Information provision for managing a congestion-prone hub

Saurabh Amin joint work with <u>Sohil Shah</u> and Patrick Jaillet

MIT

AGT, Mechanism Design and Learning Workshop 2022 Politecnico di Torino, DISMA

Our focus

- Q. How can a planner provision information to manage strategic agents who face choice to move to congested hotspot?
 - Information governs agents' tradeoff of risk vs. value at hotspot
 - Planner's utility defined in terms of ranges of preferred agent mass at hotspot and can depend on unknown state
 - Applications: pandemic management (*), ride-hailing (+)
- Study preferences for which optimal information mechanism has interval-based (esp. monotone partitional structure).
- Highlight how optimal information changes when dynamically provisioned to long-run agents over a uncertain time-hotizon

Part I: Hybrid work under risk of infectious disease at worksplace

Motivation

- Public health messaging and news reporting impacted individual activity/isolation levels during pandemic¹
- Bayesian information design can be an effective tool for shaping agents' decisions, particularly in *post-peak* phase

Our setup:

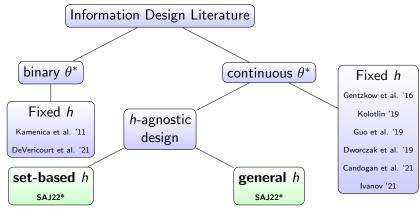
- Information about risk of community transmission at workplace can be a soft intervention in hybrid work settings
- Planner aims to balance gains from in-person activity at workplace (hotspot) against costs from disease spread

¹Alcott et al. '20, Bursztyn et al. '20

Setup

- Planner discloses public information over uncertain state θ* ~ F for continuous F to unit mass of strategic agents
- Mass (fraction) 1 y elect to move to hotspot
- Each agent gains personal benefit and incurs uncertain cost that depends on θ* and y
- We focus on design of optimal information provision for a broad class of planner preferences h(y; θ*)

Related work



Hard interventions:

Hu et al. '22, Birge et al. '20, Acemoglu et al. '20, Chernozhukov et al. '21, Moore '21, Drakopoulos et al. '14 Overview of results (Part I)

- A. State-independent, set-based preference: $h(y; \theta^*) = \mathbb{I}\{y \in \mathcal{Y}\}$
 - For most distributions F, optimal mechanism just signals which of two intervals that partitions Θ the true value lies in
 - Monotone partitional and interval-based structure
- B. State-dependent preference:
 - Using discretization and linear programming for algorithmic design of mechanisms with approximation guarantees
 - Scaled capacity: h(y; θ*) = I{y ≥ a(θ*)} for increasing, step function a
 - **Lipschitz preference:** $h(y; \theta^*)$ is Lipschitz continuous
 - Mechanism satisfies interval-based structure by construction

Model: Uncertainty & Signalling

• Unknown state $\theta^* \in \Theta := [0, M]$ where $\theta^* \sim F$

- *F* is commonly known and $\mu^{\circ} = \mathbb{E}_{F}[\theta^{*}]$
- \uparrow values of state \Rightarrow \uparrow risk of community transmisison

Planner publicly commits and discloses signalling mechanism:

$$\pi = \langle \{ z_{\theta}(\cdot) \}_{\theta \in \Theta}, \mathcal{I} \rangle$$

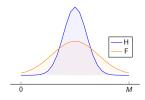
I - set (alphabet) of signals
 *z*_θ ∈ Δ(*I*) - distribution over signals
 Planner does not observe θ* when commits/discloses

Model: Uncertainty & Signalling

- Signal *i* ∈ *I* is drawn from *z*_{θ*}, and *publicly* shared with agents before they make their choices
- Signal *i* realized w.p. q_i and induces posterior mean belief μ_i

$$q_i := \mathbb{P}[\pi \to i] = \int_{\theta \in \Theta} z_{\theta}(i) dF(\theta)$$
$$\mu_i := \mathbb{E}[\theta | \pi \to i] = \frac{\int_{\theta \in \Theta} \theta z_{\theta}(i) dF\theta}{\int_{\theta \in \Theta} z_{\theta}(i) dF(\theta)}$$

π has direct mechanism representation *T_π* = {(*q_i*, μ_i)}_{*i*∈*I*}
 Blackwell 1953: A distribution over posterior means *H* is induced by some information structure if and only if:
 H is mean-preserving contraction of *F*, that is, *H* ≥ *F*



Monotone Partitional Structure

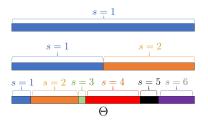
Monotone Partitional Structure (MPS)

A signaling mechanism π has MPS if:

► \exists finite partition of Θ , $\mathcal{P} := {\Theta_j}_{j=1}^m = {[t_{j-1}, t_j]}_{j=1}^m$

•
$$0 = t_0 < t_1 < \cdots < t_{m-1} < t_m = M$$

▶
$$\mathcal{I} = [m]$$
 and for all $\theta \in \Theta$, $z_{\theta}(j) = \mathbb{I}\{\theta \in [t_{j-1}, t_j]\}$



Model: Agents

- ► Unit mass of non-atomic agents; each making simultaneous location choice: a ∈ {ℓ_c, ℓ_p}
 - \$\ell_c\$: in-person work (communal/hotspot location)
 - ℓ_p: remote work (peripheral location)
- ▶ y(a): aggregate mass choosing ℓ_p
- Each agent has private type from known distribution v ~ G

Model: Agents

Each agent earns reward

•
$$u^{v}(\ell_{p}, y; \theta^{*}) = 0$$
 if $a = \ell_{p}$

•
$$u^{v}(\ell_{c}, y; \theta^{*}) = v - \beta(y; \theta^{*})$$
 if $a = \ell_{c}$, where
 $\beta(y; \theta^{*}) \coloneqq \theta^{*}c_{1}(y) + c_{2}(y)$, with $c_{1}(\cdot), c_{2}(\cdot)$ decreasing and differentiable

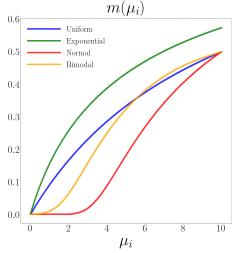
Remote agent mass at equilibrium: $y(a^*|\pi \rightarrow i) = y^*_{\pi}(i)$

Proposition

- 1. In equilibrium $y^*_\pi(i), \; \exists v^* \; {
 m s.t.}$ agents at $\ell_c \iff v > v^*$
- 2. \exists weakly increasing, bounded, continuous $m:\Theta \to [0,1]$ such that $y^*_\pi(i) = m(\mu_i)$

▶ v^* : private benefit of marginal agent indifferent over $\ell_c \& \ell_p$

Remote mass for different G



- Larger remote agent mass needs (even) higher posterior means
- ► For simple preference and concave m(·), easy to maximize try to induce "best" belief

Model: Planner Preferences

For given π , planner earns reward $h(y; \theta^*)$

Class	$h(y; \theta^*)$	Assumptions	Motivation
State-	$\mathbb{I}\{y \in \mathcal{Y}\}$	$\mathcal{Y} \subseteq [0,1]$	Capacity mandates,
indpt,			Essential workers
set-based			
Scaled-	$\mathbb{I}\{y \ge a(\theta^*)\}$	Increasing	Safe capacity limits
capacity		step	
		function a	
Lipschitz	$h(y; \theta^*)$	jointly-	Community effects,
		Lipschitz	Multiple workspaces

Planner's Design Problem

Optimal signalling mechanism

$$\pi^* = \arg \max_{\pi} V(\pi)$$

$$\coloneqq \arg \max_{\pi} \mathbb{E}_{\theta^* \sim F, i \sim z_{\theta^*}(\cdot)} [h(\pi, y^*(i); \theta^*)]$$

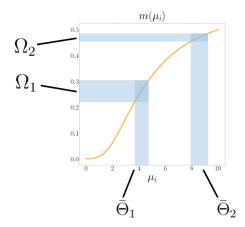
$$= \arg \max_{\pi} \mathbb{E}_{\theta^* \sim F, i \sim z_{\theta^*}(\cdot)} [h(\pi, m(\mu_i); \theta^*)]$$

State-Independent, Set-Based Preference

$$h(y; \theta^*) = \mathbb{I}\{y \in \mathcal{Y}\}$$

► $\mathcal{Y} = \cup_{j=1}^{K} \Omega_j$ – union of K intervals $\Omega_j := [a_j, b_j] \subseteq [0, 1]$

• For each *j*, "desirable" posterior means: $\bar{\Theta}_j \coloneqq m^{-1}(\Omega_j)$



Equilibrium to Beliefs

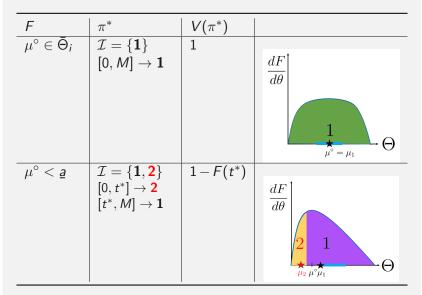
Planner seeks π^* :

$$egin{argmax}{l} rgmax_{\pi} V(\pi) &= \max_{\pi} \mathbb{P}\{y^*_{\pi}(i) \in \mathcal{Y}\} \ &= \max_{\pi} \mathbb{P}\{\mu_i \in m^{-1}(\mathcal{Y})\} \ &= \max_{\pi} \sum_{i \in \mathcal{I}} q_i \mathbb{I}\{\mu_i \in \cup_{j=1}^{\mathcal{K}} ar{\Theta}_j\} \end{array}$$

- We analyze by position of prior mean µ° relative to ∪^K_{j=1}Θ_j (<u>a</u> := min Θ₁, <u>b</u> := max Θ_K))
- ▶ Relative position of prior belief μ° to the desirable beliefs $\cup_{j=1}^{K} \bar{\Theta}_{j}$ is critical to structure of optimal design

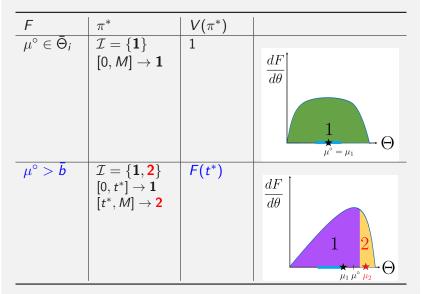
Optimal Design

Theorem: Regimes with monotone partitional structure (MPS)



Optimal Design

Theorem: Regimes with monotone partitional structure (MPS)



MPS is not guaranteed

Example

•
$$F \sim Unif[0,1] \; (\mu^\circ = 0.5)$$

•
$$\bar{\Omega}_1 = [0.4 - \epsilon, 0.4 + \epsilon], \bar{\Omega}_2 = [0.6 - \epsilon, 0.6 + \epsilon]$$

- No mechanism with MPS achieves objective 1
 Consider first interval [0, t₁] (μ₁ = t₁/2, μᵢ ≥ 1+t₁/2 for all i > 1)
- ► $\mathcal{I} = \{1, 2\}$ with $z_{\theta}(1) = 0.7$ and $z_{\theta}(2) = 0.3$ for all $\theta \le 0.5$, and $z_{\theta}(1) = 0.3$ and $z_{\theta}(2) = 0.7$ for all $\theta \ge 0.5$

•
$$\mu_1 = 0.4$$
 and $\mu_2 = 0.6$

Achieves objective of 1

Optimal Design

• Let
$$\underline{s}(t) = \mathbb{E}[\theta | \theta < t]$$
 and $\overline{s}(t) = \mathbb{E}[\theta | \theta > t]$

Theorem

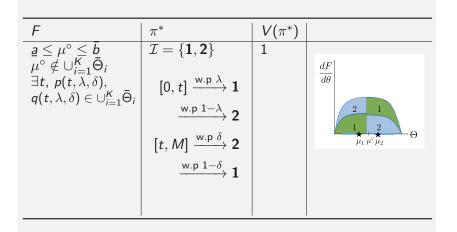
F	π^*	$V(\pi^*)$	
$egin{array}{lll} rac{a}{\mu} \leq \mu^{\circ} \leq ar{b} \ \mu^{\circ} otin \cup_{i=1}^{K} ar{\Theta}_{i} \ \exists t, \ \underline{s}(t), ar{s}(t) \ \in \ \cup_{i=1}^{K} ar{\Theta}_{i} \end{array}$	$\mathcal{I} = \{1, 2\}$ $[0, t] \rightarrow 1$ $[t, M] \rightarrow 2$	1	$\begin{array}{c c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\$

- Disperse mean belief; but can't do so if too tightly concentrated
- Can derive more general conditions without much complexity

Optimal Design

• $p(t, \lambda, \delta)$ and $q(t, \lambda, \delta)$ more diffused analogs of $\underline{s}, \overline{s}$

Theorem



Proof idea

Part I: Require at most K + 1 signals (|I| ≤ K + 1)
 Θ_j are closed, convex intervals
 For each j, μ_{i1}, μ_{i2} ∈ Θ_j can be combined without loss
 Part II: Objective fn. of q_i, μ_i, so can search over T_π's
 Search directly over all H ≿ F
 Constraints: ∫₀^c H⁻¹(t)dt ≥ ∫₀^c F⁻¹(t)dt ∀c ∈ [0,1]

Proof idea

- Part I: Require at most K + 1 signals $(|\mathcal{I}| \leq K + 1)$
 - $\bar{\Theta}_j$ are closed, convex intervals
 - ▶ For each j, $\mu_{i_1}, \mu_{i_2} \in \bar{\Theta}_j$ can be combined without loss
- Part II: Objective fn. of q_i, μ_i , so can search over \mathcal{T}_{π} 's
 - Search directly over all $H \succeq F$
 - Constraints: $\int_0^c H^{-1}(t)dt \ge \int_0^c F^{-1}(t)dt \ \forall c \in [0,1]$
- Part III: Know positions μ_i
 - If μ° < <u>a</u> or μ° > b̄, know position of μ_{K+1} relative to other posterior means in Θ_j
 - If not, solve K convex optimizations for possible locations of µ_{K+1}
- <u>Part IV</u>: Combining (I) + (II) + (III)
 - Know that H must be discrete by (I)
 - Finite subset of constraints are sufficient so we reduce from an infinite # of constraints to finite constraint problem

State-dependent preferences

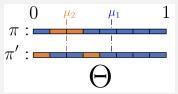
Allowing preferences to depend on the state θ* complicates the search problem (considering only T_π no longer sufficient)

Example

•
$$F \sim Unif[0,1] \; (\mu^{\circ} = 0.5)$$

$$\blacktriangleright h(y;\theta^*) = \mathbb{I}\{y \in \mathcal{Y}(\theta^*)\}$$

• Desirable beliefs $\Omega(\theta^*) = m^{-1}(\mathcal{Y}(\theta^*)) = [\frac{2}{3}\theta^*, 1]$



• $\mathcal{I} = \{1, 2\}, \mathcal{T}_{\pi} = \mathcal{T}_{\pi'} = \{(q_1 = \frac{3}{4}, \mu_1 = \frac{7}{12}), (q_2 = \frac{1}{4}, \mu_2 = \frac{1}{4})\}$ • $V_{F,h}(\pi) \neq V_{F,h}(\pi')$ • If $\theta^* \in (\frac{3}{8}, \frac{1}{2})$, success only under π when induce belief μ_1

State-dependent preferences

Allowing the preferences to depend on the state θ* further reduces the possibility to obtain an optimal design with MPS

Example

•
$$F \sim Unif[0,1] \ (\mu^{\circ} = 0.5)$$

$$\blacktriangleright h(y;\theta^*) = \mathbb{I}\{y \in \mathcal{Y}(\theta^*)\}$$

- Desirable beliefs $\Omega(\theta^*) = m^{-1}(\mathcal{Y}(\theta^*)) = [\frac{1}{3}\theta^* \epsilon, \frac{1}{3}\theta^* + \epsilon]$
- $\pi = \langle \mathcal{I}, \{z_{\theta}\}_{\theta \in \Theta} \rangle$ where $\mathcal{I} = \{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$ and $z_{\theta}(s)$ is as follows:

$$z_{\theta}(\cdot) = \begin{cases} \mathbf{1} \text{ w.p. 1 if } \theta \in \mathcal{S}_1 \coloneqq [0, 0.12] \cup [0.52, 0.56] \\ \mathbf{2} \text{ w.p. 1 if } \theta \in \mathcal{S}_2 \coloneqq [0.12, 0.30] \cup [0.80, 0.82] \\ \mathbf{3} \text{ w.p. 1 if } \theta \in \mathcal{S}_3 \coloneqq [0, 1] \setminus \{\mathcal{S}_1 \cup \mathcal{S}_2\} \end{cases}$$

- $\mu_1 = 0.18, \mu_2 = 0.27$ and $\mu_3 = 0.65$
- $V_{F,h}(\pi) = 12\epsilon$
- ▶ Opt Mechanism with MPS: 6€

Approximately Optimal Design

Previous examples motivates need for approximate solutions

Definition

A mechanism π^{ϵ} is ϵ -optimal for a problem instance defined by distribution F over Θ and utility function h (under $V_{F,h}$) if:

$$V_{F,h}(\pi^*) - V_{F,h}(\pi^\epsilon) \leq \epsilon.$$

How to produce interval-based signalling mechanism π^{ϵ} ?

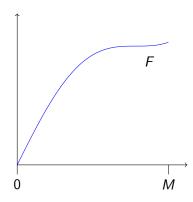
- 1. Discretize F appropriately to F_{δ} (intervals $\Theta_j \rightarrow \text{ points } \nu_j$)
- 2. Reduce consideration to finite # of signals
- 3. Solve discrete analog using linear programming to get $\bar{\pi}^*$
- Translate the discrete solution π
 ^{*} to π^ε by applying z
 _{ν_i} signal distribution to all states in Θ_j

Preferences

- Lipschitz: Preferences are smooth in the in-person mass and realized state
 - $h(y; \theta^*)$ is uniformly η_1 -Lipschitz in $y \& \eta_2$ -Lipschitz in θ^*
- Scaled-capacity: Preferences specify an in-person capacity limit that gets progressively more strict as θ* increases
 - ► $h(y; \theta^*) := \mathbb{I}\{y \in \mathcal{Y}(\theta^*)\} = \mathbb{I}\{y \ge a(\theta^*)\}$ where $a(\cdot)$ is weakly increasing step function

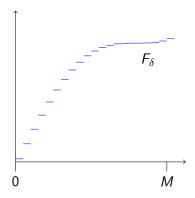
Discretization of F to F_{δ}

- Consider a finite number of states $\theta^* \in \{\nu_j\}_{j=1,..,N}$
- Partition Θ into $N = M\delta$ intervals Θ_j of width $\frac{1}{\delta}$
- Pick smallest point ν_j in each interval and assign all mass in Θ_j under F to point ν_j in F_δ

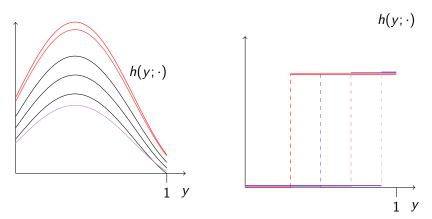


Discretization of F to F_{δ}

- Consider a finite number of states $\theta^* \in {\nu_j}_{j=1,..,N}$
- Partition Θ into $N = M\delta$ intervals Θ_j of width $\frac{1}{\delta}$
- Pick smallest point ν_j in each interval and assign all mass in Θ_j under F to point ν_j in F_δ



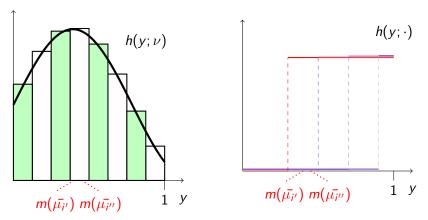
Reduce # of signals



N curves

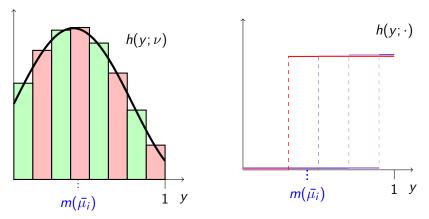
Approximate h by piecewise const. fn. in y without much loss for Lipschitz preference

Reduce # of signals



At most one signal will correspond posteriors that have equilibrium in each interval µ
_i ∈ [γ_i, γ_{i+1}]

Reduce # of signals



At most one signal will correspond posteriors that have equilibrium in each interval µ
_i ∈ [γ_i, γ_{i+1}]

Solve Linear Program

Variables x_{ji} to represent probability in state ν_j under F_δ and signal i is provisioned

$$\blacktriangleright \ \bar{z}_{\nu_j}(i) = \frac{x_{ji}}{\sum_i x_{ji}}$$

Objective and constraints on posterior can all be made linear
 Constraints on μ
_i: γ_i ∑_{j=1}^N x_{ji} ≤ ∑_{j=1}^N ν_jx_{ji} ≤ γ_{i+1} ∑_{j=1}^N x_{ji}
 LP algorithm outputs optimal *discrete* solution π
^{*} := π^{*}_{Fs,h}

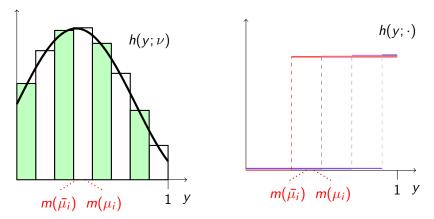
Translate from discrete to continuous solution

- Apply signal distribution z
 _{νj} from π
 ^{*} to every point in the corresponding interval Θ_j to get π^ε
- Similarly, unknown true optimal design π^{*}_{F,h} has discrete analog π
 where aggregate signal distribution over interval Θ_j is applied to ν_j

Quality of π^ϵ error bounded by how lossless we transition from discretized to continuous signalling mechanisms:

$$V_{F,h}(\pi_{F,h}^*) - V_{F,h}(\pi^{\epsilon}) \leq (V_{F,h}(\pi_{F,h}^*) - V_{F_{\delta},h}(\bar{\pi})) \\ + (V_{F_{\delta},h}(\bar{\pi}^*) - V_{F,h}(\pi^{\epsilon}))$$

Translate from discrete to continuous solution



► Posteriors are close under discretization: $0 \le \mu_i - \overline{\mu}_i \le \frac{1}{\delta}$ continuous signalling mechanisms induce higher posteriors

Translate from discrete to continuous solution

- Distribution over observed signals are identical
- This guarantees objective function values are also close

Theorem: For both Lipschitz and scaled-capacity

If cdf of *G* is Lipschitz, algorithm produces ϵ -optimal mechanism with runtime: Lipschitz: $O(\frac{1}{\epsilon^5})$ Scaled Capacity: $O(\frac{1}{\epsilon^5})$ Part II: Dynamic information provision about demand surge in ride-hailing systems

Surge Pricing

Mobility service providers need to deal with uncertain demand

• Wild Goose Chase (WGC): Demand spikes

- \Rightarrow drivers pick up far away passengers
- \Rightarrow fewer trips supplied \Rightarrow matching failure
- \Rightarrow low welfare (Castillo et al. '17)

Surge Pricing:

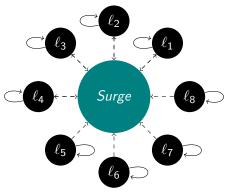
- Subverts WGC
- Lower prices when demand is low
- † total welfare and
 † utilization rate

Rich literature on market design for ride-hailing systems:

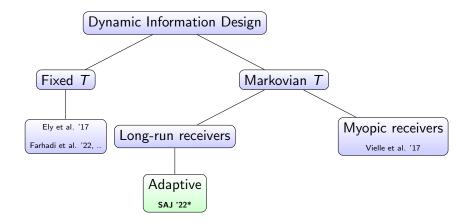
Bimpikis et al. '19, Besbes et al. '20, Borgs et al. '14, Castillo et al. '17, Castillo '20, Garg et al. '19

Managing Strategic Drivers

- Key issue: Strategic drivers with uncertainty over surge patterns (i.e. when and where) proactively chase/skip surges
 - Unreliable service and supply-demand imbalance
 - Congestive effect at surge hotspot
- Q. How can platform dynamically provision information about uncertain demand surge to manage strategic drivers?



Related work



Our setting

- Planner seeks to maximize number of periods where desirable masses are maintained across two location types
- Under full-information disclosure, this is not possible as all agents only move just before surge onsets
- Under no-information disclosure, agents distribution immediately converges
- Key point: Optimal disclosure induces the mass in the desirable set that is closest to the no-information mass

Dynamic Model

- Discrete time t = 1, 2, ...
- ► Unit mass of non-atomic long-run agents; each make simultaneous location choice at time t: a_t ∈ {ℓ_c, ℓ_p}
 - *l_c* is communal (demand hotspot)
 - *l_p* is peripheral (remote)
 - Move from ℓ_p to ℓ_c is irreversible
- Mass y_t at ℓ_p at end of t

Model: Agents

- Each agent has private fixed per-period wage at lp from known distribution v ~ G
- Random time horizon T ~ Geom(q) when surge onsets at congested hotspot
 - Horizon is memoryless
 - At end of period T, 1 y agents at ℓ_c receive $\beta(1 y)$ where $\beta(\cdot)$ is decreasing
- Agents seek to maximize total horizon wages

Dynamic Information Provision

- Planner seeks to maintain driver distribution in a goal set 𝔅 i.e., maximize # of periods t with y_t ∈ 𝔅 := ∪^K_{i=1}Ω_j
- Each t, planner first publicly commits to and discloses signalling mechanism π_t = ⟨I, {z_θ(·)}_{θ∈Θt}⟩
 - $\Theta_t = \{S_t, S_t^c\}$ where $S_t = \{T = t\}$ (e.g. $\mathbb{P}[S_t] = q$)
 - Planner can observe y_{t-1}, but not S_t
 - An adaptive, sequential model

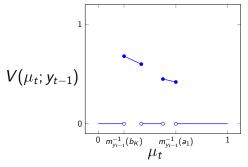
 Signal then publicly shared with all agents before they make their decisions

Memorylessness

- ▶ By memorylessness, agents in t play stationary strategies that only depend on belief over $\mu_t(i) := \mathbb{P}[S_t | \pi \to i]$ and y_{t-1}
- Planner also uses stationary strategy to prescribe π_t that only depends on y_{t-1}
- Can characterize map from current beliefs to equilibrium in next period m_{yt-1}(µ_t) := y_t^{*} (analogous to m(·) for Part I)

Value of information

- Solve for optimal strategy using dynamic programming on value functions V(μ_t; y_{t-1})
- V is piecewise concave (linear) in μ_t
 - Concave regions correspond to the μ_t that yield y_t^* in Ω_j
- Planner benefits by not dispersing beliefs in these intervals

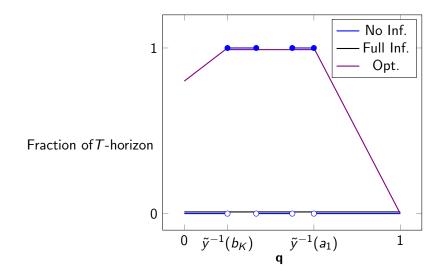


Full and no disclosure: Benchmarks

Lemma

- Under full disclosure, $y_1^* = .. = y_{T-1}^* > y_T^*$
 - Agents move to ℓ_c before T iff $v \leq \hat{v}_{FI}$ where $\beta(G(\hat{v}_{FI})) = \hat{v}_{FI}$
- Under no disclosure, $\tilde{y}^*(q) \coloneqq y_1^* = .. = y_T^*$
 - Agents move (immediately) to ℓ_c iff $v \le v_{NI}^*$ where $\beta(G(v_{NI}^*)) = \frac{v_{NI}^*}{a}$
 - $\tilde{y} : [0,1] \rightarrow [0,1]$ is weakly decreasing, bounded, and continuous.

Dynamic Information Provision: Result



Dynamic Information Provision: Result

Theorem

Optimal mechanism uses at most two signals and achieves values and posterior distributions:

q:	V * :	(μ_1, μ_2) :
$\mathbf{q} < \tilde{y}^{-1}(b_{\mathcal{K}})$	$\frac{1+q-\tilde{y}^{-1}(b_{K})}{q}$	$(0, \widetilde{y}^{-1}(b_K))$
$\widetilde{y}^{-1}(b_{\mathcal{K}}) \leq \mathbf{q} \leq \widetilde{y}^{-1}(a_1)$	$\frac{1}{q}$	$(\tilde{y}^{-1}(b_K), \tilde{y}^{-1}(a_1))$
$\mathbf{q}> ilde{y}^{-1}(a_1)$	$\left \begin{array}{c} rac{1-q}{q(1- ilde{y}^{-1}(a_1))} \end{array} ight $	$(ilde{y}^{-1}(a_1),1)$

Conclusion

- New insights on structure and computation of optimal information mechanisms for managing congested hotspots
- Static and dynamic designs
- Future work: settings when planner needs to learn

thank you! feedback and questions?