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Our focus

Q. How can a planner provision information to manage strategic
agents who face choice to move to congested hotspot?

- Information governs agents’ tradeoff of risk vs. value at
hotspot

- Planner’s utility defined in terms of ranges of preferred agent
mass at hotspot and can depend on unknown state

- Applications: pandemic management ( ), ride-hailing ( )

▶ Study preferences for which optimal information mechanism
has interval-based (esp. monotone partitional structure).

▶ Highlight how optimal information changes when dynamically
provisioned to long-run agents over a uncertain time-hotizon
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Part I: Hybrid work under risk of infectious
disease at worksplace
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Motivation

▶ Public health messaging and news reporting impacted
individual activity/isolation levels during pandemic1

▶ Bayesian information design can be an effective tool for
shaping agents’ decisions, particularly in post-peak phase

Our setup:

▶ Information about risk of community transmission at
workplace can be a soft intervention in hybrid work settings

▶ Planner aims to balance gains from in-person activity at
workplace (hotspot) against costs from disease spread

1Alcott et al. ’20, Bursztyn et al. ’20
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Setup

▶ Planner discloses public information over uncertain state
θ∗ ∼ F for continuous F to unit mass of strategic agents

▶ Mass (fraction) 1− y elect to move to hotspot

▶ Each agent gains personal benefit and incurs uncertain cost
that depends on θ∗ and y

▶ We focus on design of optimal information provision for a
broad class of planner preferences h(y ; θ∗)
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Overview of results (Part I)

A. State-independent, set-based preference: h(y ; θ∗) = I{y ∈ Y}
▶ For most distributions F , optimal mechanism just signals

which of two intervals that partitions Θ the true value lies in
▶ Monotone partitional and interval-based structure

B. State-dependent preference:
▶ Using discretization and linear programming for algorithmic

design of mechanisms with approximation guarantees
▶ Scaled capacity: h(y ; θ∗) = I{y ≥ a(θ∗)} for increasing, step

function a
▶ Lipschitz preference: h(y ; θ∗) is Lipschitz continuous

▶ Mechanism satisfies interval-based structure by construction
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Model: Uncertainty & Signalling

▶ Unknown state θ∗ ∈ Θ := [0,M] where θ∗ ∼ F

▶ F is commonly known and µ◦ = EF [θ
∗]

▶ ↑ values of state ⇒ ↑ risk of community transmisison

▶ Planner publicly commits and discloses signalling mechanism:

π = ⟨{zθ(·)}θ∈Θ, I⟩

▶ I - set (alphabet) of signals
▶ zθ ∈ ∆(I) - distribution over signals
▶ Planner does not observe θ∗ when commits/discloses
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Model: Uncertainty & Signalling
▶ Signal i ∈ I is drawn from zθ∗ , and publicly shared with

agents before they make their choices
▶ Signal i realized w.p. qi and induces posterior mean belief µi

qi := P[π → i ] =

∫
θ∈Θ

zθ(i)dF (θ)

µi := E[θ|π → i ] =

∫
θ∈Θ θzθ(i)dFθ∫
θ∈Θ zθ(i)dF (θ)

▶ π has direct mechanism representation Tπ = {(qi , µi )}i∈I
▶ Blackwell 1953: A distribution over posterior means H is

induced by some information structure if and only if:
H is mean-preserving contraction of F , that is, H ⪰ F

0 M

H
F
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Monotone Partitional Structure

Monotone Partitional Structure (MPS)

A signaling mechanism π has MPS if:

▶ ∃ finite partition of Θ, P := {Θj}mj=1 = {[tj−1, tj ]}mj=1

▶ 0 = t0 < t1 < · · · < tm−1 < tm = M

▶ I = [m] and for all θ ∈ Θ, zθ(j) = I{θ ∈ [tj−1, tj ]}
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Model: Agents

▶ Unit mass of non-atomic agents; each making simultaneous
location choice: a ∈ {ℓc , ℓp}
▶ ℓc : in-person work (communal/hotspot location)
▶ ℓp: remote work (peripheral location)

▶ y(a): aggregate mass choosing ℓp

▶ Each agent has private type from known distribution v ∼ G
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Model: Agents

Each agent earns reward

▶ uv (ℓp, y ; θ
∗) = 0 if a = ℓp

▶ uv (ℓc , y ; θ
∗) = v − β(y ; θ∗) if a = ℓc , where

β(y ; θ∗) := θ∗c1(y) + c2(y), with c1(·), c2(·) decreasing and
differentiable

Remote agent mass at equilibrium: y(a∗|π → i) = y∗π(i)

Proposition

1. In equilibrium y∗π(i), ∃v∗ s.t. agents at ℓc ⇐⇒ v > v∗

2. ∃ weakly increasing, bounded, continuous m : Θ → [0, 1] such
that y∗π(i) = m(µi )

▶ v∗: private benefit of marginal agent indifferent over ℓc & ℓp
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Remote mass for different G

▶ Larger remote agent mass needs (even) higher posterior means

▶ For simple preference and concave m(·), easy to maximize –
try to induce “best” belief
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Model: Planner Preferences

For given π, planner earns reward h(y ; θ∗)

Class h(y ; θ∗) Assumptions Motivation

State-
indpt,
set-based

I{y ∈ Y} Y ⊆ [0, 1] Capacity mandates,
Essential workers

Scaled-
capacity

I{y ≥ a(θ∗)} Increasing
step
function a

Safe capacity limits

Lipschitz h(y ; θ∗) jointly-
Lipschitz

Community effects,
Multiple workspaces
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Planner’s Design Problem

Optimal signalling mechanism

π∗ = argmax
π

V (π)

:= argmax
π

Eθ∗∼F ,i∼zθ∗ (·)[h(π, y
∗(i); θ∗)]

= argmax
π

Eθ∗∼F ,i∼zθ∗ (·)[h(π,m(µi ); θ
∗)]
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State-Independent, Set-Based Preference

▶ h(y ; θ∗) = I{y ∈ Y}
▶ Y = ∪K

j=1Ωj – union of K intervals Ωj := [aj , bj ] ⊆ [0, 1]

▶ For each j , “desirable” posterior means: Θ̄j := m−1(Ωj)
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Equilibrium to Beliefs

Planner seeks π∗:

argmax
π

V (π) = max
π

P{y∗π(i) ∈ Y}

= max
π

P{µi ∈ m−1(Y)}

= max
π

∑
i∈I

qi I{µi ∈ ∪K
j=1Θ̄j}

▶ We analyze by position of prior mean µ◦ relative to ∪K
j=1Θ̄j

(a
¯
:= min Θ̄1, b̄ := max Θ̄K ))

▶ Relative position of prior belief µ◦ to the desirable beliefs
∪K
j=1Θ̄j is critical to structure of optimal design
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Optimal Design

Theorem: Regimes with monotone partitional structure (MPS)

F π∗ V (π∗)

µ◦ ∈ Θ̄i I = {1}
[0,M] → 1

1

µ◦ < a
¯

I = {1, 2}
[0, t∗] → 2
[t∗,M] → 1

1−F (t∗)
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Optimal Design

Theorem: Regimes with monotone partitional structure (MPS)

F π∗ V (π∗)

µ◦ ∈ Θ̄i I = {1}
[0,M] → 1

1

µ◦ > b̄ I = {1, 2}
[0, t∗] → 1
[t∗,M] → 2

F (t∗)
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MPS is not guaranteed

Example

▶ F ∼ Unif [0, 1] (µ◦ = 0.5)

▶ Ω̄1 = [0.4− ϵ, 0.4 + ϵ], Ω̄2 = [0.6− ϵ, 0.6 + ϵ]

▶ No mechanism with MPS achieves objective 1
▶ Consider first interval [0, t1] (µ1 =

t1
2 , µi ≥ 1+t1

2 for all i > 1)

▶ I = {1, 2} with zθ(1) = 0.7 and zθ(2) = 0.3 for all θ ≤ 0.5,
and zθ(1) = 0.3 and zθ(2) = 0.7 for all θ ≥ 0.5
▶ µ1 = 0.4 and µ2 = 0.6
▶ Achieves objective of 1
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Optimal Design

▶ Let s
¯
(t) = E[θ|θ < t] and s̄(t) = E[θ|θ > t]

Theorem

F π∗ V (π∗)

a
¯
≤ µ◦ ≤ b̄

µ◦ /∈ ∪K
i=1Θ̄i

∃t, s
¯
(t), s̄(t) ∈

∪K
i=1Θ̄i

I = {1, 2}
[0, t] → 1
[t,M] → 2

1

▶ Disperse mean belief; but can’t do so if too tightly
concentrated

▶ Can derive more general conditions without much complexity
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Optimal Design
▶ p(t, λ, δ) and q(t, λ, δ) more diffused analogs of s

¯
, s̄

Theorem

F π∗ V (π∗)

a
¯
≤ µ◦ ≤ b̄

µ◦ /∈ ∪K
i=1Θ̄i

∃t, p(t, λ, δ),
q(t, λ, δ) ∈ ∪K

i=1Θ̄i

I = {1, 2}

[0, t]
w.p λ−−−→ 1

w.p 1−λ−−−−−→ 2

[t,M]
w.p δ−−−→ 2

w.p 1−δ−−−−−→ 1

1
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Proof idea

▶ Part I: Require at most K + 1 signals (|I| ≤ K + 1)
▶ Θ̄j are closed, convex intervals
▶ For each j , µi1 , µi2 ∈ Θ̄j can be combined without loss

▶ Part II: Objective fn. of qi , µi , so can search over Tπ’s
▶ Search directly over all H ⪰ F
▶ Constraints:

∫ c

0
H−1(t)dt ≥

∫ c

0
F−1(t)dt ∀c ∈ [0, 1]

▶ Part III: Know positions µi

▶ If µ◦ < a
¯
or µ◦ > b̄, know position of µK+1 relative to other

posterior means in Θ̄j

▶ If not, solve K convex optimizations for possible locations of
µK+1

▶ Part IV: Combining (I) + (II) + (III)
▶ Know that H must be discrete by (I)
▶ Finite subset of constraints are sufficient so we reduce from an

infinite # of constraints to finite constraint problem
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State-dependent preferences
▶ Allowing preferences to depend on the state θ∗ complicates

the search problem (considering only Tπ no longer sufficient)

Example

▶ F ∼ Unif [0, 1] (µ◦ = 0.5)

▶ h(y ; θ∗) = I{y ∈ Y(θ∗)}
▶ Desirable beliefs Ω(θ∗) = m−1(Y(θ∗)) = [23θ

∗, 1]

▶ I = {1, 2}, Tπ = Tπ′ = {(q1 = 3
4 , µ1 =

7
12), (q2 =

1
4 , µ2 =

1
4)}

▶ VF ,h(π) ̸= VF ,h(π
′)

▶ If θ∗ ∈ ( 38 ,
1
2 ), success only under π when induce belief µ1
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State-dependent preferences
▶ Allowing the preferences to depend on the state θ∗ further

reduces the possibility to obtain an optimal design with MPS

Example

▶ F ∼ Unif [0, 1] (µ◦ = 0.5)

▶ h(y ; θ∗) = I{y ∈ Y(θ∗)}
▶ Desirable beliefs Ω(θ∗) = m−1(Y(θ∗)) = [13θ

∗ − ϵ, 13θ
∗ + ϵ]

▶ π = ⟨I, {zθ}θ∈Θ⟩ where I = {1, 2, 3} and zθ(s) is as follows:

zθ(·) =


1 w.p. 1 if θ ∈ S1 := [0, 0.12] ∪ [0.52, 0.56]

2 w.p. 1 if θ ∈ S2 := [0.12, 0.30] ∪ [0.80, 0.82]

3 w.p. 1 if θ ∈ S3 := [0, 1] \ {S1 ∪ S2}

▶ µ1 = 0.18, µ2 = 0.27 and µ3 = 0.65

▶ VF ,h(π) = 12ϵ

▶ Opt Mechanism with MPS: 6ϵ
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Approximately Optimal Design

▶ Previous examples motivates need for approximate solutions

Definition

A mechanism πϵ is ϵ-optimal for a problem instance defined by
distribution F over Θ and utility function h (under VF ,h) if:

VF ,h(π
∗)− VF ,h(π

ϵ) ≤ ϵ.

How to produce interval-based signalling mechanism πϵ?

1. Discretize F appropriately to Fδ (intervals Θj → points νj)

2. Reduce consideration to finite # of signals

3. Solve discrete analog using linear programming to get π̄∗

4. Translate the discrete solution π̄∗ to πϵ

by applying z̄νj signal distribution to all states in Θj
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Preferences

▶ Lipschitz: Preferences are smooth in the in-person mass and
realized state

▶ h(y ; θ∗) is uniformly η1-Lipschitz in y & η2-Lipschitz in θ∗

▶ Scaled-capacity: Preferences specify an in-person capacity
limit that gets progressively more strict as θ∗ increases

▶ h(y ; θ∗) := I{y ∈ Y(θ∗)} = I{y ≥ a(θ∗)} where a(·) is
weakly increasing step function
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Discretization of F to Fδ

▶ Consider a finite number of states θ∗ ∈ {νj}j=1,..,N

▶ Partition Θ into N = Mδ intervals Θj of width
1
δ

▶ Pick smallest point νj in each interval and assign all mass in
Θj under F to point νj in Fδ

M0

F
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Reduce # of signals

1 y

h(y ; ·)

1 y

h(y ; ·)

▶ N curves

▶ Approximate h by piecewise const. fn. in y without much loss
for Lipschitz preference
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Reduce # of signals

1 y

h(y ; ν)

m(µ̄i ′) m(µ̄i ′′)
1 y

h(y ; ·)

m(µ̄i ′) m(µ̄i ′′)

▶ At most one signal will correspond posteriors that have
equilibrium in each interval µ̄i ∈ [γi , γi+1]
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Reduce # of signals

1 y

h(y ; ν)

m(µ̄i )
1 y

h(y ; ·)

m(µ̄i )

▶ At most one signal will correspond posteriors that have
equilibrium in each interval µ̄i ∈ [γi , γi+1]
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Solve Linear Program

▶ Variables xji to represent probability in state νj under Fδ and
signal i is provisioned
▶ z̄νj (i) =

xji∑
i xji

▶ Objective and constraints on posterior can all be made linear
▶ Constraints on µ̄i : γi

∑N
j=1 xji ≤

∑N
j=1 νjxji ≤ γi+1

∑N
j=1 xji

▶ LP algorithm outputs optimal discrete solution π̄∗ := π∗
Fδ,h
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Translate from discrete to continuous solution

▶ Apply signal distribution z̄νj from π̄∗ to every point in the
corresponding interval Θj to get πϵ

▶ Similarly, unknown true optimal design π∗
F ,h has discrete

analog π̄ where aggregate signal distribution over interval Θj

is applied to νj

Quality of πϵ error bounded by how lossless we transition from
discretized to continuous signalling mechanisms:

VF ,h(π
∗
F ,h)− VF ,h(π

ϵ) ≤
(
VF ,h(π

∗
F ,h)− VFδ,h(π̄)

)
+
(
VFδ,h(π̄

∗)− VF ,h(π
ϵ)
)
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Translate from discrete to continuous solution

1 y

h(y ; ν)

m(µ̄i ) m(µi )
1 y

h(y ; ·)

m(µ̄i ) m(µi )

▶ Posteriors are close under discretization: 0 ≤ µi − µ̄i ≤ 1
δ

continuous signalling mechanisms induce higher posteriors
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Translate from discrete to continuous solution

▶ Distribution over observed signals are identical

▶ This guarantees objective function values are also close

Theorem: For both Lipschitz and scaled-capacity

If cdf of G is Lipschitz, algorithm produces ϵ-optimal mechanism
with runtime:
Lipschitz: O( 1

ϵ5
)

Scaled Capacity: O( 1
ϵ5
)
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Part II: Dynamic information provision about
demand surge in ride-hailing systems
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Surge Pricing

Mobility service providers need to deal with uncertain demand

▶ Wild Goose Chase (WGC): Demand spikes
⇒ drivers pick up far away passengers
⇒ fewer trips supplied ⇒ matching failure
⇒ low welfare (Castillo et al. ’17)

▶ Surge Pricing:

▶ Subverts WGC
▶ Lower prices when demand is low
▶ ↑ total welfare and ↑ utilization rate

Rich literature on market design for ride-hailing systems:

▶ Bimpikis et al. ’19, Besbes et al. ’20, Borgs et al. ’14,
Castillo et al. ’17, Castillo ’20, Garg et al. ’19
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Managing Strategic Drivers
▶ Key issue: Strategic drivers with uncertainty over surge

patterns (i.e. when and where) proactively chase/skip surges
▶ Unreliable service and supply-demand imbalance
▶ Congestive effect at surge hotspot

Q. How can platform dynamically provision information about
uncertain demand surge to manage strategic drivers?

Surge

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8
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Our setting

▶ Planner seeks to maximize number of periods where desirable
masses are maintained across two location types

▶ Under full-information disclosure, this is not possible as all
agents only move just before surge onsets

▶ Under no-information disclosure, agents distribution
immediately converges

▶ Key point: Optimal disclosure induces the mass in the
desirable set that is closest to the no-information mass
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Dynamic Model

▶ Discrete time t = 1, 2, ..
▶ Unit mass of non-atomic long-run agents; each make

simultaneous location choice at time t: at ∈ {ℓc , ℓp}
▶ ℓc is communal (demand hotspot)
▶ ℓp is peripheral (remote)
▶ Move from ℓp to ℓc is irreversible

▶ Mass yt at ℓp at end of t
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Model: Agents

▶ Each agent has private fixed per-period wage at ℓp from
known distribution v ∼ G

▶ Random time horizon T ∼ Geom(q) when surge onsets at
congested hotspot
▶ Horizon is memoryless
▶ At end of period T , 1− y agents at ℓc receive β(1− y) where

β(·) is decreasing
▶ Agents seek to maximize total horizon wages
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Dynamic Information Provision

▶ Planner seeks to maintain driver distribution in a goal set Y
i.e., maximize # of periods t with yt ∈ Y := ∪K

j=1Ωj

▶ Each t, planner first publicly commits to and discloses
signalling mechanism πt = ⟨I, {zθ(·)}θ∈Θt ⟩
▶ Θt = {St ,Sc

t } where St = {T = t} (e.g. P[St ] = q)
▶ Planner can observe yt−1, but not St
▶ An adaptive, sequential model

▶ Signal then publicly shared with all agents before they make
their decisions
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Memorylessness

▶ By memorylessness, agents in t play stationary strategies that
only depend on belief over µt(i) := P[St |π → i ] and yt−1

▶ Planner also uses stationary strategy to prescribe πt that only
depends on yt−1

▶ Can characterize map from current beliefs to equilibrium in
next period myt−1(µt) := y∗t (analogous to m(·) for Part I)
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Value of information

▶ Solve for optimal strategy using dynamic programming on
value functions V (µt ; yt−1)

▶ V is piecewise concave (linear) in µt

▶ Concave regions correspond to the µt that yield y∗
t in Ωj

▶ Planner benefits by not dispersing beliefs in these intervals

0 m−1
yt−1

(bK ) m−1
yt−1

(a1) 1

0

1

µt

V (µt; yt−1)
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Full and no disclosure: Benchmarks

Lemma

▶ Under full disclosure, y∗1 = .. = y∗T−1 > y∗T
▶ Agents move to ℓc before T iff v ≤ v̂FI where β(G (v̂FI )) = v̂FI

▶ Under no disclosure, ỹ∗(q) := y∗1 = .. = y∗T
▶ Agents move (immediately) to ℓc iff v ≤ v∗

NI where

β(G (v∗
NI )) =

v∗
NI

q
▶ ỹ : [0, 1] → [0, 1] is weakly decreasing, bounded, and

continuous.
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Dynamic Information Provision: Result

0 ỹ−1(bK ) ỹ−1(a1) 1

0

1

q

Fraction ofT -horizon

No Inf.
Full Inf.
Opt.
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Dynamic Information Provision: Result

Theorem

Optimal mechanism uses at most two signals and achieves values
and posterior distributions:

q: V∗ : (µ1, µ2) :

q < ỹ−1(bK )
1+q−ỹ−1(bK )

q (0, ỹ−1(bK ))

ỹ−1(bK ) ≤ q ≤ ỹ−1(a1)
1
q (ỹ−1(bK ), ỹ

−1(a1))

q > ỹ−1(a1)
1−q

q(1−ỹ−1(a1))
(ỹ−1(a1), 1)
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Conclusion

▶ New insights on structure and computation of optimal
information mechanisms for managing congested hotspots

▶ Static and dynamic designs

▶ Future work: settings when planner needs to learn

thank you! feedback and questions?
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