TESI DI LAUREA

SUDOKU GAME
THEORY, MODELS AND ALGORITHMS

SUPERVISOR:
Prof. Roberto TADEI

CANDIDATE:
Simona MANCINI

Marzo 2006
1. INTRODUCTION

In this report a very popular mathematical game, so called “Sudoku”, is analysed in all details.

Preliminarily mathematical games are introduced and some examples of most known games are presented. Then Sudoku is defined minutely, including all the related rules.

A mathematical model able to describe Sudoku has been formulated and implemented with the XPRESS solver.

A completely new program has been written, able to generate random instances; that is to produce 9x9 matrices including an assigned number of fixed values defined by means of a random generator.

The mathematical complexity of Sudoku game has been studied in comparison to similar problems denoting the same complexity level. Finally the uniqueness of the Sudoku solution has been discussed.
2. MATHEMATICAL GAMES

2.1 Introduction to mathematical games

The attractiveness of mathematical games are dated back to several centuries. In fact, if for example, one limits to consider only the magic squares, one needs to go back to more than three millennia, to the age of Shang dynasty. At that time a numerical square engraved on a turtle’s shell has been given by a fisherman to the Emperor. The scientists of court analysed its extraordinary properties and the magic square, named “Shu”, become one of the holy symbols of the Old China.

Fig.1: the “Shu” game
A second magic square has been found in Pompei in the first century A.C. and is generally known as “Latercolo Pompeiano”.

The “Shu” consist in a 3x3 matrix containing integers from 1 to 9 positioned so that the sum along all the rows, the columns and the diagonals is always 15.

The “Latercolo pompeiano” consists in a 5x5 matrix in which a set of Latin letters is included, so that the same sentence may be read both in horizontal and vertical sequence.

Fig.2: The “Latercolo Pompeiano”

Several mathematicians studied the magic squares, like Fermat and Euler; in particular Euler in 1783 published an extensive discussion and he presented a “new generation of magic squares“, named Latin squares and Greek-Latin squares.
Today, two centuries after Euler, the magic squares become again of great interest, particularly in relation to a new mathematical game, named Sudoku, launched in Japan and that in very short time reached a very great success all around the world.

The new game implies a good mathematical training requiring intuition and reasoning, which are the best qualities in a mathematic.

In the following three historical and well known mathematical games will be dealt with in details, with the aim to introduce the reader to such a mathematical training.

2.2 Some examples of mathematical games

2.2.1 The Latin Square

The Latin square consists in a 4x4 matrix in which the first four letter of Latin alphabet are inserted in a such order that no repetition is present along the same row or column; the same applies for the Greek square substituting the Latin alphabet with the Greek one.

A little bit more complicated is the Greek-Latin square in which the same rules are applied both for Greek and Latin alphabet letters. Of course the letters can refer to anything, for example after extracting by a set of playing cards the four queens, kings, jacks and aces try to introduce then in a square matrix 4x4, so that along any row and column the four card’s types and suits are located without repetitions.
A classical application of Latin square is in the statistic field, being a system to solve in a rational way some experimental tests. For instance one can imagine to need to test five different types of fertilizers for a specific farming. One can scatter the fertilizer on one field and after the harvest measure the production per unit area; but in such a way one is obliged to perform the experiment on five different fields, the proprieties of which can be different. On the opposite if the same field is divided in 5x5 squares on which the fertilizers are applied following the schema of Latin square, a more correct and complete analysis may be obtained.
The complexity of magic squares increases very fast when the fourth order is exceeded; it is known that 880 different types of magic squares exist, considering the rotations and the specular images, having also more complex properties with respect to the elementary ones.

2.2.2 The Rubik’s cube

The Rubik cube has been designed by an Hungarian mathematic and architect, Erno Rubik, in 1974. The cube consists of 26 smaller cubes inserted in a 3x3x3 matrix coloured in six different colours. Because it is possible to rotate along its orthogonal axes every set of 9 adjacent cubes, all the faces of the cube should reach the same uniform colour.

Three years after the invention of Rubik, the cube appeared in the Budapest shops for mathematical games and have been distributed outside the Hungary in
1979, when an English mathematic, David Stegmaster, wrote an article for a newspaper in which empathized that mysterious object. In few months the Rubik’s cube become the most diffuse riddle in the world, so that more than 100 millions of cubes have been sailed and 20% of humans, at least once, tread to solve the enigma of coloured faces.

A lot of people renounced to solve the cube game after some attempts; the inventor spent one month to solve it, but one American boy, Dan Knights, established the world record solving the cube in only 17.3 seconds. Recently the Rubik’s cube has been defined the biggest riddle invented by humans.

2.2.3 The fifteen game

The fifteen game consist in a square matrix 4x4 in which one position is free. In each position an integer is located (from 1 to 15), that may be translated horizontally and vertically along the row and the column in which the void position is included. The goal of the game is to put the integer in natural order starting from the upper-left corner and following the successive rows.

The game has been invented in 1872 by Sam Loyd and in the original version only 15 and 14 positions were inverted to render impossible to solve it.(see afterwards).The substantial difference with the previous games is the incompleteness of the matrix to allow for the movements; another characteristic of the game is that the possibility to put in natural order the integers depends on their initial position; in fact the game may be solved only for some set of input data. To establishes if the game can be solved the concepts of **inversion** and **equity** should be introduced.

If the position containing the number i is located before n numbers smaller than i then the situation is called an **inversion of order** n and may be defined n_i.

Now one introduces a number of inversion N as:

\[\sum_{i=1}^{15} n_i = \sum_{i=2}^{15} n_i \]

where the sums coincide because no integer smaller than 1 is available.

Practically \(N=i(p) \) is the number of inversions of permutation of integers included in the game. \(N \) may assume even and odd values.

If \(N \) is even the game may be solved; on the opposite, if \(N \) is odd the game cannot be solved.
3. THE MATHEMATICAL GAME SUDOKU

3.1 Historical notices about Sudoku

One of the magic square proposed by Euler was a square matrix 9x9 in which in every row and column the integers from 1 to 9 had to be inserted without any repetition; that game was practically the progenitor of Sudoku.

After about 200 years a similar game was proposed in New York by Dell, an editor of a puzzle magazine, with the name of Number Place; this game had a limited success in U.S. and have been temporally forgotten. In 1984 Nobuliko Kanemato, an employer of Nikoli publishers, specialized in riddles, revived and improved this game, patented and proposed it to the people with the name “Suuji wa dokushin ni Kagiru (the numbers that should appear only ones).

Finally in 1997 a New Zealand retired judge, Wayne Gould, visited Tokyo, discovered the SUDOKU (an abbreviation of previous title, where SU stands for number and DOKU stands for single) and get crazy for it. He invented and improved a software for the Sudoku generation and proposed it to the Times of London, that launched it in November 2004.

This game that today is very successful is characterized by a common parameter: single is the game, singles are the integers to be included within the matrix, single is the spare time, which is available to solve the Sudoku. Practically this game may be considered a serial game like the crosswords but less flexible, because the last one regenerate himself by means of lexicon and permits thousands of variations and of difficulty levels; one conclude that in the panorama of mathematical games the Sudoku may be inserted between crosswords and Rubik’s cube.
3.2 Sudoku definition and rules

Sudoku is a riddle apparently simple, but in fact requires a strategy to be solved; nevertheless it uses numbers it is not a matter of mathematics; in fact numbers may be submitted by symbols but traditionally numbers are used.

The rules of this game are very simple and only a pencil and a piece of paper is required to play it. The frame of the game is a matrix 9x9 and in each position an integer included between 1 and 9 should be inserted. Each row, each column and every sub-matrix 3x3 should include all the integers between 1 and 9 without repetitions. A Sudoku game contains some positions fixed by default, so that there is only one valid solution; the game generator should then consider the necessity to ensure the uniqueness of the solution by the definition of a set of constrains by means of fixed integers and their position within the matrix.

Of course the so defined set of restraints in practice may be integrated by further constrains to facilitate the solution of the game.
4. COMPUTATIONAL COMPLEXITY

4.1 Definition of computational complexity

A problem may be considered like a general question to be solved, characterized by different parameters, the value of which are not specified. The problem is defined by:
- a general description of all its parameters
- defining the properties that the solution must satisfy

An instance of a problem is given when some values are specified for the problem parameters.

One consider, for example, a classical problem of Combinatorial optimization: The TSP problem (Travelling Salesman Problem), that is \(n \) cities \(A_i \) connected by roads of given relative length.

A commercial traveller should determine an itinerary such that he can visit only once every city with the minimum overall travel length.

The parameters of such a problem are:
- a finite set of cities \(C=\{A_1,A_2,..,A_n\} \)
- for every couple \((A_i, A_j) \) in \(C \), the distance between \(A_i \) and \(A_j \), called \(d(A_i, A_j) \)

A solution of the problem is given by the order \(< A_{\pi(1)}, A_{\pi(2)},...,A_{\pi(n)} > \) of cities that minimizes

\[
\sum d(A_{\pi(i)}, A_{\pi(i+1)}) + d(A_{\pi(n)}, A_{\pi(1)}) \quad (1)
\]
Where (1) expresses the length of run beginning from $A\pi(1)$ reaching all the other cities in sequence and coming back to $A\pi(1)$ from the last city reached $A\pi(m)$.

Informally one can say that an algorithm is a step by step procedure bringing to the problem solution.

An algorithm is able to solve a problem π if it can be applied to whichever instance of π ensuring always to find a solution.

In the case of TSP an algorithm solves the problem if it is able to individuate a sequence of cities producing a circuit with minimum length.

Generally the most efficient algorithm is the fastest, assuming as fundamental variable in defining its efficiency, the time spent to solve the problem.

The time requirements can be expanded as a function of the problem instance, that is of the entity of input data describing the instance.

The instance may be considered as a single finite strip of symbols chosen within a finite alphabet; the input length for the instance “I” of a problem “π” is given by the symbols number contained in the “I” strip; this number represents the formal measure of the instance. The function “complexity in time” of an algorithm expresses its time requirements, measuring, for every dimension of the instance, the time necessary to the algorithm to solve it.

Of course other variables are the codification schema employed and the capacity of the computer used for the solution of the instance.
The complexity of an algorithm is a function of problem instance dimension. Two different definitions of this function are recognized.

Being \(f \) the time complexity function associated to an algorithm, in the dimension of the problem instance and \(g : \mathbb{N} \to \mathbb{N} \) one can define:

a) **worst case**

one say that \(f(n) \in O(g(n)) \) if \(n^c, c > 0 \) exists so that \(f(n) \leq c \cdot f(n) \), every \(n \geq n^c \)

b) **best case**

one say that \(f(n) \in \Omega(g(n)) \) if \(n^c, c > 0 \) exists so that \(f(n) \geq c \cdot f(n) \), every \(n \geq n^c \)

The case a) is used practically to evaluate the computational complexity of an algorithm.

An algorithm characterized by a time complexity function \(O(g(n)) \), with \(g(n) \) polynomial function of \(n \) is named polynomial algorithm; instead are not polynomial the algorithms where \(g(n) = 2^n \) or \(g(n) = n! \)

This distinction assumes a great importance when the solution for large instances of problems is considered. The application of non polynomial algorithms becomes prohibitive with the increasing of the dimension of the instance: for a very small value of \(n \) a non polynomial algorithm may be faster than a polynomial one, but, increasing \(n \), a polynomial algorithm will be always more efficient than the non polynomial one.

With the technological improvement of computers polynomial algorithms are more advantaged than the non polynomial ones; in practice if the power of computers
increases by a factor γ, the dimension of largest instance solvable by a polynomial algorithm in a prefixed time is amplified by a constant in the range $(1, \gamma)$, on the opposite the increment for a non-polynomial algorithm is only additional, in the dimension of the instance solvable within the predefined time.

4.2 Computational complexity classes

One refers now to the “decisional version” of optimization problems. In the decisional version of an optimization problem there are only two possible solutions: the answers **yes** and **not**. The standard format used to specify an optimization problem in its decisional version consists generally of two parts:

- the first part specifies an instance of the problem, assigning the values to the problem parameters;
- the second part establishes a question related to the instance, for which the answer **yes** or **not** is possible.

One can now introduce a classification of problems in terms of computational complexity.

- **The P Class**

 The P Class is the set of all problems solvable, in the worst case, by a polynomial algorithm; the problems of class P are very often defined as “easy” problem.

- **The NP Class**

 The NP Class (non-deterministic polynomial) is the set of all the decision problems solvable, in the worst case, by a non-deterministic polynomial. A such algorithm is an algorithm in which two steps may be recognized:
- step 1 (hypothesis): one hypothesizes the existence of a particular instance “yes” of a given decision problem and one certificate “yes” is available to verify the hypothesis.

- step 2: one verifies that the hypothesis is right.

If the step 2 has a polynomial complexity, then the non deterministic algorithm is named polynomial.

Every problem solvable by a polynomial algorithm is obviously solvable also by a polynomial non deterministic algorithm, than between the two classes the relationship $P \subseteq NP$ is established.

Then, if classes P and NP are not coincident, it is important the identification of the set NP/ P that represents the difference between the two classes, that is the set of problems solvable by polynomial non deterministic algorithms, but not solvable by polynomial deterministic ones.

One can than introduce the concept of “reducibility” of a problem to another one. A problem w' can be polynomially reduced to another one w if, for every instance of w', in polynomial time, an instance in w may be defined so that from the optimum solution of considered instance of w the optimum solution for the instance w' may be determined immediately or, any case, with polynomial complexity; $w' \alpha w$ means that w is complex at least how much w' is.

The reduction operation possesses the transitive property:

If $w' \alpha w$ and $w' \alpha w''$ then $w' \alpha w''$

The problem of satisfiability (SAT) may be expressed as follows:

“Given a Boolean expression of n binaries variables x_1, x_2, \ldots, x_n does exists a
solution x_1', x_2', \ldots, x_n' rendering right the Boolean expression? ”

The solution is that (Cook theorem) if $w \in$ NP, than $w \alpha$ SAT

One can now introduce the NP complete problems, that is the set of all problems verifying the following two conditions

a) $w \in$ NP
b) SAT α w

A typical characteristics of much problems is that all the NP complete problems have the same level of difficulty.

One consider now a problem w, the appertaining of which to the class NP cannot be verified, but satisfying the condition $E w'$ NP complete, so that $w' \alpha w$. The problem NP is then, at least, complex like a NP complete one, but its appertaining to NP class cannot be ensured: such kind of problem is named NP hard.

Finally some further problems exists, for which neither the appertaining to the class P or the class NP complete has been demonstrated, nevertheless they appertain to the NP class.

Such kind of problems are named “open”.

Now other definitions for the algorithms should be introduced:

- An algorithm having polynomial complexity in unary codification and non-polynomial in binary codification is named NP-complete (NP-hard) in ordinary mean.
- An optimization problem NP-complete (NP-hard) for which exact algorithms for polynomial solution does not exists, the operator of which can be confined
within a memory space in the computer limited by a polynomial function with the same dimension of the input, is named P-space.

4.3 Computational complexity of the Sudoku problem

The computational complexity for a Sudoku problem is analytically valuable, in fact, at every step there is always a cell that can be filled only with a number, than the complexity results $O(n^2)$, where n is the number of cells for each row or column, (in our case $n=9$).

Instead, for a generalized Sudoku problem (a Sudoku problem that has not a unique solution) the computational complexity is not easily valuable analytically but may be evaluated by comparison with the corresponding one of a problem, the mathematical complexity of which has been evaluated and is known.

As reference problem for the computational complexity evaluation, the “crosswords puzzle construction” problem is taken into consideration.

This game is defined by the following instance and questions:

- **INSTANCE**: A finite set $W \subset \Sigma'$ of words and an nxn matrix A of 0’s and 1’s.
- **QUESTIONS**: Can an nxn crossword puzzle be built up from the words in W and blank squares corresponding to the 0’s of A, i.e. if E is the set of pairs (i,j) such that $A_{ij} = 0$, is there an assignment $f: E \rightarrow \Sigma$ such that the letters assigned to any maximal horizontal or vertical contiguous sequence of members of E from, in order, a word of W?

In this comparison the initial schema of Sudoku may be considered as corresponding to the matrix A of crosswords puzzle construction; similarly a correspondence is defined between the set E and the set of initial prefixed position of
given content in Sudoku and in addition between the set Σ and the set of all position in Sudoku and between the set W and the set of possible integer strips in Sudoku.

Having so established a correspondence between the two games one can derive that Sudoku has a computational complexity at least of the same order of magnitude of “crosswords puzzle construction” problem.
5. DEFINITION OF A MATHEMATICAL MODEL ABLE TO DESCRIBE SUDOKU

5.1 Variables in the mathematical models

To describe a mathematical model first of all variables and their kind (for example binary, integer..) should be defined.

In this model a 3D matrix 9x9x9 of variables is defined, with a total amount of 729 elements. Each so defined variable is binary and characterized by three indexes: i, j, k: the index i and j define respectively the row and the column of a generic position in a Sudoku schema; the index k represents integer in the range 1 to 9 which may be present in a generic position. Being the variables binary they can assume only the values 0 or 1: 0 value is assumed if in the position i,j, the k integer is not included and the value 1 if the position i,j is filled with the k integer.

5.2 The objective function

In this point an “objective function” to be minimized or maximized should be defined. But one must remark that in our case one need to determine only an admissible solution, because every Sudoku schema has one and only one solution: then the admissible solution is automatically the optimal one.

As a consequence the value of objective function is out from our interest and a generic constant value may be assumed like “objective function”, for instance the unit value.
5.3 Constraints

The constraints, necessary to limit the field of the problem, are linear combinations of variables giving a constant value.

The model contains the following typology of constraints:

- having fixed a j column, at the crossing of each row i with the j column, the sum of variables included within correspondent k column shall assume unit value;
- within the matrix i,k the sum of variables along i for each k assumes unit value
- having fixed an i row, at the crossing of each column j with the i row, the sum of variables included within correspondent k column shall assume unit value;
- within the matrix j,k the sum of variables along i for each k assumes unit value
- for every sub-matrix 3x3 (i,j) the sum of variables for each k shall assume unit value;

Of course all the previous constraints define an empty Sudoku schema; but if we want to introduce in the schema some predefined values in predefined position, the corresponding values shall be also predefined assuming the unit value; nothing to say that such predefined values shall respect the above defined restraints.
5.4 Mathematical formulation of the model for Sudoku game

The mathematical model of Sudoku game above defined in terms of variables, objective function and restraints is described by the following expressions

Variables

\[X_{i,j,k} \text{ binary} \quad i = 1..9 \quad j = 1..9 \quad k = 1..9 \]

Objective function

\[\text{min } 1 \]

Constraints

\[\sum_{i} X_{i,j,k} = 1 \quad \forall j, \forall k \]
\[\sum_{j} X_{i,j,k} = 1 \quad \forall i, \forall k \]
\[\sum_{k} X_{i,j,k} = 1 \quad \forall i, \forall j \]
\[\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [1,3] \quad j \in [1,3] \]
\[\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [1,3] \quad j \in [4,6] \]
\[\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [1,3] \quad j \in [7,9] \]
\[\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [4,6] \quad j \in [1,3] \]
\[\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [4,6] \quad j \in [4,6] \]
\[\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [4,6] \quad j \in [7,9] \]
\[
\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [7,9] \quad j \in [1,3]
\]

\[
\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [7,9] \quad j \in [4,6]
\]

\[
\sum_{i} \sum_{j} X_{i,j,k} = 1 \quad \forall k \quad i \in [7,9] \quad j \in [7,9]
\]

5.5 Three-dimensional Sudoku

The Sudoku game can be extended to the three-dimensional space. In this case we will consider a 27x27x27 cube.

To solve our problem we need a variable with four indexes, \(X_{i,j,k,t}\), where the index i,j,k represents the position of the considered cell and the index t represents the number that can be contained in the cell. Every index takes integer value in [1,27], so that the number of variables is equal to 531441.

The constraints are like that:
- in each column, in each row and in each vertical column, and in each little cube 3x3x3, a number must be contained one and only one times.

This problem can be also extended to n-dimensional space, through the same considerations.
6. IMPLEMENTATION OF THE MODEL IN XPRESS SOLVER

The so defined mathematical model describing Sudoku has been implemented within the frame of XPRESS solver, an optimization software, to render it easily applicable.

This implementation process require that the expressions presented in chapter five above are transferred within XPRESS as described below.

6.1 Mathematical model of Sudoku implemented in XPRESS

The following expressions describe the mathematical model Sudoku within the XPRESS solver.
model "sudoku"
uses "mmxprs"
declarations
I=1..9
J=1..9
K=1..9
P=1
x:array(I,J,K)of mpvar
end-declarations
forall(i in I,j in J, k in K) x(i,j,k) is_binary
forall(j in J,k in K) sum(i in I)x(i,j,k)=1
forall(i in I,k in K) sum(j in J)x(i,j,k)=1
forall(i in I,j in J) sum(k in K)x(i,j,k)=1
forall(k in K) sum(i in 1..3,j in 1..3) x(i,j,k)=1
forall(k in K) sum(i in 1..3,j in 4..6) x(i,j,k)=1
forall(k in K) sum(i in 1..3,j in 7..9) x(i,j,k)=1
forall(k in K) sum(z in 4..6,j in 1..3) x(z,j,k)=1
forall(k in K) sum(z in 4..6,j in 4..6) x(z,j,k)=1
forall(k in K) sum(z in 4..6,j in 7..9) x(z,j,k)=1
forall(k in K) sum(t in 7..9,j in 1..3) x(t,j,k)=1
forall(k in K) sum(t in 7..9,j in 4..6) x(t,j,k)=1
forall(k in K) sum(t in 7..9,j in 7..9) x(t,j,k)=1
x(1,2,6)=1
x(1,3,1)=1
x(1,5,3)=1
x(1,8,2)=1
x(2,2,5)=1
x(2,6,8)=1
x(2,7,1)=1
x(2,9,7)=1
x(3,6,7)=1
x(3,8,3)=1
x(3,9,4)=1
x(4,3,9)=1
x(4,6,6)=1
x(4,8,7)=1
x(4,9,8)=1
x(5,3,3)=1
x(5,4,2)=1
x(5,6,9)=1
x(5,7,5)=1
x(6,1,5)=1
x(6,2,7)=1
x(6,4,3)=1
x(6,7,9)=1
x(7,1,1)=1
x(7,2,9)=1
x(7,4,7)=1
x(8,1,8)=1
x(8,3,2)=1
x(8,4,4)=1
x(8,8,6)=1
x(9,2,4)=1
x(9,5,1)=1
x(9,7,2)=1
maximize(1)
forall(i in I) do
 forall(j in J, k in K) do
 if getsol(x(i,j,k))=1
 then
 write(k, " ")
 end-if
 end-do
writeln(""
end-do
end-model

6.2 Instance generation program

To apply practically the Sudoku program implemented in XPRESS an instance generation program has been written in C++ language; this program is able to generate a Sudoku game having chosen the number of fixed parameters to be introduced, the position of which is defined by the program by means of a random generator; a second program assigns the predefined integers to the position chosen as above described. In the following pages the instruction of the programs are reproduced.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

include <stdio.h>
include <stdlib.h>
include <time.h>
#define nummax 5

main()
{
 int num,i,j;
 int a[9][9];
 char z[9][9];
 FILE *fi;
 FILE *fo;

 fi=fopen("input.txt","r");
 fo=fopen("output.txt","w");
 for(i=1;i<=9;i++)
 {
 for(j=1;j<=9;j++)
 {
 a[i-1][j-1]=0;
 z[i-1][j-1]=fscanf(fi,"%c");
 fprintf(fo,"%d",z[i-1][j-1]);
 }
 fscanf(fi,"%c");
 }
 srand(time(NULL));

 for(num=1;num<=nummax;num++)
 {
 }
This program gives in output a generalized Sudoku instance, but we cannot be sure that this instance has a unique solution.

To generate an instance with a unique solution the following method, developed by professor Della Croce and professor Ferro of Politecnico di Torino.
Suppose that the model presented above has been solved and a feasible solution has been found. Denote by SOL(i,j) the value of the element (i,j) of the schema in the feasible solution. Solve the following model P2:

Variables:
The same used in the previous model

Objective function:

\[\min z = \sum_{i,j,k: \text{SOL}(i,j)=k} X_{ijk} \]

Constraints:

\[\sum_i X_{i,j,k} = 1 \quad \forall j, \forall k \]
\[\sum_j X_{i,j,k} = 1 \quad \forall i, \forall k \]
\[\sum_k X_{i,j,k} = 1 \quad \forall i, \forall j \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [1,3] \quad j \in [1,3] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [1,3] \quad j \in [4,6] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [1,3] \quad j \in [7,9] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [4,6] \quad j \in [1,3] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [4,6] \quad j \in [4,6] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [4,6] \quad j \in [7,9] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [7,9] \quad j \in [1,3] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [7,9] \quad j \in [4,6] \]
\[\sum_i \sum_j X_{i,j,k} = 1 \quad \forall k \quad i \in [7,9] \quad j \in [7,9] \]
The solution of this model provides a feasible solution also to the previous model. The objective function of model P2 minimizes the sum of the elements in the grid having the same value obtained in the solution of the previous model. Hence, as each grid is composed by 81 elements, if the objective function value of model P2 is equal to 81 (Z=81), then the Sudoku problem has unique solution, else it has not.
7. APPLICATIONS AND EXPERIMENTAL RESULTS

In this chapter some examples of Sudoku instance on which our model has been tested will be given.
The following examples are divided in four different categories based on the difficulty level: easy, medium, difficult and diabolic.

7.1 Easy instances

These instances are characterized by a very big number of prefixed values, about 34-35 cells, distributed homogeneously on the grid. It is very simple to solve them; therefore they are designed for people that approach Sudoku for the first time. Here some examples of this kind of instances are reported.
Example 7.1.1

Solution of Example 7.1.1
Example 7.1.2

Solution of Example 7.1.2
Example 7.1.3

Solution of Example 7.1.3
Example 7.1.4

$$
\begin{array}{ccc}
8 & 5 & \\
9 & 4 & 1 \\
3 & & 7 \\
\hline
5 & 3 & 4 \\
4 & 2 & 6 \\
1 & & 9 \\
\hline
6 & 8 & 5 \\
1 & 8 & 4 \\
2 & 7 & \\
\end{array}
$$

Solution of Example 7.1.4

$$
\begin{array}{ccc|ccc|cc}
3 & 8 & 5 & 7 & 6 & 4 & 2 & 1 & 9 \\
7 & 9 & 4 & 5 & 1 & 2 & 6 & 8 & 3 \\
2 & 1 & 6 & 3 & 9 & 8 & 7 & 5 & 4 \\
\hline
5 & 7 & 3 & 4 & 8 & 9 & 1 & 2 & 6 \\
9 & 4 & 1 & 2 & 7 & 6 & 5 & 3 & 8 \\
8 & 6 & 2 & 1 & 5 & 3 & 9 & 4 & 7 \\
\hline
6 & 3 & 8 & 9 & 2 & 5 & 4 & 7 & 1 \\
1 & 5 & 9 & 8 & 4 & 7 & 3 & 6 & 2 \\
4 & 2 & 7 & 6 & 3 & 1 & 8 & 9 & 5 \\
\end{array}
$$
7.2 Medium instances

These instances are a bit more complicated than the previous ones. The number of prefixed values is about 30, but the great difference with respect to the easy instances is the position of these values. In fact, in an easy scheme there are always at least three fixed elements for each row, column and sub-matrix, while in the medium cases is possible to have two column or rows (see example 7.2.2 and 7.2.3), or three sub-matrix, completely empty (see example 7.2.4).
Example 7.2.1

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution of Example 7.2.1

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Example 7.2.2

Solution of Example 7.2.2
Example 7.2.3

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>6</th>
<th>1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution of Example 7.2.3

<table>
<thead>
<tr>
<th>5</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>6</th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Example 7.2.4

Solution of Example 7.2.4
7.3 Difficult instances

These instances are designed for people that have feeling with Sudoku and a little of experience in solving this game.

The number of fixed values is smaller than 30. In a difficult scheme is possible to have two rows and one column completely empty, as in example 7.3.1, or a non homogeneous distribution of filled cells that can be concentrated only in a portion of the grid, as is shown in the following examples.

In example 7.3.2 the filled cells are concentrated in the centre of the grid; in example 7.3.3 they are concentrated along one diagonal and in the last example of this section (example 7.3.4) they are distributed in the corner and around the central sub-matrix that is, on the contrary, completely empty.
Example 7.3.2

Solution of Example 7.3.2
Example 7.3.3

```
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
```

Solution of Example 7.3.3

```
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
```
Example 7.3.4

```
<table>
<thead>
<tr>
<th>9</th>
<th>3</th>
<th></th>
<th></th>
<th>7</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
```

Solution of Example 7.3.4

```
<table>
<thead>
<tr>
<th>9</th>
<th>3</th>
<th>2</th>
<th>8</th>
<th>5</th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
```


7.4 **Diabolic instances**

These instances are designed for very expert Sudoku solver. It is very hard to solve them because the number of prefixed values is smaller than 25 (in some cases is equal to 22). The above considerations about the distribution of fixed cells are also valid for these categories of instances. In the follow some examples of diabolic scheme are reported. In the last example the distribution of the filled cells is quite homogeneously, but they are only 22, therefore that schema is very hard to solve. The more difficult scheme that have been solved has only 17 filled cells but, there is not yet demonstrated that 17 is the minimum number of prefixed values to guarantee the uniqueness of the solution.
Example 7.4.1

Solution of Example 7.4.1
Example 7.4.2

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>7</th>
<th>9</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>2</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th></th>
<th>1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6</td>
<td></td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>5</th>
<th></th>
<th>9</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution of Example 7.4.2

<table>
<thead>
<tr>
<th>4</th>
<th>8</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>3</th>
<th>6</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>3</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>3</th>
<th>2</th>
<th>5</th>
<th>7</th>
<th>1</th>
<th>9</th>
<th>8</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Solution of Example 7.4.2
Example 7.4.3

Solution of Example 7.4.3
Example 7.4.4

Solution of Example 7.4.4
7.5 Computational time

Our model is very efficient, because it is able to solve every Sudoku instance in a very short time; it takes 0.2 seconds for easy and medium instances, 0.3 seconds for difficult instances and 0.5 seconds for the diabolic ones. This fact shows that the different difficulty between two levels affects the performance of an human solver but not that of the program.

7.6 Three-dimensional problems

The model of the three-dimensional problem can not be implemented because it implies the use of a number of variables bigger than the number of variables supported by the utilized solver, therefore we have not experimental results for this problem.
The Sudoku mathematical game, born about two centuries ago, but largely spread in Europe only during the last months, has been studied and analysed in details in this report.

A mathematical model has been formulated. In addition, the mathematical model has been implemented in a computer solver and in parallel a program has been developed able to generate Sudoku games. Some application of this analytical and numerical work have been presented too. Finally the problem of mathematical complexity has been dealt with, by the comparison with another game for which the complexity level is known. It has been also shown that Sudoku has a level of complexity not smaller than the one of “crossword puzzle construction”.

Further developments in this field should consider the uniqueness of solution in relation to the minimum number of input data necessary for this condition.
Bibliography

- sito web: www.ams.org
- sito web: www.nonzero.it
- sito web: www.nikoli.co
- sito web: www2.polito.it/didattica/polymath