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Our focus

Q. How can a planner provision information to manage strategic
agents who face choice to move to congested hotspot?

- Information governs agents’ tradeoff of risk vs. value at
hotspot

- Planner’s utility defined in terms of ranges of preferred agent
mass at hotspot and can depend on unknown state

- Applications: pandemic management (®), ride-hailing (&)

» Study preferences for which optimal information mechanism
has interval-based (esp. monotone partitional structure).

» Highlight how optimal information changes when dynamically
provisioned to long-run agents over a uncertain time-hotizon

2/46



Part I: Hybrid work under risk of infectious
disease at worksplace
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Motivation

» Public health messaging and news reporting impacted
individual activity/isolation levels during pandemic!

» Bayesian information design can be an effective tool for
shaping agents’ decisions, particularly in post-peak phase

Our setup:

» Information about risk of community transmission at
workplace can be a soft intervention in hybrid work settings

» Planner aims to balance gains from in-person activity at
workplace (hotspot) against costs from disease spread

1Alcott et al. '20, Bursztyn et al. '20
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Setup

» Planner discloses public information over uncertain state
0* ~ F for continuous F to unit mass of strategic agents

» Mass (fraction) 1 — y elect to move to hotspot

» Each agent gains personal benefit and incurs uncertain cost
that depends on 6* and y

> We focus on design of optimal information provision for a
broad class of planner preferences h(y; 6*)
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Overview of results (Part 1)

A. State-independent, set-based preference: h(y;0*) = I{y € Y}
» For most distributions F, optimal mechanism just signals
which of two intervals that partitions © the true value lies in
» Monotone partitional and interval-based structure

B. State-dependent preference:

» Using discretization and linear programming for algorithmic
design of mechanisms with approximation guarantees
» Scaled capacity: h(y;6") = I{y > a(0")} for increasing, step
function a
> Lipschitz preference: h(y;6") is Lipschitz continuous

» Mechanism satisfies interval-based structure by construction
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Model: Uncertainty & Signalling

» Unknown state 0* € © := [0, M] where §* ~ F

» F is commonly known and p° = Eg[0*]
» 1 values of state = 1 risk of community transmisison

» Planner publicly commits and discloses signalling mechanism:

™= ({z() }oco, )

» 7 - set (alphabet) of signals
» zp € A(Z) - distribution over signals
» Planner does not observe #* when commits/discloses
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Model:

| 2

>

Uncertainty & Signalling

Signal i € 7 is drawn from zg«, and publicly shared with
agents before they make their choices
Signal j realized w.p. g; and induces posterior mean belief u;

g =Plr =i = /eee z9(i)dF(0)

fGE@ 929(i)dF9

Joco 20(i)dF(0)

7 has direct mechanism representation 7, = {(qi, pi) }iez
Blackwell 1953: A distribution over posterior means H is
induced by some information structure if and only if:

H is mean-preserving contraction of F, that is, H >

pi = Elf|m — i] =

Ay
AE

! I
0 M
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Monotone Partitional Structure

Monotone Partitional Structure (MPS)

A signaling mechanism 7 has MPS if:
> 3 finite partition of ©, P := {©;}; = {[tj—1, {j]} ],
P 0=t <t <  <th1<tm=M
» 7 =[m] and for all § € ©, z(j) = {0 € [tj_1, t;j]}

s=1 ,\:\2523574 525576

| T i \

T
(C)
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Model: Agents

» Unit mass of non-atomic agents; each making simultaneous
location choice: a € {/., ¢}

» /.. in-person work (communal/hotspot location)
> /,: remote work (peripheral location)

» y(a): aggregate mass choosing ¢,

» Each agent has private type from known distribution v ~ G
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Model: Agents

Each agent earns reward
> u(lp,y;0%)=0if a= ¢,
> u(le,y; 0%) = v —B(y;0%) if a= L., where
B(y; 0%) = 0*c1(y) + c2(y), with c1(+), c2(+) decreasing and
differentiable

Remote agent mass at equilibrium: y(a*|m — i) = y2(i)

1. In equilibrium yZ(i), 3v* s.t. agents at £ <= v > v*

2. 3 weakly increasing, bounded, continuous m: © — [0, 1] such
that (i) = m(ui)

» v*: private benefit of marginal agent indifferent over /. & ¢,
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Remote mass for different G

m( i)

0.6

= Uniform

Exponential

Normal

Bimodal

0.4

0.3

0.2

0.1

0.0

» Larger remote agent mass needs (even) higher posterior means
» For simple preference and concave m(-), easy to maximize —

try to induce “best” belief
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Model: Planner Preferences

For given 7, planner earns reward h(y;6*)

Class h(y; 6%) Assumptions | Motivation
State- Ky e Y} Y CJ0,1] Capacity mandates,
indpt, Essential workers
set-based
Scaled- I{y > a(6*)} | Increasing Safe capacity limits
capacity step
function a
Lipschitz h(y; 6%) jointly- Community effects,
Lipschitz Multiple workspaces
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Planner's Design Problem

Optimal signalling mechanism

" = arg max V()
™

= arg max Egen e (1A, v (1):6)]

= argmax By imzy. (o[, m(i);0)]
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State-Independent, Set-Based Preference

> h(y;07) =y € YV}
> )= UJ-KZIQJ- — union of K intervals Q; := [a;, b;] C [0,1]

> For each j, “desirable”’ posterior means: ©; :== m~1(Q))

m(pu;)
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Equilibrium to Beliefs

Planner seeks 7*:
argmax V() = maxP{y(i) € V}
= maxP{p; € m 1))}

=max Y ql{u € UL, 6;}
i€l
> \We analyze by position of prior mean ;° relative to Uszléj
(a = min©y, b = maxO))
> Relative position of prior belief ;1° to the desirable beliefs
UjK:1éj is critical to structure of optimal design
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Optimal Design

Theorem: Regimes with monotone partitional structure (MPS)

F * V(r*)
uwev; | IT={1} 1
[0,M] —1
ne<a Z={1,2} |1-F(t")
[0,t*] — 2
[t*,M] =1

Jio f1py
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Optimal Design

Theorem: Regimes with monotone partitional structure (MPS)

F * V(r*)

uw e, | IT=A{1} 1
[0,M] —1

u® > b ZT={1,2} | F(t")
[0,t*] -1 ar
[t*,M] — 2 do

i 1 piz
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MPS is not guaranteed

» F ~ Unif[0,1] (u° = 0.5)
> 0 =[0.4—¢04+¢,0=1[0.6—¢06+¢

» No mechanism with MPS achieves objective 1
> Consider first interval [0, t1] (uy = %, p; > 52 for all i > 1)

> 7 = {1,2} with z(1) = 0.7 and zy(2) = 0.3 for all 6 < 0.5,
and zg(1) = 0.3 and z(2) = 0.7 for all § > 0.5

» 11 =04 and up, =0.6
» Achieves objective of 1
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Optimal Design

> Let s(t) = E[0]6 < t] and 5(t) = E[0]0 > t]

Theorem
F * V(m*)
as<p <b 7={1,2} |1
pe ¢ UK. e, [0,t] -1 daF
Jt, s(t),5(t) €| [t,M] —2 do
UK,6i
H1 H H2 @

» Disperse mean belief; but can't do so if too tightly
concentrated

» Can derive more general conditions without much complexity
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Optimal Design

» p(t,\,9) and g(t, A, ) more diffused analogs of s,5

Theorem
F * V(7*)
a<u®<b =112} 1
e ¢ UE,6;
Ht, P t,)\,5), [0 t] w.p A
K &. )
q( )>\v 6) Ui=1el w.p 1)
w.p
[ta M] S
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Proof idea

» Part |: Require at most K + 1 signals (|Z| < K + 1)

> O; are closed, convex intervals
» For each j, pj,, ptj, € ©; can be combined without loss

» Part Il: Objective fn. of g;, u1;, so can search over T;'s

» Search directly over aII H >
» Constraints: [ H™!(t)dt > [ t)dt Ve € [0,1]
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Proof idea

» Part |: Require at most K + 1 signals (|Z| < K + 1)
| (:)j are closed, convex_intervals
» For each j, pj,, ptj, € ©; can be combined without loss
» Part Il: Objective fn. of g;, u1;, so can search over T;'s
» Search directly over aII H >
» Constraints: [ H™!(t)dt > [ t)dt Ve € [0,1]
> Part Ill: Know posmons i
> If u° < aorp® > B,_ know position of k41 relative to other
posterior means in ©;
» If not, solve K convex optimizations for possible locations of
HK+1
» Part IV: Combining (I) + (I1) + ()
» Know that H must be discrete by (I)
» Finite subset of constraints are sufficient so we reduce from an
infinite # of constraints to finite constraint problem
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State-dependent preferences

» Allowing preferences to depend on the state §* complicates
the search problem (considering only 7 no longer sufficient)

» F ~ Unif[0,1] (u° = 0.5)

> h(y;07) =y € Y(67)}

» Desirable beliefs Q(6*) = m~1(Y(6*)) = [56*,1]
0 m t 1

> 7= {172}77; = 7;1" = {(ql = %7”1 = 17_2 7(q2 - %UUQ -
> VEn(T) # VEns(T)

> If 6% € (2, 3), success only under m when induce belief ;i1

)}

ENTS
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State-dependent preferences

» Allowing the preferences to depend on the state 6* further
reduces the possibility to obtain an optimal design with MPS

> F ~ Unif[0,1] (u° = 0.5)

> h(y;0") =y € Y(6")}

» Desirable beliefs Q(6%) = m~1(Y(6*)) = [30* — ¢, 30% + €]
» 7= (Z,{z9}pco) where T = {1,2,3} and z(s) is as follows:

1w.p. 1if 6 eS8 =[0,0.12] U[0.52,0.56]
2()={ 2wp. 1if0e S =][0.12,0.30] U [0.80,0.82]
3wp. 1ifdeS;= [0, 1] \ {81 US2}

v

w1 = 0.18, up = 0.27 and p3 = 0.65
Ve n(m) = 12¢
» Opt Mechanism with MPS: 6¢

v
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Approximately Optimal Design

» Previous examples motivates need for approximate solutions

Definition
A mechanism 7€ is e-optimal for a problem instance defined by
distribution F over © and utility function h (under Vg p) if:

Ve (™) — VEu(n) < e

How to produce interval-based signalling mechanism 77
1. Discretize F appropriately to Fs (intervals ©; — points v;)
2. Reduce consideration to finite # of signals
3. Solve discrete analog using linear programming to get 7*
4

. Translate the discrete solution 7©* to 7¢
by applying z,, signal distribution to all states in ©;
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Preferences

» Lipschitz: Preferences are smooth in the in-person mass and
realized state

» h(y;0%) is uniformly n;-Lipschitz in y & mo-Lipschitz in 6*

» Scaled-capacity: Preferences specify an in-person capacity
limit that gets progressively more strict as 8* increases

> h(y;0*) =T{y € Y(0*)} =I{y > a(6*)} where a(-) is
weakly increasing step function
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Discretization of F to Fj

» Consider a finite number of states 6* € {v;};=1_n
» Partition © into N = MJ intervals ©; of width %

» Pick smallest point v; in each interval and assign all mass in
©; under F to point v; in Fs
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Discretization of F to Fj

» Consider a finite number of states 6* € {v;};=1_n
» Partition © into N = MJ intervals ©; of width %

» Pick smallest point v; in each interval and assign all mass in
©; under F to point v; in Fs
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Reduce # of signals

h(y;-)

» N curves

» Approximate h by piecewise const. fn. in y without much loss
for Lipschitz preference
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Reduce # of signals

7&

7‘

&

h(y;v)

(i) m(yi)

\
1Y

(i) m(in)

P> At most one signal will correspond posteriors that have
equilibrium in each interval ; € [vi, vit1]
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Reduce # of signals

7&

7‘

Si

h(y;v)

m(fz;)
P> At most one signal will correspond posteriors that have
equilibrium in each interval [; € [vi, vit1]

\
1Yy

m( ;)
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Solve Linear Program

» Variables xj; to represent probability in state v; under Fs and
signal i is provisioned

> Z,(i) = E: &,
» Objective and constraints on posterior can all be made linear

» Constraints on f;: 7; ZJ 1 Xi < ZJ LViXji < Vit ZJ 1 Xji
» LP algorithm outputs optimal discrete solution 7*

= 7TF57h
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Translate from discrete to continuous solution

> Apply signal distribution Z,, from 7* to every point in the
corresponding interval ©; to get 7°

» Similarly, unknown true optimal design 7 , has discrete
analog T where aggregate signal distribution over interval ©;
is applied to v;

Quality of 7€ error bounded by how lossless we transition from
discretized to continuous signalling mechanisms:

VEn(E n) = VER(1) <(VEn(TE p) = Vs a(T))
+ (VEs,n(T*) = VE (%))
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Translate from discrete to continuous solution

7[

7‘

Si

h(y;v)

m(i) m(us)

\
1Yy

(i) m(us)

» Posteriors are close under discretization: 0 < p; — fi; < %
continuous signalling mechanisms induce higher posteriors
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Translate from discrete to continuous solution

» Distribution over observed signals are identical

» This guarantees objective function values are also close

Theorem: For both Lipschitz and scaled-capacity

If cdf of G is Lipschitz, algorithm produces e-optimal mechanism
with runtime:

Lipschitz: O(%)

Scaled Capacity: O(%)
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Part Il: Dynamic information provision about
demand surge in ride-hailing systems
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Surge Pricing

Mobility service providers need to deal with uncertain demand

» Wild Goose Chase (WGC): Demand spikes
= drivers pick up far away passengers
= fewer trips supplied = matching failure
= low welfare (Castillo et al. '17)
» Surge Pricing:
» Subverts WGC
» Lower prices when demand is low

> 1 total welfare and 1 utilization rate :

Rich literature on market design for ride-hailing systems:

» Bimpikis et al. '19, Besbes et al. '20, Borgs et al. '14,
Castillo et al. '17, Castillo '20, Garg et al. '19
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Managing Strategic Drivers

> Key issue: Strategic drivers with uncertainty over surge
patterns (i.e. when and where) proactively chase/skip surges
» Unreliable service and supply-demand imbalance
> Congestive effect at surge hotspot

Q. How can platform dynamically provision information about
uncertain demand surge to manage strategic drivers?
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Our setting

» Planner seeks to maximize number of periods where desirable
masses are maintained across two location types

» Under full-information disclosure, this is not possible as all
agents only move just before surge onsets

» Under no-information disclosure, agents distribution
immediately converges

» Key point: Optimal disclosure induces the mass in the
desirable set that is closest to the no-information mass

37/46



Dynamic Model

P Discrete time t = 1,2, ..
» Unit mass of non-atomic long-run agents; each make
simultaneous location choice at time t: a; € {{c, {p}

» (. is communal (demand hotspot)
» (, is peripheral (remote)
» Move from £, to {. is irreversible

» Mass y; at £, at end of t
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Model: Agents

» Each agent has private fixed per-period wage at £, from
known distribution v ~ G

» Random time horizon T ~ Geom(q) when surge onsets at
congested hotspot

» Horizon is memoryless
> At end of period T, 1 — y agents at £ receive 5(1 — y) where
B(-) is decreasing

P> Agents seek to maximize total horizon wages
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Dynamic Information Provision

» Planner seeks to maintain driver distribution in a goal set
i.e., maximize # of periods t with y; € ¥ == U}, Q;
» Each t, planner first publicly commits to and discloses
signalling mechanism m = (Z,{zp(-) }oco,)
> @t = {Sta Stc} where St = {T = t} (eg P[St] = q)
» Planner can observe y;_1, but not 5;
» An adaptive, sequential model
» Signal then publicly shared with all agents before they make
their decisions
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Memorylessness

> By memorylessness, agents in t play stationary strategies that
only depend on belief over (i) == P[S¢|m — i] and y:—1

P Planner also uses stationary strategy to prescribe m; that only
depends on y;_1

» Can characterize map from current beliefs to equilibrium in
next period my, ,(u¢) = y; (analogous to m(-) for Part I)
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Value of information

» Solve for optimal strategy using dynamic programming on

value functions V/(u¢; ye—1)

> V is piecewise concave (linear) in fi;
» Concave regions correspond to the p; that yield y; in Q;

» Planner benefits by not dispersing beliefs in these intervals

V(e ye-1)

0 mt (bk)  myli(ar)

e
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Full and no disclosure: Benchmarks

Lemma

» Under full disclosure, y{ = .. = y7_; > y7
» Agents move to /. before T iff v < Vg where 5(G(Vg)) = Vg
» Under no disclosure, 7*(q) = y; = .. = y7

» Agents move (immediately) to ¢ iff v < vj, where

B(G(vpy) = 2
» 7 :[0,1] — [0,1] is weakly decreasing, bounded, and
continuous.
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Dynamic Information Provision: Result

— No Inf.
1r — Full Inf. H
— Opt.
Fraction of T-horizon
0 — ©) 10 OO —
| | | |
0 y=1(bk) vy Ya1) 1
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Dynamic Information Provision: Result

Optimal mechanism uses at most two signals and achieves values

and posterior distributions:

q: V* . (pa, p2) =

a <7 (bx) Lo P ) (0.7} (bk))
b <a <y | G0, @)
q>j Y(a) m (7 (a1), 1)
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Conclusion

» New insights on structure and computation of optimal
information mechanisms for managing congested hotspots

» Static and dynamic designs

» Future work: settings when planner needs to learn

thank you! feedback and questions?
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