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Direct Economic Loss due to Building 
Damage

1994 Northridge Earthquake (Kircher, 2003)
Total:  $18.5 Billion
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Nonstructural Related:  $5.20 Billion (83%)
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Improved Structural PerformanceImproved Structural Performance

Reduction in direct economic loss through improved
building performance of non-residential buildings

(adapted from Kircher, 2003)
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EconomEconomic Loss (in millions)ic Loss (in millions)

NonstructuralNonstructural
SystemSystem

AsAs
ConstructedConstructed

With With 
DampingDamping
SystemSystem

%%
BenefitBenefit

WithWith
IsolationIsolation
SystemSystem

% % 
BenefitBenefit

DriftDrift--relatedrelated $1,086$1,086 $   407$   407 6363 $    303$    303 7272
AccelerationAcceleration--relatedrelated 1,9521,952 1,0131,013 4848 777777 6060
Contents/InventoryContents/Inventory 2,1622,162 1,1241,124 4488 862862 6060

TotalTotal $5,200$5,200 $2,544$2,544 5151 $1,942$1,942 6363

Semi-active device (Rana and Soong, 2004)Semi-active device (Rana and Soong, 2004)

Improved Nonstructural Performance
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Newer Technologies (continued)

Configuration of a Hybrid platform (Xu and Li, 2005)Configuration of a Hybrid platform (Xu and Li, 2005)
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A. Variational approachA. Variational approach
Equation of motion:Equation of motion:
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Problem:Problem:

Determine ξ and u(t) such that performance 
objective is achieved by, for example, 
minimizing
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T TJ W dtγ⎡ ⎤= + +⎣ ⎦∫z ξ u z Qz u Ru ξ u

Subjected to constraints such as:Subjected to constraints such as:

≥ sξ ξ
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Variational Calculus leads to:Variational Calculus leads to:
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A. Variational approachA. Variational approach

B. Redesign approachB. Redesign approach
Equation of motion:Equation of motion:
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Step 1: Based on desired ξ, determine u(t) such that 
some structural performance is achieved;
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B. Redesign approachB. Redesign approach
ConsiderConsider

Step 1: Control design based on desired ξ,  giving Step 1: Control design based on desired ξ,  giving 

wherewhere

( ) ( ) ( ) ( )t t t t= + +z Az Bu e

Step 2:  ConsiderStep 2:  Consider
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B. Redesign approachB. Redesign approach
Under mild conditionsUnder mild conditions

Gp and Ga are determined by minimizing, for example,Gp and Ga are determined by minimizing, for example,

( )a = + T
0 p p pG G I B G ΔM,ΔC,ΔK B L

0

ft
T dt⎡ ⎤⎣ ⎦∫ u Ru

Subjected to constraints on ΔM, ΔC, ΔKSubjected to constraints on ΔM, ΔC, ΔK

Solution can be found by using, for example, Exterior 
Penalty Function Method

Solution can be found by using, for example, Exterior 
Penalty Function Method
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Numerical ExampleNumerical Example

Figure 1. SDOF steel frame under white noise excitationFigure 1. SDOF steel frame under white noise excitation
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Numerical ExampleNumerical Example

Figure 2. normalized maximum displacement (a) and maximum control force (b) versus 
normalized structural stiffness and damping (c-d)

Figure 2. normalized maximum displacement (a) and maximum control force (b) versus 
normalized structural stiffness and damping (c-d)

Objective:  a lighter structure maintaining drift equal to 0.5%Objective:  a lighter structure maintaining drift equal to 0.5%
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Numerical ExampleNumerical Example
Step 1:  Select a reduction of k of 60%Step 1:  Select a reduction of k of 60%

Table 1. Maximum response for white noise with pga of 0.25gTable 1. Maximum response for white noise with pga of 0.25g
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Figure 3. Steel frame under white noise excitationFigure 3. Steel frame under white noise excitation

Uncontrolled Umax=94.86kN 
(1) (2) (3) (4) (5) (6) 

Drift xi 

[%] 
ax  

[m/sec2] 
MS0 
(kg) 

Drift xi 

[%] 
ax  

[m/sec2] 
MS 
(kg) 

0.49 11.15 4959.5 0.50 5.81 2775.7 
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Numerical ExampleNumerical Example
Step 2:  Redesign subject toStep 2:  Redesign subject to

Table 2. Optimal structural parameters after redesign for white noise with pga of 0.25gTable 2. Optimal structural parameters after redesign for white noise with pga of 0.25g

s0.25,         0.18≥ − ≥ =ΔM M K K K

M K C Mopt Kopt Copt Uopt 
kg kN/m kN sec/m kg kN/m kN sec/m kN 

159450 76987.1 140.1 119587 29010.1 59.930 92.434
 

Table 3. Percentage increment  or reduction of structural parametersTable 3. Percentage increment  or reduction of structural parameters

ΔM ΔK ΔC 
(%) (%) (%) 
-25 -62.3 -39.5 

A substantially lighter structure can be designed to achieve a 
specific performance objective when an active brace is 
integrated into the structure in an optimal fashion

A substantially lighter structure can be designed to achieve a 
specific performance objective when an active brace is 
integrated into the structure in an optimal fashion

AdvantagesAdvantages

Easier quadratic mathematical format

Rapid convergence

Guarantees optimal control

Applicable to nonlinear as well as multi-degree-of-

freedom structures

Easier quadratic mathematical format

Rapid convergence

Guarantees optimal control

Applicable to nonlinear as well as multi-degree-of-

freedom structures

ConclusionsConclusions

Integrated control/structural systems can lead to:Integrated control/structural systems can lead to:

New Structural Forms and Configurations;

Lighter, longer, taller, more open structures;

Multi-purpose and multi-functional

New Structural Forms and Configurations;

Lighter, longer, taller, more open structures;

Multi-purpose and multi-functional
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Sears Tower, ChicagoSears Tower, Chicago

Integrated designIntegrated design

Number of storiesNumber of stories
50

W
ei

gh
t o

f S
te

el
, L

B
S/

SQ
.F

T.
 F

LO
O

R
 A

R
E

A
W

ei
gh

t o
f S

te
el

, L
B

S/
SQ

.F
T.

 F
LO

O
R

 A
R

E
A

100

50

100

Designed for 
drift index (Δ/H)=0.25% Designed for 

drift index 
(Δ/H)=0.25%with 
integrated
control/structural 
systems

Designed for 
gravity load

150 200

Sears Tower, 
110 stories

Acknowledgments

Multidisciplinary Center for Earthquake
Engineering Research, Buffalo, NY, USA

U.S. National Science Foundation

G.P. Cimellaro

Acknowledgments

Multidisciplinary Center for Earthquake
Engineering Research, Buffalo, NY, USA

U.S. National Science Foundation

G.P. Cimellaro


