Optimal intervention in transportation networks

Leonardo Cianfanelli

Joint work with Giacomo Como, Asu Ozdaglar, Francesca Parise

Workshop on algorithmic game theory, mechanism design, and learning.

November 10, 2022

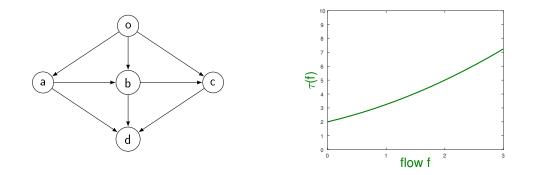
- Congestion of transportation networks leads to pollution and massive waste of time and money
- Need for analysis and design of transportation networks
- Intervention must take into account strategic user decisions

Part I: Model and problem formulation

Routing games: model

Network

- Transportation network as directed multigraph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- Non-decreasing delay function $au_e(f_e)$ for every link e
- \bullet Single origin-destination pair (o,d)
- Throughput *m*



- \bullet User behaviour \rightarrow population game theory (user set is a continuum)
- Wardrop equilibrium: flow $f^{(0)}$ s.t. no users have interest in deviating from their route

- \bullet User behaviour \rightarrow population game theory (user set is a continuum)
- Wardrop equilibrium: flow $f^{(0)}$ s.t. no users have interest in deviating from their route

Routing games are potential [Beckmann '56]
•
$$f^{(0)}$$
 Wardrop equilibrium iff
 $f^{(0)} = \underset{\text{flow } f}{\operatorname{arg\,min}} \sum_{e \in \mathcal{E}} \int_{0}^{f_e} \tau_e(s) ds$

- $\bullet~$ User behaviour \rightarrow population game theory (user set is a continuum)
- Wardrop equilibrium: flow $f^{(0)}$ s.t. no users have interest in deviating from their route

Routing games are potential [Beckmann '56]
•
$$f^{(0)}$$
 Wardrop equilibrium iff
 $f^{(0)} = \underset{f \mid ow \ f}{\operatorname{arg\,min}} \sum_{e \in \mathcal{E}} \int_{0}^{f_e} \tau_e(s) ds$

- Existence of at least an equilibrium
- If τ strictly increasing \implies uniqueness of equilibrium

First strategy

Influence indirectly user behaviour to align Wardrop equilibria with system-optimum flows:

- Tolls [Sandholm '02, Fleischer '04, Cole '06]
- Information design [Das '17, Wu '19, Zhu '22]

First strategy

Influence indirectly user behaviour to align Wardrop equilibria with system-optimum flows:

- Tolls [Sandholm '02, Fleischer '04, Cole '06]
- Information design [Das '17, Wu '19, Zhu '22]

Second strategy

Intervention on the infrastructure:

• Network design problem (NDP) [LeBlanc '75, Yang '98, Farahani '13]

NDP: problem formulation

• Write delay functions as $au_e(f_e) = au_e(0) + a_e(f_e)$ for every link e

NDP: problem formulation

- Write delay functions as $au_e(f_e) = au_e(0) + a_e(f_e)$ for every link e
- ullet Let system planner design intervention vector $u\in\mathbb{R}_+^\mathcal{E}$ with cost

$$\Psi(u) = \sum_{e \in \mathcal{E}} \psi_e(u_e)$$

s.t. delay functions become

$$au_{e}^{(u_{e})}(f_{e}) = au_{e}(0) + rac{a_{e}(f_{e})}{1+u_{e}}$$

NDP: problem formulation

- Write delay functions as $au_e(f_e) = au_e(0) + a_e(f_e)$ for every link e
- ullet Let system planner design intervention vector $u\in\mathbb{R}_+^\mathcal{E}$ with cost

$$\Psi(u) = \sum_{e \in \mathcal{E}} \psi_e(u_e)$$

s.t. delay functions become

$$au_{e}^{(u_{e})}(f_{e}) = au_{e}(0) + rac{a_{e}(f_{e})}{1+u_{e}}$$

• Wardrop equilibrium after intervention

$$f^{(u)} = \mathop{\mathrm{arg\,min}}_{\mathrm{flow}\ f} \quad \sum_{e\in\mathcal{E}} \int_{0}^{f_e} au_e^{(u_e)}(s) ds$$

• Intervention vector $u \in \mathbb{R}^{\mathcal{E}}_+$ with cost $\Psi(u) = \sum_{e \in \mathcal{E}} \psi_e(u_e)$

• New delay functions $au_e^{(u_e)}(f_e) = au_e(0) + rac{a_e(f_e)}{1+u_e}$

- Intervention vector $u \in \mathbb{R}^{\mathcal{E}}_+$ with cost $\Psi(u) = \sum_{e \in \mathcal{E}} \psi_e(u_e)$
- New delay functions $au_e^{(u_e)}(f_e) = au_e(0) + rac{a_e(f_e)}{1+u_e}$
- Total Travel Time at Wardrop Equilibrium after intervention

$$T(u) = \sum_{e \in \mathcal{E}} f_e^{(u)} \cdot \tau_e^{(u_e)}(f_e^{(u)})$$

- Intervention vector $u \in \mathbb{R}^{\mathcal{E}}_+$ with cost $\Psi(u) = \sum_{e \in \mathcal{E}} \psi_e(u_e)$
- New delay functions $au_e^{(u_e)}(f_e) = au_e(0) + rac{a_e(f_e)}{1+u_e}$
- Total Travel Time at Wardrop Equilibrium after intervention

$$T(u) = \sum_{e \in \mathcal{E}} f_e^{(u)} \cdot \tau_e^{(u_e)}(f_e^{(u)})$$

• Optimal intervention problem

 $\min_{u\in\mathbb{R}_+^{\mathcal{E}}}T(u)+\Psi(u)$

• In NDP, TTT evaluated w.r.t. new delay functions and new Wardrop eq., i.e.,

$$T(u) = \sum_{e \in \mathcal{E}} f_e^{(u)} \cdot \tau_e^{(u_e)}(f_e^{(u)}), \qquad f^{(u)} = \underset{\text{flow } f}{\text{arg min}} \quad \sum_{e \in \mathcal{E}} \int_0^{f_e} \tau_e^{(u_e)}(s) ds.$$

• In NDP, TTT evaluated w.r.t. new delay functions and new Wardrop eq., i.e.,

$$T(u) = \sum_{e \in \mathcal{E}} f_e^{(u)} \cdot \tau_e^{(u_e)}(f_e^{(u)}), \qquad f^{(u)} = \underset{\text{flow } f}{\text{arg min}} \quad \sum_{e \in \mathcal{E}} \int_0^{f_e} \tau_e^{(u_e)}(s) ds.$$

• In toll design, TTT evaluated w.r.t. old delay functions, i.e.,

$$T(u) = \sum_{e \in \mathcal{E}} f_e^{(u)} \cdot \tau_e(f_e^{(u)}), \qquad f^{(u)} = \underset{\text{flow } f}{\text{arg min}} \quad \sum_{e \in \mathcal{E}} \int_0^{\tau_e} \tau_e^{(u_e)}(s) ds.$$

c

• Bi-level problem, non-convex, very complex in the general formulation

- Bi-level problem, non-convex, very complex in the general formulation
- We define a simplified problem and provide:
 - interpretation in terms of resistor networks
 - ► efficient algorithm

- Bi-level problem, non-convex, very complex in the general formulation
- We define a simplified problem and provide:
 - interpretation in terms of resistor networks
 - efficient algorithm

Assumptions

- Affine routing game (i.e., $\tau_e(f_e) = a_e f_e + b_e$) (will be relaxed in numerical analysis)
- Assume intervention on single link (i.e., $u = \kappa \delta^{(e)}$), so interventions are pairs (e, κ) .

Goal

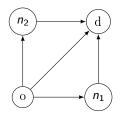
Find optimal intervention $(e, \kappa)^*$

Part II: Electrical interpretation

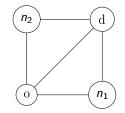
A related resistor network

- Transportation network with affine delays $au_e(f_e) = a_e f_e + b_e$
- ullet Undirected resistor network: same node set ${\cal N}$
- Link $\{i, j\}$ in resistor network if there exists either e = (i, j) or e = (j, i) with $f_e^{(0)} > 0$
- Conductance of link $\{i, j\}$ is $W_{ij} = \frac{1}{a_e}$

Transportation network



Resistor network



Electrical interpretation

- y denotes electrical current on links when net current m is injected from o to d
- For a link e = (i, j), r_e denotes effective resistance between i and j, i.e.,

$$r_e = x_i - x_j$$

where x voltage vector when unitary current from i to j is injected, i.e.,

$$\sum_{k} W_{hk}(x_h - x_k) = \delta^{(i)} - \delta^{(j)} \qquad \forall h \in \mathcal{N}$$

Electrical interpretation

- y denotes electrical current on links when net current m is injected from o to d
- For a link e = (i, j), r_e denotes effective resistance between i and j, i.e.,

$$r_e = x_i - x_j$$

where x voltage vector when unitary current from i to j is injected, i.e.,

$$\sum_{k} W_{hk}(x_h - x_k) = \delta^{(i)} - \delta^{(j)} \qquad \forall h \in \mathcal{N}$$

Theorem 1 [Cianfanelli, Como, Ozdaglar, Parise, '22]

- Assumption: support of Wardrop eq. not modified with intervention
- Result: intervention (e, κ) yields TTT variation

$$\Delta T(e,\kappa) = a_e f_e^{(0)} \frac{y_e}{\frac{1}{\kappa} + \frac{r_e}{a_e}}$$

Some observations

$$\Delta T(e,\kappa) = a_e f_e^{(0)} \frac{y_e}{\frac{1}{\kappa} + \frac{r_e}{a_e}}$$

$$\Delta T(e,\kappa) = a_e f_e^{(0)} rac{y_e}{rac{1}{\kappa} + rac{r_e}{a_e}}$$

• Assumption does not hold for every network

Some observations

$$\Delta T(e,\kappa) = a_e f_e^{(0)} \frac{y_e}{\frac{1}{\kappa} + \frac{r_e}{a_e}}.$$

• Assumption does not hold for every network

Proposition[Cianfanelli, Como, Ozdaglar, Parise, '22]

Assumption holds if:

- network is series-parallel, and
- throughput m large

Some observations

$$\Delta T(e,\kappa) = a_e f_e^{(0)} \frac{y_e}{\frac{1}{\kappa} + \frac{r_e}{a_e}}$$

• Assumption does not hold for every network

Proposition[Cianfanelli, Como, Ozdaglar, Parise, '22]

Assumption holds if:

- network is series-parallel, and
- throughput m large

Complexity

- $f^{(0)}$ observable
- vector y computed by solving a sparse linear system
- r_e to be computed for every link ($|\mathcal{E}|$ linear systems to be solved)

Part III: Effective resistance approximation

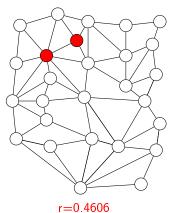
Local approximation of effective resistance

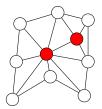
Question: can we compute an efficient approximation of r_e ?

Local approximation of effective resistance

Question: can we compute an efficient approximation of r_e ?

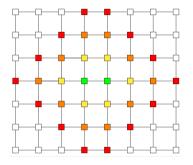
Idea: effective resistance can be locally approximated





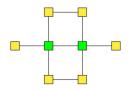
r = 0.4871

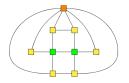
Cutting and shorting



Upper bound: cutting (distance 1)

Lower bound: shorting (distance 1)



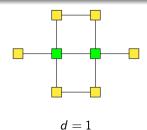


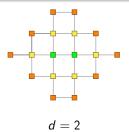
Upper and lower bound

- r_e effective resistance
- $r_e^{U_d}$ computed on network cut at distance d
- $r_e^{L_d}$ computed on network shorted at distance d

Proposition [Cianfanelli,Como,Ozdaglar,Parise,'22]

•
$$r_e^{U_d} \ge r_e \ge r_e^{L_d}$$
 $\forall d \ge 1$
• if $d_1 < d_2 \implies \begin{cases} r_e^{U_{d_1}} \ge r_e^{U_{d_2}} \\ r_e^{L_{d_1}} \le r_e^{L_{d_2}} \end{cases}$





 \bullet Can use Theorem 1 with $(r_e^{U_d}+r_e^{L_d})/2$ instead of r_e

- Can use Theorem 1 with $(r_e^{U_d} + r_e^{L_d})/2$ instead of r_e
- If local structure of the network does not depend on the size (e.g., in grids):
 - ► complexity for effective resistance appproximation does not depend on the size of the network

• Can use Theorem 1 with $(r_e^{U_d} + r_e^{L_d})/2$ instead of r_e

- If local structure of the network does not depend on the size (e.g., in grids):
 - ► complexity for effective resistance appproximation does not depend on the size of the network
- Define random walk with rates W
- Definition: random walk is recurrent iff it visits its starting node infinite times with probability one (for infinite networks)

Proposition [Cianfanelli,Como,Parise,Ozdaglar,'22]

If random walk is recurrent, then for every link e

$$\lim_{d\to+\infty}r_e^{U_d}-r_e^{L_d}=0$$

• Can use Theorem 1 with $(r_e^{U_d} + r_e^{L_d})/2$ instead of r_e

- If local structure of the network does not depend on the size (e.g., in grids):
 - ► complexity for effective resistance appproximation does not depend on the size of the network
- Define random walk with rates W
- Definition: random walk is recurrent iff it visits its starting node infinite times with probability one (for infinite networks)

Proposition [Cianfanelli,Como,Parise,Ozdaglar,'22]

If random walk is recurrent, then for every link e

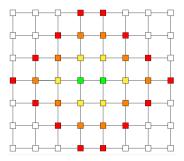
$$\lim_{d\to+\infty}r_e^{U_d}-r_e^{L_d}=0$$

- 2d-grids and most of planar networks are recurrent
- Also for non-recurrent networks bounds often converge (for 3d-grids, $r_e^{U_d} r_e^{L_d} = O(d^{-5/2})$)

Part IV: Numerical examples

Bound gap with finite distance

• Consider infinite square grid

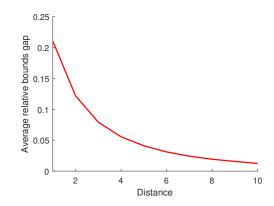


$$\frac{d=1}{(r_e^{U_d}-r_e)/r_e} \frac{d=2}{1/5} \frac{d=3}{0.0804} \frac{d=4}{0.0426} \frac{d=5}{0.0262} \frac{d=4}{0.0178}$$

$$r_e^{U_d} - r_e = r_e - r_e^{L_d} = O(d^{-2})$$

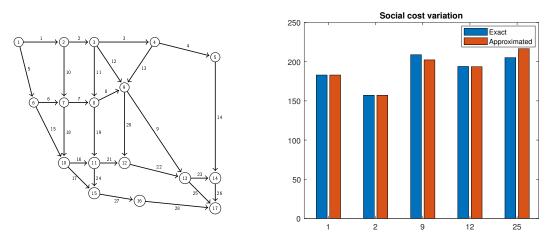
Case-study: Oldenburg transportation network

- $\bullet \ |\mathcal{N}| = 6105, |\mathcal{E}| = 7035, \text{diameter} = 104$
- Bounds computed at distance d:
 - d= 4, $|\mathcal{N}|\simeq$ 15, relative bound gap \simeq 0.06
 - d= 7, $|\mathcal{N}|\simeq$ 45, relative bound gap $\simeq 0.03$



Relaxing assumptions

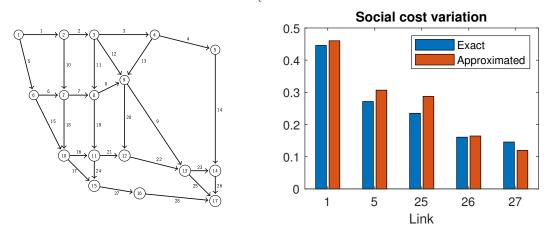
• What if Wardrop support changes with intervention?



- Cost variation computed by convex optimization ($\kappa = 3$)
- Cost variation computed by our theorem, ignoring that Wardrop support varies

Relaxing assumptions

- Non-affine delay functions $au_e(f_e) = a_e f_e^4 + b_e$
- Construct resistor network with resistances $\frac{\tau_e(f_e^{(0)})}{f^{(0)}}$



• The method is validated for other functional forms of delay

Conclusions

Summary

- Rephrased a NDP in terms of resistor networks
- Provided method to approximate the effective resistance between neighbors
- Constructed efficient algorithm to solve the NDP

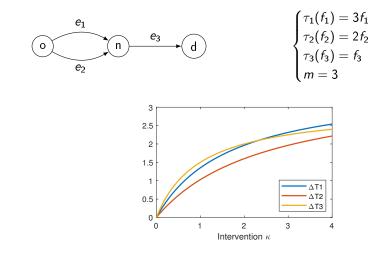
Future research

- Improve characterization of bound performance in order to optimize selection of distance d
- Relax assumptions:
 - Multiple origins and destinations
 - Intervention on multiple links
- Study different types of intervention, e.g., adding new links

L. Cianfanelli, G. Como, A. Ozdaglar, F. Parise, *Optimal intervention in transportation networks*, conditionally accepted to TAC (preliminary version: *arXiv preprint arXiv:2102.08441* (2021))

25 / 25

An example



• No decoupling: the optimal link depends on $\kappa!$

Algorithm

- Construct the resistor network
- Compute y by solving sparse linear system (quasi-linear in $|\mathcal{N}|)$
- $\bullet \ \, {\sf For \ every} \ \, e \in {\cal E}$
 - Compute $r_e^{U_d}$ and $r_e^{L_d}$
 - Select κ_e^* s.t.

$$\kappa_e^* \in \underset{\kappa_e \geq 0}{\arg \max} \quad a_e f_e^{(0)} \frac{y_e}{\frac{1}{\kappa_e} + \frac{r_e^{U_d} + r_e^{L_d}}{2a_e}} - \alpha \psi_e(\kappa_e).$$

• Select optimal link *e** s.t.

$$e^* \in rgmax_{e \in \mathcal{E}} \quad a_e f_e^{(0)} rac{y_e}{rac{1}{\kappa_e^*} + rac{r_e^{U_d} + r_e^{L_d}}{2a_e}} - lpha \psi_e(\kappa_e^*).$$

• Optimal intervention is (e^*, κ_e^*)