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Classifiers
Preliminaries

Input data matrix:

X =
[
x (1) · · · x (n)

]
∈ Rm,n,

columns x (j) ∈ Rm, j = 1, . . . , n, contain feature vectors from n
observations.

Output data vector: y ∈ Rn such that yj ∈ {−1,+1} is the class label
corresponding to the j-th observation.

We consider a binary classification problem, in which a new observation
vector x ∈ Rm is to be assigned to the positive class C+ (corresponding to
y = +1) or to the negative class C− (corresponding to y = −1).

A parametric classifier is thus a function Gθ : Rm → {−1, 1}.

θ represents the parameters of the classifier, which are learned from data.
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Classifiers
Example: the Bernoulli Naive Bayes classifier

In the Bernoulli Naive Bayes (BNB) model the features are represented by
boolean values (e.g., 0 or 1). For instance, xi = 1 if the i-th term of a
dictionary is present in a document and xi = 0 otherwise.

Given the class C±, each xi is an independent Bernoulli variable with success
probability θ±i , that is, for i = 1, . . . ,m,

Prob{xi = 1|C±} = θ±i , and Prob{xi = 0|C±} = 1− θ±i .

Using Bayes’ rule one obtains

log p(C±|x) ∝ log p(C±) +
m∑
i=1

log p(xi |C±)

= log p(C±) + x> log θ± + (1− x)> log(1− θ±).
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Classifiers
Example: the Bernoulli Naive Bayes classifier

Classify x in C+ if log p(C+|x) > log p(C−|x), and in C− otherwise.

Classification is based in the sign of the discrimination function

∆B(x) = log
p(C+)

p(C−)
+ 1>(log(1− θ+)− log(1− θ−))

+x>
(
log θ+ − log(1− θ+)− log θ− + log(1− θ−)

)
= vB + x>wB ,

where

vB
.

= log
p(C+)

p(C−)
+ 1>(log(1− θ+)− log(1− θ−))

wB
.

= log
θ+ � (1− θ−)

θ− � (1− θ+)
,

and � denotes element-wise vector product.
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Classifiers
Example: the Bernoulli Naive Bayes classifier

The discrimination function is linear.

Feature xi has no influence on the classification iff the corresponding
coefficient in wB is zero.

This happens if and only if θ+
i = θ−i .

A sparse classifier is obtained iff wB is sparse ⇔ (θ+ − θ−) is sparse.

Training a Sparse Naive Bayes classifier in the general Multinomial case is a
computationally complex problem.

Approximation schemes exist [e.g., Askari, d’Aspremont, El Ghaoui, 2019].

We next discuss sparse classifiers that are trainable exactly and efficiently.
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Center-based classifiers
Preliminaries

The nearest centroid classifier is a well-known classification model, which
works by assigning the class label based on the least Euclidean distance from
x to the centroids of the classes.

The centroids are computed on the basis of the training data as

x̄+ =
1

n+

∑
j∈J +

x (j), x̄− =
1

n−

∑
j∈J−

x (j),

J + .
= {j ∈ {1, . . . , n} : yj = +1} and J− .

= {j ∈ {1, . . . , n} : yj = −1}
contain the indices of the observations in the positive and negative class,
respectively, and n+, n− are the corresponding cardinalities.
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Center-based classifiers
Nearest centroid classifier

A new observation vector x is classified as positive or negative according to
the sign of

∆2(x) = ‖x − x̄−‖2
2 − ‖x − x̄+‖2

2,

The discrimination surface for the centroid classifier is linear w.r.t. x , since

∆2(x) = ‖x‖2
2 + ‖x̄−‖2

2 − 2x>x̄− − ‖x‖2
2 − ‖x̄+‖2

2 + 2x>x̄+

= (‖x̄−‖2
2 − ‖x̄+‖2

2) + 2x>(x̄+ − x̄−).

The coefficient in the linear term of the classifier is w
.

= x̄+ − x̄−.

Whenever x̄+
i = x̄−i for some component i (i.e., wi = 0), the corresponding

feature xi in x is irrelevant for the purpose of classification.
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Nearest `2 center classifier
Minimization form

The `2 centroids can be seen as the optimal solutions to the following
optimization problem:

min
θ+,θ−∈Rm

1

n+

∑
j∈J +

‖x (j) − θ+‖2
2 +

1

n−

∑
j∈J−

‖x (j) − θ−‖2
2.

That is, the centroids are the points that minimize the average squared
distance to the samples within each class.
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Nearest `1 center classifier
Minimization form

The minimization form suggests considering different types of metrics for
computing centers.

In particular, there exist an extensive literature on the favorable properties of
the `1 norm criterion, which is well known to provide center estimates that
are robust to outliers.

The natural `1 version of the centering problem is

min
θ+,θ−∈Rm

1

n+

∑
j∈J +

‖x (j) − θ+‖1 +
1

n−

∑
j∈J−

‖x (j) − θ−‖1,

which we shall call the (plain) `1-center classifier training problem.
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Nearest `1 center classifier

It is known that an optimal solution to `1-center classifier is obtained by
taking θ± to be the (entry-wise) median of the values in each class:

θ+ = µ+ .
= med({x (j)}j∈J + ), θ− = µ−

.
= med({x (j)}j∈J−).

The classification is made according to the sign of

∆1(x)
.

= ‖x − µ−‖1 − ‖x − µ+‖1.

The discrimination ∆1(x) is not linear in x .

However, the contribution to ∆1(x) from the i-th feature xi is identically
zero whenever θ−i = θ+

i .
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Sparse `1 and `2 center classifiers

For both the `2 and the `1 distance criteria, the discrimination is insensitive
to the i-th feature whenever θ+

i − θ
−
i = 0.

The sparse classifiers that we introduce next are aimed precisely at
computing optimal class centers such that the center difference θ+ − θ− is
k-sparse.

Formally, we impose that ‖θ+ − θ−‖0 ≤ k , where ‖ · ‖0 denotes the number
of nonzero entries (i.e., the cardinality) of its argument, and k ≤ m is a
given cardinality bound.

Such type of sparse classifiers will thus perform simultaneous classification
and feature selection, by detecting which k out of the total m features are
relevant for the classification purposes.
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Sparse `1 and `2 center classifiers

Definition 1 (Sparse `2-center classifier)

A sparse `2-center classifier is a model which classifies an input feature vector
x ∈ Rm into a positive or a negative class, according to the sign of the
discrimination function

∆2(x) = ‖x − θ−‖2
2 − ‖x − θ+‖2

2

= (‖θ−‖2
2 − ‖θ+‖2

2) + 2x>(θ+ − θ−),

where the sparse `2-centers θ+, θ− are learned from a data batch X as the
optimal solutions of the problem

min
θ+,θ−∈Rm

1
n+

∑
j∈J + ‖x (j) − θ+‖2

2 + 1
n−

∑
j∈J− ‖x (j) − θ−‖2

2

subject to: ‖θ+ − θ−‖0 ≤ k ,

where k ≤ m is a given upper bound on the cardinality of θ+ − θ−.
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Sparse `1 and `2 center classifiers

Definition 2 (Sparse `1-center classifier)

A sparse `1-center classifier is a model which classifies an input feature vector
x ∈ Rm into a positive or a negative class, according to the sign of the
discrimination function

∆1(x)
.

= ‖x − θ−‖1 − ‖x − θ+‖1,

where the sparse `1-centers θ+, θ− are learned from a data batch X as the
optimal solutions of the problem

min
θ+,θ−∈Rm

1
n+

∑
j∈J + ‖x (j) − θ+‖1 + 1

n−

∑
j∈J− ‖x (j) − θ−‖1

subject to: ‖θ+ − θ−‖0 ≤ k ,

where k ≤ m is a given upper bound on the cardinality of θ+ − θ−.

G.C. Calafiore Sparse `1 and `2 center classifiers Nov. 4, 2019 14 / 37



Training the sparse `2-center classifier
Notation

We let E denote a fixed set of indices of cardinality m− k, and D denote the
complementary set, that is, D = {1, . . . ,m} \ E .

For any vector x ∈ Rm we write xD to denote a vector of the same dimension
as x which coincides with x at the locations in D and it is zero elsewhere.

We define analogously xE , so that x = xD + xE .

We then let

θ+ = θ+
D + θ+

E

θ− = θ−D + θ−E .

If E is the set of the indices where θ+− θ− is zero, so that θ+
E − θ

−
E = 0, then

θ+
E = θ−E

.
= θE ,

whence

θ+ = θ+
D + θE

θ− = θ−D + θE .
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Training the sparse `2-center classifier
Result

Proposition 1

An optimal solution of the sparse `2-center problem is obtained as follows:

1 Compute the standard class centroids x̄+, x̄−;

2 Compute the centroids midpoint x̃ = (x̄+ + x̄−)/2, and the centroids
difference δ

.
= x̄+ − x̄−;

3 Let D be the set of the indices of the k largest absolute value elements in
vector δ, and let E be the complementary index set;

4 The optimal parameters θ+, θ− are given by

θ+ = x̄+
D + x̃E

θ− = x̄−D + x̃E .
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Sparse `2-center classifier
Numerical complexity

Steps 1-2 in Proposition 1 essentially require computing mn sums.

Finding the k largest elements in Step 3 takes O(m log k) operations (using,
e.g., min-heap sorting).

The whole procedure thus takes O(mn) + O(m log k) operations.

Thus, while training a plain centroid classifier takes O(mn) operations
(which, incidentally, is also the complexity figure for training a classical
Naive Bayes classifier), adding exact sparsity comes at the quite moderate
extra cost of O(m log k) operations.
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Sparse `2-center classifier
Online implementation

The sparse `2-center classifier training procedure is amenable to efficient
online implementation, since the class centers are easily updatable as soon
as new data comes in.

Denote by x̄(ν) the centroid of one of the two classes when ν observations
ξ(1), . . . , ξ(ν) in that class are present: x̄(ν) = 1

ν

∑ν
j=1 ξ

(j).

If a new observation ξ(ν+1) in the same class becomes available, the new
centroid will be

x̄(ν + 1) =
ν

ν + 1
x̄(ν) +

1

ν + 1
ξ(ν+1).

Only the current centroids need be kept into memory.

As soon as a new datum is available, the corresponding centroid is updated
(this takes O(m) operations, or less if the datum is sparse) and the feature
ranking is recomputed (this takes O(m log k) operations).
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Sparse `2-center classifier
Sparsity-accuracy tradeoff

In practice, a whole sequence of training problems need be solved at
different levels of sparsity, say from k = 1 (only one feature selected) to
k = m (all features selected).

At each k accuracy is evaluated via cross validation, and then the resulting
sparsity-accuracy tradeoff curve is examined for the purpose of selection of
the most suitable k level.

Most feature selection methods, including sparse SVM, the Lasso, and the
sparse Naive Bayes method, require repeatedly solving the training problem
for each k , albeit typically warm-starting the optimization procedure with
the solution from the previous k value.

In the sparse `2 classifier, instead, one can fully order the vector |x̄+ − x̄−|
only once, at a computational cost of O(m logm), and then the optimal
solutions are obtained, for any k , by simply selecting in Step 3 of
Proposition 1 the first k elements of the ordered vector.
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Sparse `2-center classifier
The Mahalanobis variant

A variant of the `2 centroid classifier is obtained by considering the
Mahalanobis distance instead of the Euclidean distance.

Letting S denote an estimated data covariance matrix, the Mahalanobis
distance from a point z to a center θ± is defined by

distS(z , θ±) = (z − θ±)>S−1(z − θ±).

Maps to the standard `2-center case in transformed variable space

ξ
.

= S−1/2x

where S−1/2 is the matrix square root of S−1.

One relevant special case arises when S = diag
(
σ2

1 , . . . , σ
2
m

)
, in which case

the data transformation ξ = S−1/2x simply amounts to normalizing each
feature xi by its standard deviation σi , that is ξi = xi/σi , i = 1, . . . ,m.
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Training the sparse `1-center classifier
Preliminary fact

Proposition 2 (Weighted `1 center)

Given a real vector z = (z1, . . . , zp) and a nonnegative vector w = (w1, . . . ,wp),
consider the weighted `1 centering problem:

dw (z)
.

= min
ϑ∈R

p∑
i=1

wi |zi − ϑ|.

Let W (ζ)
.

=
∑
{i : zi≤ζ} wi , W̄

.
=
∑p

i=1 wi , and ζ̄
.

= inf{ζ : W (ζ) ≥ W̄ /2}.
Then, an optimal solution is given by

ϑ∗ = med
w

(z)
.

=

 ζ̄ if W (ζ̄) > W̄
2

1
2 (ζ̄ + ζ̄+) if W (ζ̄) = W̄

2 ,

where ζ̄+
.

= min{zi , i = 1, . . . , p : zi > ζ̄} is the smallest element in z that is
strictly larger than ζ̄.
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Weighted median and dispersion
Notation

Given a row vector z and a nonnegative vector w of the same size, we define
as the weighted median of z the optimal solution of the weighted
`1-centering problem, and we denote it by medw (z).

We define as the weighted median dispersion the optimal value dw (z) of
weighted `1-centering problem.

We extend this notation to matrices, so that for a matrix X ∈ Rm,n we
denote by medw (X ) ∈ Rm a vector whose ith component is medw (Xi,:),
where Xi,: is the ith row of X , and we denote by dw (X ) ∈ Rm the vector of
corresponding dispersions.
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Training the sparse `1-center classifier
Result

Proposition 3

The optimal solution of the `1-centering problem is obtained as follows:

1 Compute the plain class medians

µ+ .
= med({x (j)}j∈J + )

µ−
.

= med({x (j)}j∈J−)

2 Define a weight vector w is such that, for j = 1, . . . , n, wj = 1/n+ if
j ∈ J +, and wj = 1/n− if j ∈ J−.

3 Compute the weighted median of all observations

µ
.

= med
w

({x (j)
i }j=1,...,n).
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Training the sparse `1-center classifier
Result

Proposition 3 (Contd.)

4 Compute the median dispersion vectors d+, d− according to

d+
i

.
= 1

n+

∑
j∈J + |x (j)

i − µ
+
i |

d−i
.

= 1
n−

∑
j∈J− |x (j)

i − µ
−
i |.

5 Compute the weighted median dispersion vector d according to

di
.

=
n∑

j=1

wj |x (j)
i − µi | =

1

n+

∑
j∈J +

|x (j)
i − µi |+

1

n−

∑
j∈J−

|x (j)
i − µi |.
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Training the sparse `1-center classifier
Result

Proposition 3 (Contd.)

6 Compute the difference vector e
.

= (d+ + d−)− d.

7 Let D be the set of the indices of the k smallest elements in vector e, and
let E be the complementary index set.

8 The optimal parameters θ+, θ− are given by

θ+ = µ+
D + µE

θ− = µ−D + µE .
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Sparse `1-center classifier
Numerical complexity

Computation of the medians in Proposition 3 can be performed with in
O(m) operations.

Computation of the median dispersions requires O(mn) operations.

Finding the k smallest elements in vector e can be performed in O(m log k)
operations.

The whole procedure in Proposition 3 is thus performed in
O(mn) + O(m log k) operations.

Similar to the `2 case, also in the sparse `1 center classifier one need to do a
full ordering of an m-vector only once in order to obtain all the sparse
classifiers for any sparsity level k .
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Sparse `1 and `2-center classifiers

Numerical Tests
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Sparse `2-center classifiers
Numerical experiments

We compared the proposed sparse `2-center classifier with other feature
selection methods for sentiment classification on text datasets.

We considered three different datasets:

I TwitterSentiment140 (TWTR) dataset
I MPQA Opinion Corpus Dataset
I Stanford Sentiment Treebank (SST).

All datasets are labeled with binary labels indicating the polarity of the text.

Table: Text dataset sizes

TWTR MPQA SST
Number of features 273779 6208 16599
Number of samples 1600000 10606 79654
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Sparse `2-center classifiers
Numerical experiments

For each dataset, we performed a two-stage classification procedure.

In the first stage, we apply a feature selection method in order to reduce the
number of features. Then, in the second stage we train a classifier method
employing only the selected features.

We compared different feature selection methods: sparse `2-centers (`2-SC),
Mahalanobis distance classifier (MDC), and sparse multinomial naive Bayes
(SMNB).

Other well-known feature selection methods, such as logistic regression,
support vector machine, and LASSO, are not considered due to their high
computational cost that makes them not feasible with large dataset.

Using the selected features, we train a linear support vector machine
classifier.
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Sparse `2-center classifiers
Numerical experiments
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Sparse `2-center classifiers
Numerical experiments
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Sparse `2-center classifiers
Numerical experiments
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Sparse `2-center classifiers
Runtimes
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Sparse `1-center classifiers
Numerical experiments

We compared the proposed sparse `1-center classifier with other feature
selection methods for RNA gene expression classification.

We considered the Leukemia dataset, and Breast Cancer dataset .

Table: RNA gene expression dataset sizes

Leukemia Breast Cancer
Number of features 7129 22215
Number of samples 72 118

We compared four feature selection methods: sparse `1-centers (`1-SC),
`1-regularized logistic regression, logistic regression with recursive feature
elimination (RFE), and LASSO.
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Sparse `1-center classifiers
Numerical experiments
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Sparse `1-center classifiers
Numerical experiments
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Sparse `1-center classifiers
Runtimes
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