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Motivation

Congestion of transportation networks leads to pollution and massive waste of time and money

Need for analysis and design of transportation networks

Intervention must take into account strategic user decisions
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Part I: Model and problem formulation
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Routing games: model

Network
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Wardrop equilibria

User behaviour → population game theory (user set is a continuum)

Wardrop equilibrium: �ow f (0) s.t. no users have interest in deviating from their route

Routing games are potential [Beckmann '56]

f (0) Wardrop equilibrium i�

f (0) = arg min
�ow f

∑
e∈E

∫ fe

0

τe(s)ds

Existence of at least an equilibrium

If τ strictly increasing =⇒ uniqueness of equilibrium
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Intervention in transportation: two classes of strategies

First strategy

In�uence indirectly user behaviour to align Wardrop equilibria with system-optimum �ows:

Tolls [Sandholm '02, Fleischer '04, Cole '06]

Information design [Das '17, Wu '19, Zhu '22]

Second strategy

Intervention on the infrastructure:

Network design problem (NDP) [LeBlanc '75, Yang '98, Farahani '13]
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NDP: problem formulation

Write delay functions as τe(fe) = τe(0) + ae(fe) for every link e

Let system planner design intervention vector u ∈ RE+ with cost

Ψ(u) =
∑
e∈E

ψe(ue)

s.t. delay functions become

τ (ue)e (fe) = τe(0) +
ae(fe)

1 + ue

Wardrop equilibrium after intervention

f (u) = arg min
�ow f

∑
e∈E

∫ fe

0

τ (ue)e (s)ds
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Network interventions

Intervention vector u ∈ RE+ with cost Ψ(u) =
∑

e∈E ψe(ue)

New delay functions τ
(ue)
e (fe) = τe(0) + ae(fe)

1+ue

Total Travel Time at Wardrop Equilibrium after intervention

T (u) =
∑
e∈E

f (u)e · τ (ue)e (f (u)e )

Optimal intervention problem
min
u∈RE+

T (u) + Ψ(u)
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NDP vs toll design

In NDP, TTT evaluated w.r.t. new delay functions and new Wardrop eq., i.e.,

T (u) =
∑
e∈E

f (u)e · τ (ue)e (f (u)e ), f (u) = arg min
�ow f

∑
e∈E

∫ fe

0

τ (ue)e (s)ds.

In toll design, TTT evaluated w.r.t. old delay functions, i.e.,

T (u) =
∑
e∈E

f (u)e · τe(f (u)e ), f (u) = arg min
�ow f

∑
e∈E

∫ fe

0

τ (ue)e (s)ds.
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A simpli�ed problem

Bi-level problem, non-convex, very complex in the general formulation

We de�ne a simpli�ed problem and provide:
I interpretation in terms of resistor networks
I e�cient algorithm

Assumptions

A�ne routing game (i.e., τe(fe) = ae fe + be) (will be relaxed in numerical analysis)

Assume intervention on single link (i.e., u = κδ(e)), so interventions are pairs (e, κ).

Goal

Find optimal intervention (e, κ)∗
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Part II: Electrical interpretation
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A related resistor network

Transportation network with a�ne delays τe(fe) = ae fe + be

Undirected resistor network: same node set N

Link {i , j} in resistor network if there exists either e = (i , j) or e = (j , i) with f
(0)
e > 0

Conductance of link {i , j} is Wij = 1

ae

Transportation network

o n1

n2 d

Resistor network

o n1

n2 d
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Electrical interpretation

y denotes electrical current on links when net current m is injected from o to d

For a link e = (i , j), re denotes e�ective resistance between i and j , i.e.,

re = xi − xj

where x voltage vector when unitary current from i to j is injected, i.e.,∑
k

Whk(xh − xk) = δ(i) − δ(j) ∀h ∈ N

Theorem 1 [Cianfanelli,Como,Ozdaglar,Parise,'22]

Assumption: support of Wardrop eq. not modi�ed with intervention

Result: intervention (e, κ) yields TTT variation

∆T (e, κ) = ae f
(0)
e

ye
1

κ + re
ae

.
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Some observations

∆T (e, κ) = ae f
(0)
e

ye
1

κ + re
ae

.

Assumption does not hold for every network

Proposition[Cianfanelli,Como,Ozdaglar,Parise,'22]

Assumption holds if:
I network is series-parallel, and
I throughput m large

Complexity

f (0) observable

vector y computed by solving a sparse linear system

re to be computed for every link (|E| linear systems to be solved)
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Part III: E�ective resistance approximation
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Local approximation of e�ective resistance

Question: can we compute an e�cient approximation of re?

Idea: e�ective resistance can be locally approximated

r=0.4606 r=0.4871
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Cutting and shorting

Upper bound: cutting (distance 1) Lower bound: shorting (distance 1)
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Upper and lower bound

re e�ective resistance

rUd
e computed on network cut at distance d

rLd
e computed on network shorted at distance d

Proposition [Cianfanelli,Como,Ozdaglar,Parise,'22]

rUd
e ≥ re ≥ rLd

e ∀d ≥ 1

if d1 < d2 =⇒

{
r
Ud1
e ≥ r

Ud2
e

r
Ld1
e ≤ r

Ld2
e

d = 1 d = 2
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E�ective resistance bounds

Can use Theorem 1 with (rUd
e + rLd

e )/2 instead of re

If local structure of the network does not depend on the size (e.g., in grids):
I complexity for e�ective resistance appproximation does not depend on the size of the network

De�ne random walk with rates W

De�nition: random walk is recurrent i� it visits its starting node in�nite times with probability one
(for in�nite networks)

Proposition [Cianfanelli,Como,Parise,Ozdaglar,'22]

If random walk is recurrent, then for every link e

lim
d→+∞

rUd
e − rLd

e = 0

2d-grids and most of planar networks are recurrent

Also for non-recurrent networks bounds often converge (for 3d-grids, rUd
e − rLd

e = O(d−5/2))
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Part IV: Numerical examples
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Bound gap with �nite distance

Consider in�nite square grid

d = 1 d = 2 d = 3 d = 4 d = 5
(rUd

e − re)/re 1/5 0.0804 0.0426 0.0262 0.0178
(re − rLd

e )/re 1/5 0.0804 0.0426 0.0262 0.0178

rUd
e − re = re − rLd

e = O(d−2)
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Case-study: Oldenburg transportation network

|N | = 6105, |E| = 7035, diameter = 104

Bounds computed at distance d :
I d = 4, |N | ' 15, relative bound gap ' 0.06
I d = 7, |N | ' 45, relative bound gap ' 0.03
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Relaxing assumptions

What if Wardrop support changes with intervention?
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Social cost variation
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Exact

Approximated

Cost variation computed by convex optimization (κ = 3)

Cost variation computed by our theorem, ignoring that Wardrop support varies
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Relaxing assumptions

Non-a�ne delay functions τe(fe) = ae f
4
e + be

Construct resistor network with resistances
τe(f

(0)
e )

f
(0)
e

1 2 3 4

5

6 7 8

9

10 11 12

13 14

15

16

17

1 2 3

4

5

6 7

8

9

10 11

12

13

14

15

16

17

18 19

20

21

22

23
24

25 26

27

28

Social cost variation

1 5 25 26 27

Link

0

0.1

0.2

0.3

0.4

0.5

Exact

Approximated

The method is validated for other functional forms of delay
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Conclusions

Summary

Rephrased a NDP in terms of resistor networks

Provided method to approximate the e�ective resistance between neighbors

Constructed e�cient algorithm to solve the NDP

Future research

Improve characterization of bound performance in order to optimize selection of distance d

Relax assumptions:
I Multiple origins and destinations
I Intervention on multiple links

Study di�erent types of intervention, e.g., adding new links

L. Cianfanelli, G. Como, A. Ozdaglar, F. Parise, Optimal intervention in transportation networks, conditionally
accepted to TAC (preliminary version: arXiv preprint arXiv:2102.08441 (2021))
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An example

o n d

e2

e1
e3


τ1(f1) = 3f1

τ2(f2) = 2f2

τ3(f3) = f3

m = 3

0 1 2 3 4

Intervention 

0

0.5

1

1.5

2

2.5

3

T1

T2

T3

No decoupling: the optimal link depends on κ!
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Algorithm

Construct the resistor network

Compute y by solving sparse linear system (quasi-linear in |N |)
For every e ∈ E

I Compute rUd
e and rLde

I Select κ∗
e s.t.

κ∗
e ∈ argmax

κe≥0

ae f
(0)
e

ye

1

κe
+ r

Ud
e +r

Ld
e

2ae

− αψe(κe).

Select optimal link e∗ s.t.

e∗ ∈ arg max
e∈E

ae f
(0)
e

ye
1

κ∗e
+ r

Ud
e +r

Ld
e

2ae

− αψe(κ∗e ).

Optimal intervention is (e∗, κ∗e )
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