Control of Cyber-Physical Systems with Logic Specifications

Giordano Pola
DISIM - DEWS
University of L’Aquila (Italy)

Piazza Duomo, L’Aquila, Italy

giordano.pola@univaq.it
Cyber-Physical Systems (CPS) are physical, biological and engineered systems whose operations are monitored, coordinated, controlled and integrated by a computing and communication core.
Critical aspects of CPS

- **Heterogeneity**: plants, controllers and specifications described in different mathematical frameworks
- **Non-ideal communication infrastructure**: control action delivered with delay on the basis of delayed and corrupted measure of the states of the plants, lack of information (packet drops), etc.
- **Complexity**: large number of possibly distributed sub-systems
- **Logic specifications**
- …
A three phases process:
#1. Construct the finite/symbolic model T approximating the plant system P
#2. Design a finite/symbolic controller C that solves the specification S for T
#3. Refine the controller C to the controller C' to be applied to P

Advantages:
- Integration of software and hardware constraints in the control design of purely continuous or hybrid processes
- Relevant logic specifications can be addressed
Plant and controller

- **Plant:**

\[P: \begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ x(t) \in \mathbb{R}^n, u(t) \in U \subset \mathbb{R}^m \end{cases} \]

- \(U \) finite set
- \(x(t, x_0, u) \) state reached at time \(t \) with initial state \(x_0 \) and control input \(u \)

- **Controller C: Finite State Machine**

 ![Finite State Machine Diagram]

 - Inputs of C: quantized measurements of the state of \(P \)
 - Outputs of C: control signal \(v(k) \) to be inferred to the plant \(P \)

- **Controlled plant** \(P^C \) obtained by coupling dynamics of \(P \) and \(C \) with \(\text{ZoH}: \{ u(t) = v(k), \forall t \in [k\tau, (k+1)\tau], k \in \mathbb{N} \} \)

 - \(\tau > 0 \) sampling time
Logic specifications: Regular languages

Recall
- Let Y be a finite set representing an alphabet
- A word over Y is a finite sequence with symbols in Y
- A language L over Y is a collection of words in Y

Definition
A language is regular if it can be represented by a Finite State Automaton (FSA)

Example
Y = \{ a, b \}
L = all words over Y starting with symbol a and ending with symbol b
L is regular because of existence of FSA:
Logic specifications: Regular languages

Alphabet: collection Y of left-closed right-open hyper-cubes Y_i of \mathbb{R}^n

$$Y_i = c_i + \prod_{i=1}^{n} [-\eta, \eta]$$

$$c_i \in 2\eta \mathbb{Z}^n$$

Y is a partition of \mathbb{R}^n

We consider a specification expressed as a regular language L_Q over Y

Specifications for CPS handled via regular language formalism:
- Reachability
- Controlled invariance in finite time horizon
- Obstacle avoidance in finite time horizon
- Motion planning
- Enforcing periodic orbits
- State-based switching specifications
- ...
Given
- the plant P
- a sampling time $\tau > 0$
- a regular language specification L_Q
- a desired accuracy $\theta > 0$

Find
- a controller C with set of initial states $X_{c,0}$
- a relation of initial states $R_0 \subseteq \mathbb{R}^n \times X_{c,0}$ of P^C

such that the controlled plant P^C satisfies the specification L_Q up to the accuracy θ, i.e.

for any trajectory $x(.)$ of P^C with $(x(0), x_c(0)) \in R_0$, there exists a word $q_0 q_1 \ldots q_{k_f}$ of L_Q such that

$$||x(k\tau) - q_k|| \leq \theta, \forall k \in [0; k_f]$$

Approximate equivalence notions

Time-delay systems

Introduction
Key assumptions on the plant P

Definition [Angeli, TAC-2002]
Plant P is incrementally globally asymptotically stable (δ-GAS) if there exists a \mathcal{KL} function $\beta: \mathbb{R}^+_0 \times \mathbb{R}^+_0 \to \mathbb{R}^+$ such that for any $t \geq 0$, any initial conditions x, x' and any input u

$$\|x(t, x, u) - x(t, x', u)\| \leq \beta(\|x - x'\|, t)$$

Remark δ-GAS can be checked by using Lyapunov-like inequalities
Key assumptions on the plant P

Definition [Zamani et al., TAC-2012]

Plant P is incrementally forward complete (δ-FC) if there exists a continuous function $\beta : \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}^+$ such that for every $s \in \mathbb{R}^+$, function $\beta(., s)$ belongs to class \mathcal{K}_∞ and for any $x, x' \in \mathbb{R}^n$ and any u

$$\|x(t, x, u) - x(t, x', u)\| \leq \beta(\|x - x'\|, t)$$

Remarks

- Any (possibly unstable) linear system is δ-FC
- δ-FC can be checked by using Lyapunov-like inequalities
- δ-GAS implies δ-FC while the converse is not true
Contribution
For δ-FC (and hence δ-GAS) plants, we designed algorithms solving the control problem for any desired sampling time $\tau > 0$ and accuracy $\theta > 0$

Remarks
- Symbolic model T of P obtained by time and state space discretization of P
- If P is δ-GAS then T is an approximate bisimulation [5] of time discretization of P
- If P is δ-FC then T is an alternating approximate simulation [4] by time discretization of P
- Design of controllers inspired by supervisory control algorithms
- The «completeness property»: If P is δ-GAS then a control strategy enforces a given specification on P if and only if it can be found on T (guaranteed by approximate bisimulation)

Based on:
Including more features of CPS

- **Stable nonlinear switched systems**
 TOOLS: δ-UGAS and its check through common and multiple Lyapunov functions with Antoine Girard and Paulo Tabuada

- **Stable nonlinear control systems with disturbance inputs**
 TOOLS: δ-ISS, alternating approximate bisimulation and spline analysis with Paulo Tabuada, Alessandro Borri and Maria Domenica Di Benedetto

- **Stable nonlinear time-delay systems**
 TOOLS: δ-ISS, δ-IDSS, alternating approximate bisimulation and spline analysis with Pierdomenico Pepe and Maria Domenica Di Benedetto

- **Networked control systems**
 TOOLS: strong alternating approximate simulation and bisimulation with Alessandro Borri and Maria Domenica Di Benedetto

- **Decentralized supervisory control**
 TOOLS: extensions of supervisory control to concurrent settings with Pierdomenico Pepe and Maria Domenica Di Benedetto

- **Control design of stable nonlinear systems with outputs**
 TOOLS: δ-GAS, approximate bisimulation with Maria Domenica Di Benedetto and Alessandro Borri
Networked control systems

Nonidealities considered:

- Quantization errors
- Bounded time-varying network access times
- Bounded time-varying communication delays induced by the network
- Limited bandwidth
- Bounded packet losses
- Bounded time-varying computation time of computing units
We proposed an approach based on formal methods for the control of CPS with logic specifications

Future work: Design of efficient control algorithms and their software implementation

Thanks!
References on formal methods for the control of CPS

5. [Pola et al., TAC18] Pola, G., Pepe, P, Di Benedetto, M.D., Decentralized Approximate Supervisory Control of Networks of Nonlinear Control Systems, IEEE Transactions on Automatic Control, 63(9):2803-2817, September 2018
18. [Borri et al., NECSYS13] Borri, A., Dimarogonas, D.V., Johansson, K.H., Di Benedetto, M.D., Pola, G., Decentralized symbolic control of interconnected systems with application to vehicle platooning, 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems, Koblenz, Germany, September 2013, pp. 285-292