

### Politecnico di Torino

Dipartimento di Scienze Matematiche "G. L. Lagrange"



Wednesday June 8 at 16:30 Hosted on: Zoom

## Elisabetta CORNACCHIA

EPFL

# An initial alignment between neural network and target is needed for gradient descent to learn

Prof. Chiadò-Piat introduces the seminar.

### Abstract

In this work, we introduce the notion of "Initial Alignment" (INAL) between a neural network at initialization and a target function. It is proved that if a network and target function do not have a noticeable INAL, then noisy gradient descent on a fully connected network with normalized i.i.d. initialization will not learn in polynomial time. Thus a certain amount of knowledge about the target (measured by the INAL) is needed in the architecture design. This also provides an answer to an open problem posed in [Abbe and Sandon, 2020]. The results are based on deriving lower-bounds for descent algorithms on symmetric neural networks without explicit knowledge of the target function beyond its INAL.

Joint work with E. Abbé, J. Hazla, C. Marquis.

### Biography

Elisabetta Cornacchia received her BSc in Mathematics for Engineering from the Polytechnic University of Turin and her MSc in Applied Mathematics from EPFL. Starting Fall 2019, she is pursuing a PhD in Mathematics at EPFL, under the supervision of Prof. Emmanuel Abbé.

She is recipient of the COLT 2021 Best Student Paper Award.