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Themes of this talk

▶ Sequential decision-making: markets, sensors, user interactions

▶ Distributed learning systems (finance, recommendation, advertising, monitoring)
▶ The extent to which the amount of information received from the environment and from

other agents affects how fast each agent can learn
▶ We study this problem in an abstract graph-theoretic online learning framework
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The nonstochastic bandit problem

▶ K actions
▶ Unknown deterministic assignment of losses to actions ℓt =

(
ℓt(1), . . . , ℓt(K)

)
∈ [0, 1]K

for each time step t

? ? ? ? ?? ?? ??

For t = 1, 2, . . .

1. Player picks an action It (possibly using randomization) and incurs loss ℓt(It)
2. Feedback from environment: player observes ℓt(It)
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Regret

RT = E
[

T∑
t=1

ℓt(It)
]

− min
i=1,...,K

T∑
t=1

ℓt(i)

The expectation is only with respect to the player’s internal randomization
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Similarities between actions
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A feedback graph over actions

?

? ?

? ?? ?

? ?

?

Feedback: ℓt(i) is observed iff It is in the neighborhood of i
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A feedback graph over actions

.7

.3 .6

.7 ?.2 ?

? ?
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Expert and bandit settings

Experts: clique

.7

.3 .6

.7 .2.2 .1

.4 .9

.4

Bandits: edgeless graph

?

.3 ?

? ?? ?

? ?

?
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Playing on a feedback graph

Randomized player’s strategy (Exp3-SET)

▶ Pt(It = i) ∝ exp
(

−η
t−1∑
s=1

ℓ̂s(i)
)

i = 1, . . . , K

▶ Importance-weighted loss estimate ℓ̂t(i) =


ℓt(i)

Pt
(
ℓt(i) observed

) if ℓt(i) is observed

0 otherwise
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Regret bound for any feedback graph

▶ Let αF be the independence number of the
feedback graph

▶ RT ≤ ln K

η
+ η

2

T∑
t=1

E
[

K∑
i=1

Pt(It = i)Et

[
ℓ̂t(i)2

]]

▶ Bandit magic: E
[

K∑
i=1

Pt(It = i)Et

[
ℓ̂t(i)2

]]
≤ αF

▶ Tuning η: RT
Õ=
√

αF T

▶ This bound is tight for all graphs (up to log factors)
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Experts and bandits
Experts: αF = 1

.7

.3 .6

.7 .2.2 .1

.4 .9

.4

RT
Õ=

√
T

Bandits: αF = K

?

.3 ?

? ?? ?

? ?

?

RT
Õ=

√
KT
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A protocol for multi-agent online learning

Communication graph (agents)

,

/, ,

, ,

Feedback graph (actions)

?

? ?

? ?? ?

? ?

?
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A protocol for multi-agent online learning
Communication graph (agents)

,

/, ,

, ,

Feedback graph (actions)

?

? ?

? ?? ?

? ?

?

An agent vt becomes active
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A protocol for multi-agent online learning
Communication graph (agents)

,

/, ,

, ,

Feedback graph (actions)

?

? ?

? ?? ?

? ?

?

Agent vt plays action It(vt)
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A protocol for multi-agent online learning
Communication graph (agents)

,

/

, ,

, ,

Feedback graph (actions)

?

.3 ?

? ?? ?

? ?

?

. . . and incurs loss ℓt
(
It(vt)

)
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A protocol for multi-agent online learning
Communication graph (agents)

,

/

,

,

, ,

Feedback graph (actions)

.7

.3 .6

.7 ?.2 ?

? ?

?

vt observes feedback: ℓt(i) for every i in the neighborhood of It
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A protocol for multi-agent online learning
Communication graph (agents)

,

/

, ,

, ,

Feedback graph (actions)

.7

.3 .6

.7 ?.2 ?

? ?

?

feedback is shared with neighbors of vt
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Network regret

▶ Best global action k∗
T for ℓ1, ℓ2 . . . after T steps

k∗
T = argmin

k=1,...,K

T∑
t=1

ℓt(k)

▶ Assumption: each active agent vt is drawn i.i.d. according to some fixed distribution

▶ Network regret Rnet
T = E

[
T∑

t=1
ℓt
(
It(vt)

)]
−

T∑
t=1

ℓt(k∗
T )

Expectation is with respect to both agent activation and internal randomization
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Multi-agent Exp3-SET

Each agent v runs Exp3-SET using

ℓ̂t(i, v) =


ℓt(i)

Pt
(
ℓt(i) observed by v

) if ℓt(i) is observed by v

0 otherwise
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Multi-agent Exp3-SET

▶ At time t, agent vt plays action It

▶ ℓt(i) may be observed by v because:
▶ v is a neighbor of vt in the communication graph (nodes are their own neighbors)
▶ and i is a neighbor of It(vt) in the feedback graph

,

vt ,

, ,

.7

It .6

.7 ?.2 ?

? ?

?
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Old and new results (log factors ignored)

Single-agent Multi-agent

Experts (F = clique)
√

T
√

αCT

Bandits (F = edgeless)
√

KT
√

αCKT
Feedback graph

√
αF T ?

▶ α∗ ≥ αF αC

▶ In general, α∗ ≈ αF αC (α∗ ≫ αF αC only in pathological cases)
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The strong product between graphs

α∗ is the independence number of the strong
product between the communication graph GC

and the feedback graph GF

Regret bound is tight (up to log factors) for most pairs F, C
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Experiments against a baseline ignoring the communication graph
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▶ Exp3-SET (blue dots) is never worse than the baseline (red dots)

▶ The performance of the baseline remains constant when pC varies in {0.2, 0.8}. On the
other hand, Exp3-SET is worse when GC is sparse because α∗ increases

▶ The performance of both algorithms is worse when GF is sparse because α∗ increases
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Multi-agent online convex optimization

Model space: convex and closed X ⊂ Rd

For t = 1, 2, . . .

1. Active agent vt is drawn i.i.d. according to some fixed distribution
2. vt predicts using the current model xt(vt) ∈ X and incurs a convex loss ℓt

(
xt(vt)

)
3. vt receives gradient gt = ∇ℓt

(
xt(vt)

)
4. . . . and sends A−1

vt,v gt to every other agent v

A is a N × N positive definite matrix of task interaction coefficients
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Multi-task multi-agent online convex optimization

▶ Network regret for single-task online convex optimization:

Rnet
T =

T∑
t=1

ℓt
(
xt(vt)

)
− min

u∈X

T∑
t=1

ℓt(u)

▶ All agents are learning on the same loss sequence, irrespective of their activation sequence

▶ Multi-task regret:

Rmt
T =

T∑
t=1

ℓt
(
xt(vt)

)
−

N∑
v=1

min
x∈X

∑
t : vt=v

ℓt(x)︸ ︷︷ ︸
best local model

▶ Each agent learns on its local loss sequence, defined by their activation sequence
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Single-agent online gradient descent

Follow the Regularized Leader (FTRL)

▶ xt = argmin
x∈X

(
1
2 ∥x∥2 + η x⊤

t−1∑
s=1

gs

)

▶ Regret bound: RT ≤ D2

2η
+ η

2L2
2T = DL2

√
T

D is the diameter of X
L2 is a uniform bound on the Lipschitz constant of ℓt
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Multi-task multi-agent FTRL

▶ Fix any positive definite matrix A of task interaction coefficients

▶ Xt =


...

xt(v)⊤

...

 is N × d matrix of local models

▶ Matrix FTRL: Xt = argmin
X

(
1
2 ∥X∥2

A + η
t−1∑
s=1

⟨X, Gs⟩
)

▶ Gs is N × d matrix with only one non-zero row, gs = ∇ℓs
(
xs(vs)

)
▶ ∥X∥2

A = tr
(
AXX⊤)
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Regret bound

▶ Matrix FTRL regret bound: Rmt
T ≤ ∥U∥2

A

2η
+ η

2L2
2
∑
t=1

A−1
vt,vt

▶ U is N × d matrix of best local models x∗(v) = argmin
x∈X

∑
t : vt=v

ℓt(x)

▶ A = IN (no interaction) implies Rmt
T ≤ DL2

√
NT
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Parametric choice of A

▶ Set A = (1 + b)IN − b

N
11⊤ for b > 0

▶ Assume best local models x∗(1), . . . , x∗(N) satisfy ∥x∗(v)∥2 ≤ D and

Var
(
x∗(1), . . . , x∗(N)

)
= 1

N − 1

N∑
v=1

∥x∗(v) − x∥2
2 ≤ (σD)2

▶ Rmt
T ≤ DL2

√
2
(
1 + (N − 1)σ2)T

▶ Always better than the no-interaction bound DL2
√

NT for σ2 < 1

Matching lower bound
Under the same conditions on x∗(1), . . . , x∗(N), any online algorithm satisfies

Rmt
T ≥ 1

4DL2

√
2
(
1 + (N − 1)σ2)T

N. Cesa-Bianchi Cooperation in Learning 22 / 24



Parametric choice of A

▶ Set A = (1 + b)IN − b

N
11⊤ for b > 0

▶ Assume best local models x∗(1), . . . , x∗(N) satisfy ∥x∗(v)∥2 ≤ D and

Var
(
x∗(1), . . . , x∗(N)

)
= 1

N − 1

N∑
v=1

∥x∗(v) − x∥2
2 ≤ (σD)2

▶ Rmt
T ≤ DL2

√
2
(
1 + (N − 1)σ2)T

▶ Always better than the no-interaction bound DL2
√

NT for σ2 < 1

Matching lower bound
Under the same conditions on x∗(1), . . . , x∗(N), any online algorithm satisfies

Rmt
T ≥ 1

4DL2

√
2
(
1 + (N − 1)σ2)T

N. Cesa-Bianchi Cooperation in Learning 22 / 24



Parametric choice of A

▶ Set A = (1 + b)IN − b

N
11⊤ for b > 0

▶ Assume best local models x∗(1), . . . , x∗(N) satisfy ∥x∗(v)∥2 ≤ D and

Var
(
x∗(1), . . . , x∗(N)

)
= 1

N − 1

N∑
v=1

∥x∗(v) − x∥2
2 ≤ (σD)2

▶ Rmt
T ≤ DL2

√
2
(
1 + (N − 1)σ2)T

▶ Always better than the no-interaction bound DL2
√

NT for σ2 < 1

Matching lower bound
Under the same conditions on x∗(1), . . . , x∗(N), any online algorithm satisfies

Rmt
T ≥ 1

4DL2

√
2
(
1 + (N − 1)σ2)T

N. Cesa-Bianchi Cooperation in Learning 22 / 24



Parametric choice of A

▶ Set A = (1 + b)IN − b

N
11⊤ for b > 0

▶ Assume best local models x∗(1), . . . , x∗(N) satisfy ∥x∗(v)∥2 ≤ D and

Var
(
x∗(1), . . . , x∗(N)

)
= 1

N − 1

N∑
v=1

∥x∗(v) − x∥2
2 ≤ (σD)2

▶ Rmt
T ≤ DL2

√
2
(
1 + (N − 1)σ2)T

▶ Always better than the no-interaction bound DL2
√

NT for σ2 < 1

Matching lower bound
Under the same conditions on x∗(1), . . . , x∗(N), any online algorithm satisfies

Rmt
T ≥ 1

4DL2

√
2
(
1 + (N − 1)σ2)T

N. Cesa-Bianchi Cooperation in Learning 22 / 24



Parametric choice of A

▶ Set A = (1 + b)IN − b

N
11⊤ for b > 0

▶ Assume best local models x∗(1), . . . , x∗(N) satisfy ∥x∗(v)∥2 ≤ D and

Var
(
x∗(1), . . . , x∗(N)

)
= 1

N − 1

N∑
v=1

∥x∗(v) − x∥2
2 ≤ (σD)2

▶ Rmt
T ≤ DL2

√
2
(
1 + (N − 1)σ2)T

▶ Always better than the no-interaction bound DL2
√

NT for σ2 < 1

Matching lower bound
Under the same conditions on x∗(1), . . . , x∗(N), any online algorithm satisfies

Rmt
T ≥ 1

4DL2

√
2
(
1 + (N − 1)σ2)T

N. Cesa-Bianchi Cooperation in Learning 22 / 24



Learning the variance

▶ If σ2 ≥ 1, then we set b = 0 and run independent FTRL

▶ To learn σ2 ∈ [0, 1] we can run N instances of Matrix FTRL on a 1
N -grid

▶ These instances are aggregated via prediction with expert advice (Hedge algorithm)
▶ Resulting bound

Rmt
T ≤ DL2

(
2 + ln N +

√
2N min

{
1, σ2}T

)
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Experiments
▶ Both Euclidean (MT-OGD) and Entropic (MT-EG) variants have closed form updates.

▶ Independent task (IT, b = 0) and single task (ST, b = +∞) and EG on Lenk (σ2 small)
and EMNIST (σ2 large)
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