Cooperation in Networks of Learning Agents

Nicolò Cesa-Bianchi

Università degli Studi di Milano

Tom Cesari (Univ. of Milano), Riccardo Della Vecchia (Univ. of Lille), Pierre Laforgue (Univ. of Milano), Andrea Paudice (Univ. of Milano and IIT), Massimiliano Pontil (IIT)

Sequential decision-making: markets, sensors, user interactions

N. Cesa-Bianchi

Cooperation in Learning

1/24

- Sequential decision-making: markets, sensors, user interactions
- Distributed learning systems (finance, recommendation, advertising, monitoring)

- Sequential decision-making: markets, sensors, user interactions
- Distributed learning systems (finance, recommendation, advertising, monitoring)
- The extent to which the amount of information received from the environment and from other agents affects how fast each agent can learn

- Sequential decision-making: markets, sensors, user interactions
- Distributed learning systems (finance, recommendation, advertising, monitoring)
- The extent to which the amount of information received from the environment and from other agents affects how fast each agent can learn
- We study this problem in an abstract graph-theoretic online learning framework

The nonstochastic bandit problem

- $\blacktriangleright K$ actions

For t = 1, 2, ...

The nonstochastic bandit problem

- K actions

For t = 1, 2, ...

1. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

The nonstochastic bandit problem

K actions

For t = 1, 2, ...

1. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

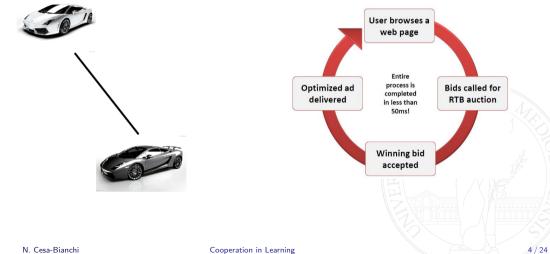
2. Feedback from environment: player observes $\ell_t(I_t)$

Regret

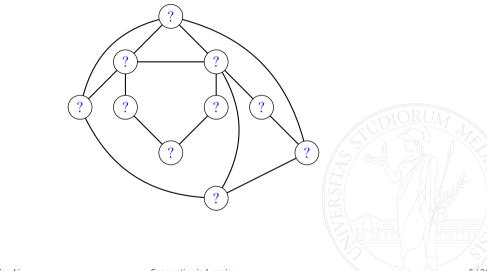
$$R_T = \mathbb{E}\left[\sum_{t=1}^T \ell_t(\mathbf{I}_t)\right] - \min_{i=1,\dots,K} \sum_{t=1}^T \ell_t(i)$$

The expectation is only with respect to the player's internal randomization

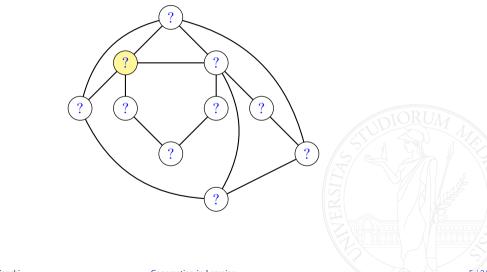
Similarities between actions



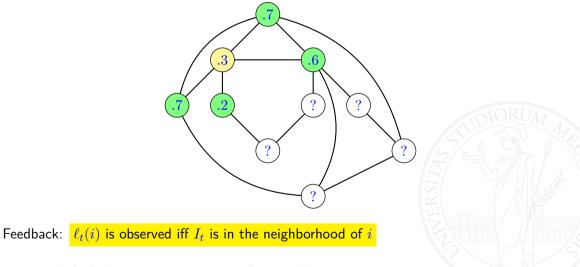
A feedback graph over actions



A feedback graph over actions

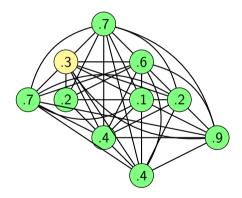


A feedback graph over actions

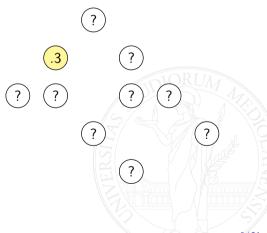


Expert and bandit settings

Experts: clique



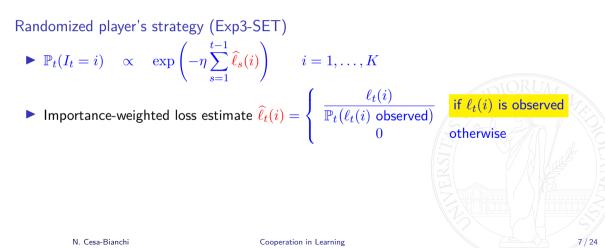
Bandits: edgeless graph



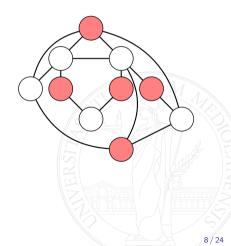
Playing on a feedback graph

Randomized player's strategy (Exp3-SET) $\blacktriangleright \mathbb{P}_t(I_t = i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) \qquad i = 1, \dots, K$

Playing on a feedback graph

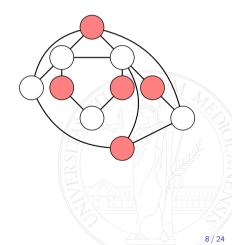


Let α_F be the independence number of the feedback graph

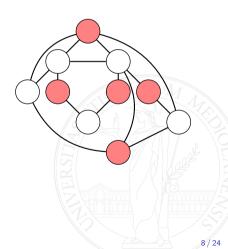


• Let α_F be the independence number of the feedback graph

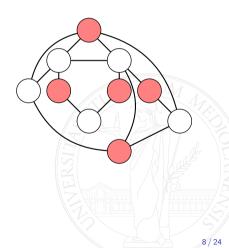
$$\blacktriangleright R_T \leq \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E}\left[\sum_{i=1}^K \mathbb{P}_t(I_t = i) \mathbb{E}_t\left[\widehat{\ell}_t(i)^2\right]\right]$$



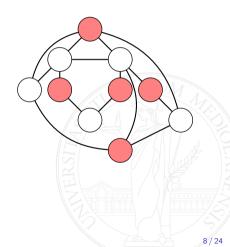
Let α_F be the independence number of the feedback graph
 R_T ≤ ln K/η + η/2 Σ_{t=1}^T ℝ [Σ_{i=1}^K ℙ_t(I_t = i)ℝ_t[ℓ̂_t(i)²]]
 Bandit magic: ℝ [Σ_{i=1}^K ℙ_t(I_t = i)ℝ_t[ℓ̂_t(i)²]] ≤ α_F

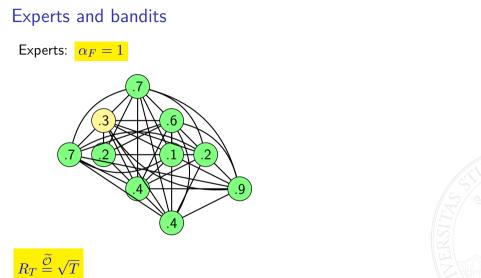


Let α_F be the independence number of the feedback graph
R_T ≤ ln K/η + η/2 Σ_{t=1}^T E [Σ_{i=1}^K P_t(I_t = i)E_t[ℓ̂_t(i)²]]
Bandit magic: E [Σ_{i=1}^K P_t(I_t = i)E_t[ℓ̂_t(i)²]] ≤ α_F
Tuning η: R_T ⊖ √α_FT



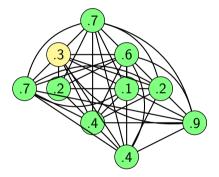
- Let \$\alpha_F\$ be the independence number of the feedback graph
 \$R_T \leq \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E} \bigg[\sum_{i=1}^K \mathbb{P}_t (I_t = i) \mathbb{E}_t \bigg[\hiteroplus_t (i)^2 \bigg] \bigg]\$
 Bandit magic: \$\mathbb{E} \bigg[\sum_{i=1}^K \mathbb{P}_t (I_t = i) \mathbb{E}_t \bigg[\hiteroplus_t (i)^2 \bigg] \bigg] \leq \alpha_F\$
 Tuning \$\eta: \bigg[\bigg] \sum_T \bigg[\sum_T \bigg] \square \square
- This bound is tight for all graphs (up to log factors)

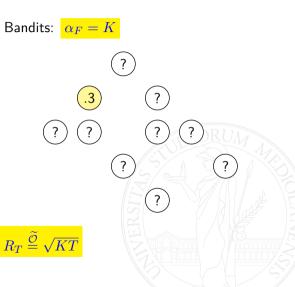




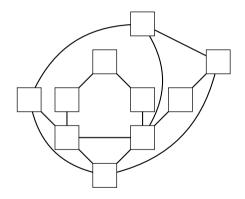
Experts and bandits

Experts: $\alpha_F = 1$

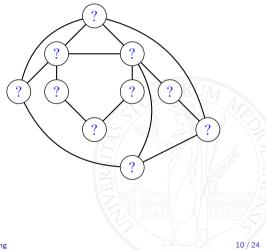




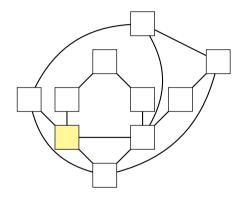
Communication graph (agents)



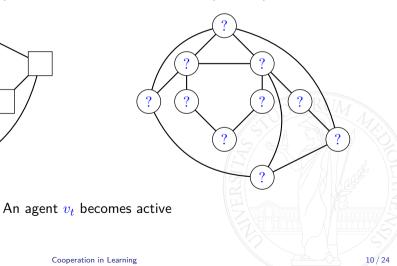
Feedback graph (actions)



Communication graph (agents)

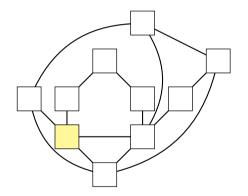


Feedback graph (actions)

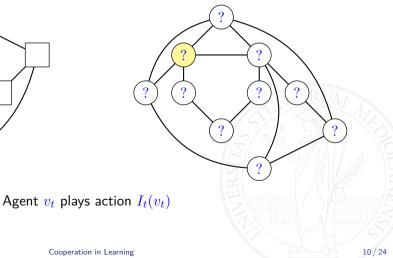


N. Cesa-Bianchi

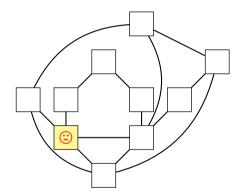
Communication graph (agents)



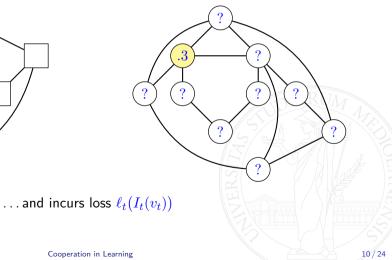
Feedback graph (actions)



Communication graph (agents)

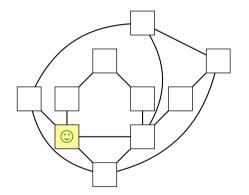


Feedback graph (actions)

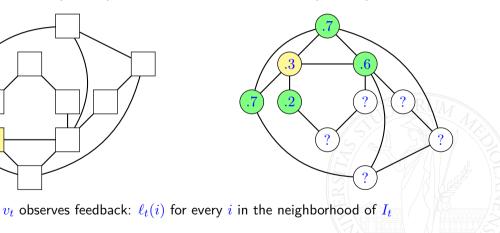


N. Cesa-Bianchi

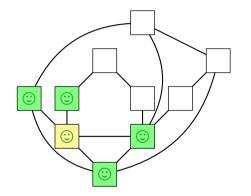
Communication graph (agents)



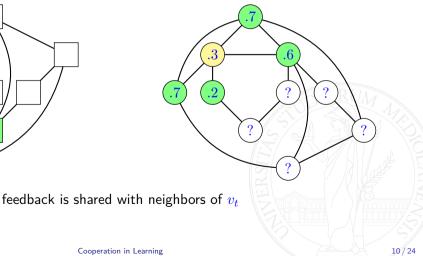
Feedback graph (actions)



Communication graph (agents)



Feedback graph (actions)



Network regret

• Best global action k_T^* for $\ell_1, \ell_2 \dots$ after T steps

$$k_T^* = \operatorname*{argmin}_{k=1,\dots,K} \sum_{t=1}^T \ell_t(k)$$

Network regret

• Best global action k_T^* for $\ell_1, \ell_2 \dots$ after T steps

 $k_T^* = \operatorname*{argmin}_{k=1,\dots,K} \sum_{t=1}^T \ell_t(k)$

> Assumption: each active agent v_t is drawn i.i.d. according to some fixed distribution

Network regret

• Best global action k_T^* for $\ell_1, \ell_2 \dots$ after T steps

 $k_T^* = \operatorname*{argmin}_{k=1,\dots,K} \sum_{t=1}^T \ell_t(k)$

- ▶ Assumption: each active agent v_t is drawn i.i.d. according to some fixed distribution
- Network regret

$$R_T^{\text{net}} = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t(v_t))\right] - \sum_{t=1}^T \ell_t(k_T^*)$$

Expectation is with respect to both agent activation and internal randomization

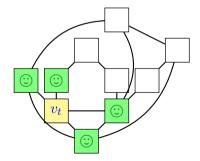
Multi-agent Exp3-SET

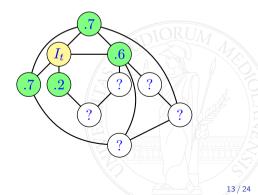
Each agent v runs Exp3-SET using

$$\widehat{\ell}_t(i,v) = \begin{cases} \frac{\ell_t(i)}{\mathbb{P}_t(\ell_t(i) \text{ observed by } v)} & \text{if } \ell_t(i) \text{ is observed by } v \\ 0 & \text{otherwise} \end{cases}$$

Multi-agent Exp3-SET

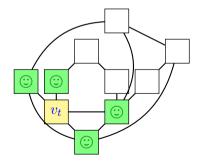
 \blacktriangleright At time t, agent v_t plays action I_t

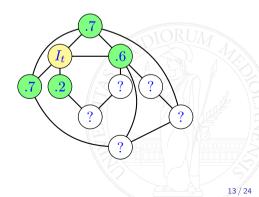




Multi-agent Exp3-SET

- \blacktriangleright At time t, agent v_t plays action I_t
- $\ell_t(i)$ may be observed by v because:
 - \triangleright v is a neighbor of v_t in the communication graph (nodes are their own neighbors)
 - and i is a neighbor of $I_t(v_t)$ in the feedback graph





Old and new results (log factors ignored)

		Single-agent	Multi-agent
Experts ($F =$	clique)	\sqrt{T}	$\sqrt{lpha_C T}$
Bandits ($F =$	edgeless)	\sqrt{KT}	$\sqrt{lpha_C K T}$
Feedback grap	h	$\sqrt{lpha_F T}$?
sa-Bianchi	Cooperat	ion in Learning	

	Single-agent	Multi-agent
Experts ($F = clique$)	\sqrt{T}	$\sqrt{\alpha_C T}$
Bandits ($F = edgeless$)	\sqrt{KT}	$\sqrt{\alpha_C KT}$
Feedback graph	$\sqrt{lpha_F T}$	$\sqrt{lpha_F lpha_C T}$
hi Cooperat	tion in Learning	

N. Cesa-B

	Single-agent	Multi-agent
Experts ($F = clique$)	\sqrt{T}	$\sqrt{lpha_C T}$
Bandits ($F = edgeless$)	\sqrt{KT}	$\sqrt{\alpha_C KT}$
Feedback graph	$\sqrt{lpha_F T}$	$\sqrt{lpha^*T}$
Cooperati	on in Learning	

		Single-agent	Multi-agent
	Experts ($F = clique$)	\sqrt{T}	$\sqrt{lpha_C T}$
	Bandits ($F = edgeless$)	\sqrt{KT}	$\sqrt{\alpha_C KT}$
	Feedback graph	$\sqrt{lpha_F T}$	$\sqrt{lpha^*T}$
$\blacktriangleright \ \alpha^* \ge \alpha_F \alpha_C$			
N. Cesa-Bianchi	Cooperat	ion in Learning	

	Single-agent	Multi-agent
Experts ($F = clique$)	\sqrt{T}	$\sqrt{lpha_C T}$
Bandits ($F = edgeless$)	\sqrt{KT}	$\sqrt{\alpha_C KT}$
Feedback graph	$\sqrt{lpha_F T}$	$\sqrt{lpha^*T}$

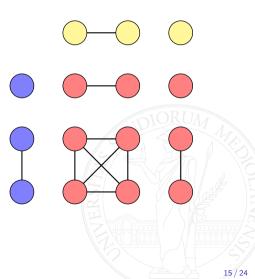
 $\blacktriangleright \alpha^* \ge \alpha_F \alpha_C$

▶ In general, $\alpha^* \approx \alpha_F \alpha_C$

 $(\alpha^* \gg \alpha_F \alpha_C$ only in pathological cases)

The strong product between graphs

 α^* is the independence number of the strong product between the communication graph G_C and the feedback graph G_F



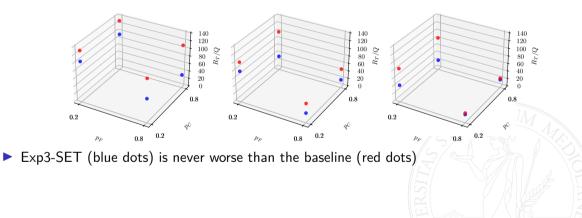
The strong product between graphs

 α^* is the independence number of the strong product between the communication graph G_C and the feedback graph G_F

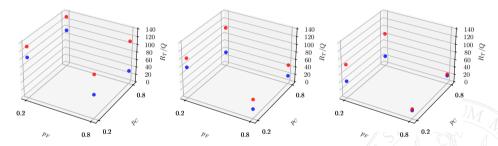
Regret bound is tight (up to log factors) for most pairs F, C

N. Cesa-Bianchi

Experiments against a baseline ignoring the communication graph



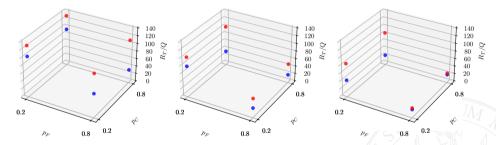
Experiments against a baseline ignoring the communication graph



Exp3-SET (blue dots) is never worse than the baseline (red dots)

• The performance of the baseline remains constant when p_C varies in $\{0.2, 0.8\}$. On the other hand, Exp3-SET is worse when G_C is sparse because α^* increases

Experiments against a baseline ignoring the communication graph



Exp3-SET (blue dots) is never worse than the baseline (red dots)

- The performance of the baseline remains constant when p_C varies in $\{0.2, 0.8\}$. On the other hand, Exp3-SET is worse when G_C is sparse because α^* increases
- ▶ The performance of both algorithms is worse when G_F is sparse because α^* increases

Model space: convex and closed $\mathcal{X} \subset \mathbb{R}^d$

For t = 1, 2, ...

Model space: convex and closed $\mathcal{X} \subset \mathbb{R}^d$

For t = 1, 2, ...

1. Active agent v_t is drawn i.i.d. according to some fixed distribution

Model space: convex and closed $\mathcal{X} \subset \mathbb{R}^d$

For t = 1, 2, ...

- 1. Active agent v_t is drawn i.i.d. according to some fixed distribution
- 2. v_t predicts using the current model $x_t(v_t) \in \mathcal{X}$ and incurs a convex loss $\ell_t(x_t(v_t))$

- Model space: convex and closed $\mathcal{X} \subset \mathbb{R}^d$
- For t = 1, 2, ...
 - 1. Active agent v_t is drawn i.i.d. according to some fixed distribution
 - 2. v_t predicts using the current model $x_t(v_t) \in \mathcal{X}$ and incurs a convex loss $\ell_t(x_t(v_t))$
 - 3. v_t receives gradient $\boldsymbol{g}_t = \nabla \ell_t(\boldsymbol{x}_t(v_t))$

Model space: convex and closed $\mathcal{X} \subset \mathbb{R}^d$

For t = 1, 2, ...

- 1. Active agent v_t is drawn i.i.d. according to some fixed distribution
- 2. v_t predicts using the current model $x_t(v_t) \in \mathcal{X}$ and incurs a convex loss $\ell_t(x_t(v_t))$
- 3. v_t receives gradient $\boldsymbol{g}_t = \nabla \ell_t (\boldsymbol{x}_t(v_t))$
- 4. ... and sends $oldsymbol{A}_{v_t,v}^{-1}oldsymbol{g}_t$ to every other agent v

Model space: convex and closed $\mathcal{X} \subset \mathbb{R}^d$

For t = 1, 2, ...

- 1. Active agent v_t is drawn i.i.d. according to some fixed distribution
- 2. v_t predicts using the current model $x_t(v_t) \in \mathcal{X}$ and incurs a convex loss $\ell_t(x_t(v_t))$
- 3. v_t receives gradient $\boldsymbol{g}_t = \nabla \ell_t (\boldsymbol{x}_t(v_t))$
- 4. ... and sends $oldsymbol{A}_{v_t,v}^{-1} oldsymbol{g}_t$ to every other agent v

 \boldsymbol{A} is a $N \times N$ positive definite matrix of task interaction coefficients

Network regret for single-task online convex optimization:

$$R_T^{\text{net}} = \sum_{t=1}^T \ell_t(\boldsymbol{x}_t(v_t)) - \min_{\boldsymbol{u} \in \mathcal{X}} \sum_{t=1}^T \ell_t(\boldsymbol{u})$$

Network regret for single-task online convex optimization:

$$R_T^{\text{net}} = \sum_{t=1}^T \ell_t (\boldsymbol{x}_t(v_t)) - \min_{\boldsymbol{u} \in \mathcal{X}} \sum_{t=1}^T \ell_t (\boldsymbol{u})$$

> All agents are learning on the same loss sequence, irrespective of their activation sequence

Network regret for single-task online convex optimization:

$$R_T^{\text{net}} = \sum_{t=1}^T \ell_t (\boldsymbol{x}_t(v_t)) - \min_{\boldsymbol{u} \in \mathcal{X}} \sum_{t=1}^T \ell_t(\boldsymbol{u})$$

► All agents are learning on the same loss sequence, irrespective of their activation sequence

Multi-task regret:

$$R_T^{\text{mt}} = \sum_{t=1}^T \ell_t(\boldsymbol{x}_t(v_t)) - \sum_{v=1}^N \min_{\substack{\boldsymbol{x} \in \mathcal{X} \\ \text{best local model}}} \sum_{\substack{t : v_t = v \\ \text{best local model}}} \ell_t(\boldsymbol{x})$$

Network regret for single-task online convex optimization:

$$R_T^{\text{net}} = \sum_{t=1}^T \ell_t(\boldsymbol{x}_t(v_t)) - \min_{\boldsymbol{u} \in \mathcal{X}} \sum_{t=1}^T \ell_t(\boldsymbol{u})$$

- ► All agents are learning on the same loss sequence, irrespective of their activation sequence
- Multi-task regret:

$$R_T^{\text{mt}} = \sum_{t=1}^T \ell_t(\boldsymbol{x}_t(v_t)) - \sum_{v=1}^N \min_{\boldsymbol{x} \in \mathcal{X}} \sum_{t: v_t = v} \ell_t(\boldsymbol{x})$$

best local model

Each agent learns on its local loss sequence, defined by their activation sequence

Follow the Regularized Leader (FTRL)

Follow the Regularized Leader (FTRL) • $\boldsymbol{x}_t = \operatorname*{argmin}_{\boldsymbol{x}\in\mathcal{X}} \left(\frac{1}{2} \|\boldsymbol{x}\|^2 + \eta \, \boldsymbol{x}^\top \sum_{s=1}^{t-1} \boldsymbol{g}_s\right)$

Follow the Regularized Leader (FTRL) • $\boldsymbol{x}_t = \operatorname*{argmin}_{\boldsymbol{x}\in\mathcal{X}} \left(\frac{1}{2} \|\boldsymbol{x}\|^2 + \eta \, \boldsymbol{x}^\top \sum_{s=1}^{t-1} \boldsymbol{g}_s\right)$ • Regret bound: $R_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}L_2^2T = DL_2\sqrt{T}$

Follow the Regularized Leader (FTRL)

$$\mathbf{L} \mathbf{x}_t = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} \left(\frac{1}{2} \| \mathbf{x} \|^2 + \eta \, \mathbf{x}^\top \sum_{s=1}^{t-1} \mathbf{g}_s \right)$$

► Regret bound: $R_T \le \frac{D^2}{2\eta} + \frac{\eta}{2}L_2^2T = DL_2\sqrt{T}$

D is the diameter of $\mathcal X$

 L_2 is a uniform bound on the Lipschitz constant of ℓ_t

 \blacktriangleright Fix any positive definite matrix A of task interaction coefficients

 \blacktriangleright Fix any positive definite matrix A of task interaction coefficients

$$\mathbf{X}_t = \begin{bmatrix} \vdots \\ \mathbf{x}_t(v)^\top \\ \vdots \end{bmatrix}$$
 is $N \times d$ matrix of local models

 \blacktriangleright Fix any positive definite matrix A of task interaction coefficients

$$\bullet \ \boldsymbol{X}_t = \begin{bmatrix} \vdots \\ \boldsymbol{x}_t(v)^\top \\ \vdots \end{bmatrix} \text{ is } N \times d \text{ matrix of local models}$$

• Matrix FTRL: $\boldsymbol{X}_t = \operatorname*{argmin}_{\boldsymbol{X}} \left(\frac{1}{2} \| \boldsymbol{X} \|_{\boldsymbol{A}}^2 + \eta \sum_{s=1}^{t-1} \langle \boldsymbol{X}, \boldsymbol{G}_s \rangle \right)$

-

-

 \blacktriangleright Fix any positive definite matrix A of task interaction coefficients

$$\bullet \ \boldsymbol{X}_t = \begin{bmatrix} \vdots \\ \boldsymbol{x}_t(v)^\top \\ \vdots \end{bmatrix} \text{ is } N \times d \text{ matrix of local models}$$

• Matrix FTRL: $\boldsymbol{X}_t = \operatorname*{argmin}_{\boldsymbol{X}} \left(\frac{1}{2} \| \boldsymbol{X} \|_{\boldsymbol{A}}^2 + \eta \sum_{s=1}^{t-1} \langle \boldsymbol{X}, \boldsymbol{G}_s \rangle \right)$

▶ $m{G}_s$ is N imes d matrix with only one non-zero row, $m{g}_s =
abla \ell_s m{(x_s(v_s))}$

Ξ.

.

 \blacktriangleright Fix any positive definite matrix A of task interaction coefficients

$$\bullet \ \boldsymbol{X}_t = \begin{bmatrix} \vdots \\ \boldsymbol{x}_t(v)^\top \\ \vdots \end{bmatrix} \text{ is } N \times d \text{ matrix of local models}$$

• Matrix FTRL: $\boldsymbol{X}_t = \operatorname{argmin}_{\boldsymbol{X}} \left(\frac{1}{2} \| \boldsymbol{X} \|_{\boldsymbol{A}}^2 + \eta \sum_{s=1}^{t-1} \langle \boldsymbol{X}, \boldsymbol{G}_s \rangle \right)$

• G_s is $N \times d$ matrix with only one non-zero row, $g_s = \nabla \ell_s(x_s(v_s))$ • $\|X\|_A^2 = \operatorname{tr}(AXX^{\top})$

Regret bound

• Matrix FTRL regret bound:
$$R_T^{\text{mt}} \leq \frac{\|oldsymbol{U}\|_{oldsymbol{A}}^2}{2\eta} + \frac{\eta}{2}L_2^2\sum_{t=1}A_{v_t,v_t}^{-1}$$

Regret bound

• Matrix FTRL regret bound: $R_T^{\text{mt}} \leq \frac{\|\boldsymbol{U}\|_{\boldsymbol{A}}^2}{2\eta} + \frac{\eta}{2}L_2^2\sum_{t=1}A_{vt,vt}^{-1}$ • U is $N \times d$ matrix of best local models $x^*(v) = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{t: v_t = v} \ell_t(x)$ N. Cesa-Bianchi Cooperation in Learning

21/24

Regret bound

- Matrix FTRL regret bound: $R_T^{\text{mt}} \leq \frac{\|\boldsymbol{U}\|_{\boldsymbol{A}}^2}{2\eta} + \frac{\eta}{2}L_2^2\sum_{t=1}A_{v_t,v_t}^{-1}$
- \boldsymbol{U} is $N \times d$ matrix of best local models $\boldsymbol{x}^*(v) = \operatorname*{argmin}_{\boldsymbol{x} \in \mathcal{X}} \sum_{t: v_t = v} \ell_t(\boldsymbol{x})$
- $A = I_N$ (no interaction) implies $R_T^{\text{mt}} \leq DL_2 \sqrt{NT}$

• Set
$$\boldsymbol{A} = (1+b)\boldsymbol{I}_N - \frac{b}{N}\boldsymbol{1}\boldsymbol{1}^\top$$
 for $b > 0$

• Set
$$\boldsymbol{A} = (1+b)\boldsymbol{I}_N - \frac{b}{N}\boldsymbol{1}\boldsymbol{1}^\top$$
 for $b > 0$

Assume best local models $\boldsymbol{x}^*(1), \ldots, \boldsymbol{x}^*(N)$ satisfy $\|\boldsymbol{x}^*(v)\|_2 \leq D$ and

$$\operatorname{Var}\left(\boldsymbol{x}^{*}(1),\ldots,\boldsymbol{x}^{*}(N)\right) = \frac{1}{N-1}\sum_{v=1}^{N}\|\boldsymbol{x}^{*}(v)-\overline{\boldsymbol{x}}\|_{2}^{2} \leq (\sigma D)^{2}$$

• Set
$$\boldsymbol{A} = (1+b)\boldsymbol{I}_N - \frac{b}{N}\boldsymbol{1}\boldsymbol{1}^\top$$
 for $b > 0$

Assume best local models $\boldsymbol{x}^*(1),\ldots,\boldsymbol{x}^*(N)$ satisfy $\|\boldsymbol{x}^*(v)\|_2 \leq D$ and

$$\operatorname{Var} ig(oldsymbol{x}^*(1), \dots, oldsymbol{x}^*(N) ig) = rac{1}{N-1} \sum_{v=1}^N \|oldsymbol{x}^*(v) - \overline{oldsymbol{x}}\|_2^2 \leq (\sigma D)^2$$

$$R_T^{\text{mt}} \le DL_2 \sqrt{2(1 + (N-1)\sigma^2)T}$$

• Set
$$\boldsymbol{A} = (1+b)\boldsymbol{I}_N - \frac{b}{N}\boldsymbol{1}\boldsymbol{1}^\top$$
 for $b > 0$

Assume best local models $\boldsymbol{x}^*(1),\ldots,\boldsymbol{x}^*(N)$ satisfy $\|\boldsymbol{x}^*(v)\|_2 \leq D$ and

$$\operatorname{Var}\left(\boldsymbol{x}^{*}(1),\ldots,\boldsymbol{x}^{*}(N)\right) = \frac{1}{N-1}\sum_{v=1}^{N}\|\boldsymbol{x}^{*}(v)-\overline{\boldsymbol{x}}\|_{2}^{2} \leq (\sigma D)^{2}$$

 $R_T^{\text{mt}} \le DL_2 \sqrt{2(1 + (N-1)\sigma^2)T}$

▶ Always better than the no-interaction bound $DL_2\sqrt{NT}$ for $\sigma^2 < 1$

• Set
$$\boldsymbol{A} = (1+b)\boldsymbol{I}_N - \frac{b}{N}\boldsymbol{1}\boldsymbol{1}^\top$$
 for $b > 0$

Assume best local models $\boldsymbol{x}^*(1),\ldots,\boldsymbol{x}^*(N)$ satisfy $\|\boldsymbol{x}^*(v)\|_2 \leq D$ and

$$\operatorname{Var}\left(\boldsymbol{x}^{*}(1),\ldots,\boldsymbol{x}^{*}(N)\right) = \frac{1}{N-1}\sum_{v=1}^{N}\|\boldsymbol{x}^{*}(v)-\overline{\boldsymbol{x}}\|_{2}^{2} \leq (\sigma D)^{2}$$

• $R_T^{\text{mt}} \le DL_2 \sqrt{2(1 + (N-1)\sigma^2)T}$

▶ Always better than the no-interaction bound $DL_2\sqrt{NT}$ for $\sigma^2 < 1$

Matching lower bound

Under the same conditions on $\boldsymbol{x}^*(1),\ldots,\boldsymbol{x}^*(N)$, any online algorithm satisfies

$$R_T^{\text{mt}} \ge \frac{1}{4}DL_2\sqrt{2(1+(N-1)\sigma^2)T}$$

▶ If $\sigma^2 \ge 1$, then we set b = 0 and run independent FTRL

- ▶ If $\sigma^2 \ge 1$, then we set b = 0 and run independent FTRL
- ▶ To learn $\sigma^2 \in [0,1]$ we can run N instances of Matrix FTRL on a $\frac{1}{N}$ -grid

- ▶ If $\sigma^2 \ge 1$, then we set b = 0 and run independent FTRL
- ▶ To learn $\sigma^2 \in [0,1]$ we can run N instances of Matrix FTRL on a $\frac{1}{N}$ -grid
- These instances are aggregated via prediction with expert advice (Hedge algorithm)

- ▶ If $\sigma^2 \ge 1$, then we set b = 0 and run independent FTRL
- ▶ To learn $\sigma^2 \in [0,1]$ we can run N instances of Matrix FTRL on a $\frac{1}{N}$ -grid
- These instances are aggregated via prediction with expert advice (Hedge algorithm)
- Resulting bound

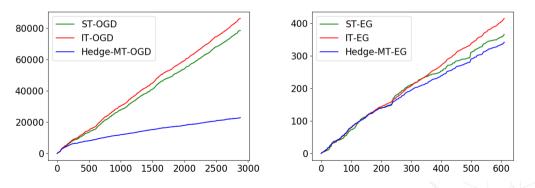
 $R_T^{\text{mt}} \le DL_2 \left(2 + \ln N + \sqrt{2N\min\left\{1,\sigma^2\right\}T} \right)$

Experiments

▶ Both Euclidean (MT-OGD) and Entropic (MT-EG) variants have closed form updates.

Experiments

- ▶ Both Euclidean (MT-OGD) and Entropic (MT-EG) variants have closed form updates.
- ► Independent task (IT, b = 0) and single task (ST, $b = +\infty$) and EG on Lenk (σ^2 small) and EMNIST (σ^2 large)



N. Cesa-Bianchi