
, (1a)

Hc,i j(T ) = Hco,i j

[
1 −

(
T

Tc

)γ ]
, (1b)

where Ico,i j and Hco,i j are respectively the low-temperature
critical currents and magnetic fields and the exponent γ ranges
from approximately 1 to 2 depending on material properties.

The current flowing through each nonlinear resistor
defines the state (superconductive, intermediate, normal) of
the grain according to the current–voltage characteristics of
the Josephson junction. As already stated, the disorder is
introduced in the calculations by random distribution of the
critical current. The anisotropy is neglected and the same size
is assumed for the grains. The reason for these simplifying
assumptions is that these two features may additionally alter
the network topology with a strong effect on the transition.
For small grain sizes in particular, the values of the critical
current might be correlated in neighboring grains. Therefore,
the correlation length of disorder should be taken into account

by adopting a suitable spatial dependence of the critical current
distribution. The critical current Ic,i j (T ) and the normal state
resistance Ro,i j are defined for each branch of the network.
The intermediate state is characterized by the critical current
Ic,i j (T ) and the voltage drop between 0 and Vc,i j (T ). The
normal state, characterized by the resistance Ro,i j , is reached
when the current I crossing the Josephson junction exceeds
Ic,i j . The disorder is introduced by taking the critical current
Ico,i j as a random variable distributed according to a Gaussian
distribution with mean value Ico and standard deviation σIc =√∑

i j(Ico,i j − Ico)2/N . Analogously, the disorder could be

introduced by taking the critical field Hco,i j as a random
variable, if the transition were driven by an applied magnetic
field H . The values of the resistances Ri j between nodes i and
j are taken as follows:

Ri j = 0 if Vi j ∼ 0 (superconducting state) (2a)

Ri j = Vi j/Ic,i j if 0 < Vi j < Vc,i j (intermediate state)
(2b)

Ri j = Ro,i j if Vi j > Vc,i j (normal state), (2c)

where Vi j is the voltage drop between nodes i and j . The
current–voltage characteristic is used to find the value of the

3



Supercond. Sci. Technol. 24 (2011) 015006 L Ponta et al

Figure 3. Resistive transition of two-dimensional networks with
different degrees of disorder at varying temperatures for
weak-links (a) and strong-links (b). The bias current I is kept
constant. The degree of disorder is varied by changing the value of
the standard deviation of the critical currents σIc from 0 to 1 in steps
of 0.1.

voltage Vi j and current Ic,i j by means of an iterative routine
solving the Kirchhoff equations for the network.

For weak-link networks, the resistance values Ri j are
calculated in a straightforward manner: the potential drops
at the ends of each weak-link are compared to the potential
values in the current–voltage characteristics according to
equations (2a)– (2c). Therefore, weak-links being respectively
in the superconducting, normal or intermediate state can be
distinguished.

For strong-link networks, the resistance values Ri j are
calculated taking into account that the voltage drop across each
grain is given by:

Vi =
[∑

j

V 2
i j

]1/2

, (3)

where Vi j corresponds to the voltage drop across each resistor
Ri j with j = 2 or j = 3, respectively, for two- and three-
dimensional arrays as shown in figures 1(b) and (c).

Calculations are performed iteratively. First, a tentative
set of potential values is chosen for all the nodes. Then,
the resistance values Ri j are calculated by using the
Josephson junction current–voltage characteristics for any
resistor between nodes i and j . Once the Ri j are settled, the
conductance matrix with entries Gi j = 1/Ri j is defined and
the new vector W1 of the node potentials is calculated. The set
of node potentials is introduced in the iterative routine and an
updated vector W2 is calculated. The iteration is repeated until
the quantity εn = |Wn − Wn−1|/|Wn| becomes smaller than a
value εmin chosen to exit from the loop. The simulations are
performed by varying εmin in the range 10−7 < εmin < 10−11

to check that the value of εmin does not appreciably change the
results. The network resistance R is then obtained by Wn(1)/I ,
where Wn(1) is the potential drop at the electrodes.

3. Numerical results

In this section, the results of the numerical simulations for
different degrees of disorder are reported. It is shown
that disorder affects weak- and strong-link networks to a
different extent.

At the beginning the network is entirely in the supercond-
ucting state (this condition is guaranteed by taking g � 1).
Subsequently, the transition is made to occur through one of
these processes:

• The temperature is kept constant and the bias current (or
the applied magnetic field) is varied. When the current
Ii j exceeds the critical current Ic,i j (or the magnetic field
exceeds the critical field Hc,i j), the superconductive grain
evolves to the intermediate and, then, to the normal state.

• The bias current (or the magnetic field) is kept constant
and the temperature is varied. A temperature increase
causes a decrease of critical current Ic,i j according to
equation (1a) (or of critical field Hc,i j according to
equation (1b)) and, ultimately, causes the transition of the
grain to the intermediate and, then, to the normal state.

As already stated, the disorder is modeled by assuming
that the critical currents are a random variable distributed
according to a Gaussian function with standard deviation
σIc . The spread of the distribution of the critical currents
determines the slope of the transition curve [63]. The standard
deviation σIc = 0 corresponds to a fully ordered network, with
all the Josephson junctions having the same critical current
with the transition occurring simultaneously all through the
network. When the disorder increases (σIc increases), the
Josephson junctions have a wider spread of Ic,i j and the
network resistance changes more smoothly.

Figures 3(a) and (b) show the resistive transition of the
network for different values of σIc for weak- and strong-link
networks, respectively. The temperature increases while the
external current I is kept constant. As temperature increases,
the critical current Ic,i j decreases according to equation (1a).
Links with Ic,i j values smaller than Ii j undergo the transition
to the normal state. If σIc is small the resistive transition is
steeper. In the limit of σIc = 0 (no disorder in the network), the
transition is vertical since all the Josephson junctions become
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resistive for the same value of temperature. On the contrary, if
σIc is large the resistive transition broadens since the junctions
become resistive at different temperatures. This effect occurs
in both weak- and strong-link networks, but is enhanced in
strong-link networks.

Figures 4(a) and (b) show the resistive transition when the
bias current I increases at constant temperature, for different
values of σIc in weak- and strong-link networks, respectively.
When the bias current Ii j exceeds Ic,i j , the weak-links become
resistive. The transition curves of figures 4(a) and (b) exhibit
a behavior similar to those of figures 3(a) and (b). The
disorder makes the resistive transition smoother, particularly
in networks with strong-links.

4. Discussion

In this section, the results of the simulations will be discussed.
One can observe that the average network resistance R
is determined by the elementary nonlinear resistances Ri j

between nodes i and j . The values of Ri j depend on the
external drive (current, magnetic field, temperature) and on
the intrinsic properties of the junctions. The change in the
resistance �Ri j can be expressed in terms of the external drive
variation as:

�Ri j = ∂ Ri j

∂ I
�I + ∂ Ri j

∂ H
�H + ∂ Ri j

∂T
�T . (4)

The three terms on the right-hand side of equation (4) can be
written respectively as:

∂ Ri j

∂ I
�I = −∂ Ri j

∂ Ic
�Ic, (5a)

∂ Ri j

∂ H
�H = −∂ Ri j

∂ Hc
�Hc, (5b)

∂ Ri j

∂T
�T =

(
∂ Ri j

∂ Ic

∂ Ic

∂T
+ ∂ Ri j

∂ Hc

∂ Hc

∂T

)
�T . (5c)

Equations (5a) and (5b) mean that the increase (decrease) of
bias current or magnetic field acts as a decrease (increase)
of critical current Ic or magnetic field Hc. Equation (5c)
means that the temperature affects Ri j mostly through a
decrease in the critical current and magnetic field. By using
equations (5a)– (5c), with the derivatives ∂ Ic/∂T and ∂ Hc/∂T
in equation (5c) calculated by using equations (1a) and (1b),
(4) can be rewritten as:

�Ri j = −∂ Ri j

∂ Ic

(
�Ic + γ

Ico

Tc
�T

)

− ∂ Ri j

∂ Hc

(
�Hc + γ

Hco

Tc
�T

)
. (6)

Equation (6) relates �Ri j to the variation of critical
current �Ic or critical magnetic field �Hc. One can note that
�Ri j decreases when �Ic or �Hc increase due to the increased
disorder in the array. Hence, since the network resistance R is
proportional to terms varying as �Ri j , the slope of the resistive
transition is smoother when �Ic (�Hc) increases for a given
temperature increase �T , regardless of the coupling strength
between grains.

Figure 4. Resistive transition of a two-dimensional network with
different degrees of disorder at varying bias currents for
weak-links (a) and strong-links (b). The temperature T is kept
constant. The degree of disorder is varied by changing the value of
the standard deviation of the critical currents σIc from 0 to 1 in steps
of 0.1.

However, equation (6) cannot explain why the resistive
transition becomes smoother with strong-links than with weak-
links, as one see in figures 3 and 4. Therefore, in the following,
the origin of the different behaviors exhibited by networks with
different intergrain couplings and the same parameters of the
elementary Josephson junctions will be explained by including
the effect of the different network topology.

As an effect of the temperature increase, layers of weak-
links or grains either in the resistive or in the intermediate state
crossing the whole film are formed as shown is figures 5(a)
and (b). The formation of a layer corresponds to an elementary
step in the network resistance. This means that, in the limit of
a large number of layers, which is a reasonable condition for
real granular materials, the local slope �R of the transition
curve can be approximated by the resistance of each layer
Rl. In the remainder of this section, the resistance Rl will be
estimated. Let Ns,l label the number of weak- or strong-links in
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Figure 5. Scheme of two-dimensional networks when the first
resistive layer is formed, for weak-links (a) and strong-links (b).

the superconductive state before the transition of the layer. Let
No,l label the number of weak- or strong-links in the normal
state and Nm,l = Ns,l − No,l the number of weak- or strong-
links in the intermediate state at a given stage of the transition
of each layer. The resistance Rl can be estimated as the parallel
of the normal state resistors Ro,i j and the intermediate state
resistors Rm,i j as:

Rl = Ro,i j Rm,i j

No,l Rm,i j + Nm,l Ro,i j
. (7)

The layer resistance Rl depends on the ratio of the normal
No,l and mixed state Nm,l resistances. For the strong-links,
the voltage drop between two neighboring grains is calculated
according to equation (3) and thus is larger than Vi j (voltage
drop across each weak-link). Therefore, since the condition
given by equation (2b) is reached earlier, the denominator of

Figure 6. Resistive transition of a two-dimensional network with
weak (blue) and strong (red) links as temperature increases. The
standard deviation of the Gaussian distribution of the critical current
σIc is equal to 0.2 for both curves. Zoom of the first step of the
resistive transition in weak-link (b) and in strong-link (c) network.
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equation (7) is larger in layers characterized by strong-links
rather than weak-links for the same degree of disorder and bias
current. This argument agrees with the fact that the resistive
transition in strong-link networks occurs at temperatures lower
than in weak-link networks.

Figure 6(a) shows the transition curves in weak- and
strong-link networks with the same parameters. The slope is
smaller for strong-link than for weak-link networks, consistent
with the fact that the denominator of equation (7) is larger
and thus �R ≈ Rl is smaller. Furthermore, one can notice
by comparing figures 6(b) and (c) that the steps are higher
for strong-links. This behavior has been confirmed by several
runs of the transition simulations. Figures 8 and 9 show nine
samples of the resistive transition for weak- and strong-links,
respectively. One can clearly notice the different shape of the
elementary steps. By implementing an automatic detection
process of the step endpoints, the elementary derivatives can
be estimated. Figure 10 shows the histograms of about 400
step slopes for weak-link (a) and strong-link (b) networks.
This statistical analysis can be used for estimating an average
value of the step slopes. The average ratio between derivatives
for weak- and strong-links ranges between 1.3 and 2. A
similar behavior is exhibited by the transition caused by current
increase, as shown in figure 7. To explain this issue, the
elementary resistance between two neighboring sites i and j
will be now estimated by using [64–67]:

Ri j = Ro exp

(
εi j

kBT
+ ri j

ro

)
, (8)

where Ro = T kB/(e2γ 0
i j), γ 0

i j is a rate constant related to the
electron–phonon interaction (kB/e2γ 0

i j ∼ 1), ri j is the distance
between two sites, ro is the scale over which the wavefunction
decays outside the grain, εi j is the zero field activation energy
given by εi j = �i j(T ) + Ec,i j , with Ec,i j = βe2ri j/(πεoεd2)

the Coulomb energy and d the mean grain size. Therefore,
equation (8) can be written as:

Ri j = Ro exp

(
�i j(T )

kBT
+ ri j

r∗
o

)
, (9)

with 1/r∗
o = [1/ro +βe2/(2πεoεd2kBT )]. In equation (9), the

resistance Ri j explicitly depends on the quantity ri j , which is
the effective distance seen by an electron flowing from grain i
to j . The effective distance ri j is different for electrons flowing
either in weak- or strong-link networks. Such a difference can
be estimated by taking into account that at constant current the
voltage drop Vi j is proportional to ri j . The voltage drop for
the strong-link case is given by equation (3). A reduction of a
factor Vi j/[∑ V 2

i j ]1/2 of the distance ri j in comparison to the
weak-link case should be correspondingly taken into account.
In the simplest case of isotropic spherical grains, Vi j is the
same in any direction, thus the reduction factor is 1/

√
2 or

1/
√

3, respectively, for two- and three-dimensional networks.
By using the effective medium approximation [68], the

average conductance Gema of the network can be calculated
as follows:∫

dGi j f (Gi j)
Gema − Gi j

Gi j + (z/2 − 1)Gema
= 0, (10)

Figure 7. Resistive transition of a two-dimensional network with
weak (blue) and strong (red) links as the bias current increases. The
standard deviation of the Gaussian distribution of the critical current
σIc is equal to 0.2 for both cases. Zoom of the first step of the
resistive transition in weak-link (b) and strong-link (c) networks.
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Figure 8. Resistive transitions of a two-dimensional network with weak-links. Elementary resistance steps can be clearly observed. These
nine curves are typical samples used for obtaining the data plotted in the histogram shown in figure 10(a).

Figure 9. Same as in figure 8 but for strongly linked grains. The histogram is shown in figure 10(b).
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Figure 10. Histograms of the slopes of the elementary steps for
weak-link (a) and strong-link (b) networks. The elementary steps
have been obtained by means of transition curves similar to those
shown in figures 8 and 9.

where z is the number of bonds at each node of the network,
Gi j = 1/Ri j , and f (Gi j) is the probability distribution
function of the elementary conductance values Gi j . If the
values Gi j are continuously distributed according to the
uniform function f (Gi j) ∝ 1/Gi j , the average conductance
is given by

Gema = G2

[( G1
G2

)2/z − G1
G2

]
( z

2 − 1)[1 − ( G1
G2

)2/z] . (11)

The average conductance Gema varies as G2 times a factor
depending to the ratio G1/G2. The ratio G1/G2 is independent
of the intergrain coupling, contrarily to G2. Therefore one
can observe that the average conductance Gema increases as
G2 increases with the coupling strength. According to the
presented model of the intergrain coupling, the value of the
conductance G2 in case of strong- and weak-link networks
differs in the factor Vi j/[∑ V 2

i j ]1/2. The average resistance
Rema = 1/Gema is plotted in figure 11. It is worth noting that
the resistance Rema for the strong-link case is always smaller

than for the weak-link case as expected from the simulations.
The presented discussion could be useful to explain existing
experimental observations in granular materials that are very
hard to understand with conventional mechanisms [24–30].

5. Conclusions

The effect of disorder has been studied in superconductors with
different strengths of intergrain coupling. The superconductor
has been modeled as an array of Josephson junctions,
numerically solved by using Kirchhoff equations. The analysis
shows that, on varying the external drive (temperature, current,
magnetic field), the resistive transition occurs for lower Tc and
the R(T ) curve broadens by increasing the disorder through
a stepwise process. Importantly, it is found that the effect of
disorder is more dramatic when the network simulates strongly
rather than weakly coupled granular superconductors. The
approach used and the results obtained in this work might add
useful clues about the issue of the wide variability of critical
temperature transition observed in real granular materials. It
has indeed been observed that there is an increase in the critical
temperature in compacted metallic powder compared to bulk
samples of the same material. A strong anticorrelation between
the enhancement of the critical temperature Tc and the value
of metallic conductivity has been observed, indicating that a
major role is played by the electron–electron interaction which
acts by suppression of the superconductivity [22, 23].

Chemical substitutions for Mg or B have been attempted
to vary the superconducting transition temperature of MgB2.
Most of the substitutions have produced a depression of Tc and
broadening of the R(T ) curve, contrary to what is observed
in cuprates in which replacement of La by Y raises Tc from
35 to 93 K and sharpens the transition curve. It has been
suggested that the two-band nature of MgB2 can result in
an unusual behavior of its resistivity and Tc as the material
changes from the clean to dirty limit [32–34, 37, 38]. The
suppression/enhancement of Tc is related to the competing
effects of electron–electron and electron–phonon interaction,
which in their turn depend on the size and radii of the
compound and constituents. Intergrain and intragrain effects
of disorder have been observed. Formation of magnesium
or boron oxides results in poorly connected grains with an
increase of intergrain resistivity and decrease of critical current
density [35, 36]. At the same time, these oxides might migrate
within the grains themselves, increasing intragrain resistivity
and flux pinning. Other impurities such as silicon, carbon
and copper greatly affect critical current, temperature and
resistivity [39–46]. Degradation of the critical temperature and
broadening of the R(T )/Ro curve have been also observed in
MgB2 film by exposure to water [47]. The general feature
of these experiments is that degradation of superconductivity
seems to be related to the enhanced role of electron–electron
interaction and impurity scattering in homogeneous metallic-
like superconductors compared to the standard granular ones,
i.e. that class of materials whose intergranular conductance
g is much smaller than the intragranular conductance gintr.
The dominant effect of the electron–electron interaction is
taken into account in the present model by introducing suitable
circuit coupling among grains.
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Figure 11. Average network resistance Rema calculated according to the effective medium approach for z = 3 (a), z = 4 (b), z = 5 (c),
z = 6 (d). Red curves refer to strongly coupled grains. Blue curves refer to weakly coupled grains. One can observe that the average
resistance is smaller for strongly coupled networks for all the z values.
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[50] José J V and Rojas C 1994 Superconducting to normal state
phase boundary in arrays of ultrasmall Josephson junctions
Physica B 203 481

[51] Harris D C, Herbert S T, Stroud D and Garland J C 1991 Effect
of random disorder on the critical behavior of Josephson
junction arrays Phys. Rev. Lett. 67 3606

[52] Haviland D B, Liu Y and Goldman A M 1989 Onset of
superconductivity in the two-dimentional limit Phys. Rev.
Lett. 62 2180

[53] Lv J-P, Liu H and Chen Q-H 2009 Phase transition in
site-diluted Josephson junction arrays: a numerical study
Phys. Rev. B 79 104512

[54] Orr B G, Jaeger H M, Goldman A M and Kuper C G 1986
Global phase coherence in two-dimensional granular
superconductors Phys. Rev. Lett. 56 378

[55] Ponta L, Carbone A, Gilli M and Mazzetti P 2009 Resistive
transition in granular disordered high Tc superconductors: a
numerical study Phys. Rev. B 79 134513

Carbone A, Gilli M, Mazzetti P and Ponta L 2010 Array of
Josephson junctions with a non-sinusoidal current-phase
relation as a model of the resistive transition of
unconventional superconductors J. Appl. Phys. 108
(arXiv:cond-mat/0912.0367v2)

[56] Brandt F T, Frenkel J and Taylor J C 2010 Noise in resistively
shunted Josephson junctions Phys. Rev. B 82 014515

[57] Garcı́a-Fornaris I, Govea-Alcaide E, Alberteris-Campos M,
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