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Motivation

@ Congestion of transportation networks leads to pollution and massive waste of time and money
@ Need for analysis and design of transportation networks

@ Intervention must take into account strategic user decisions
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Part |: Model and problem formulation



Routing games: model

Network

@ Transportation network as directed multigraph G = (N, £)
o Non-decreasing delay function 7.(f.) for every link e

@ Single origin-destination pair (o, d)

@ Throughput m

7(f)
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Wardrop equilibria

@ User behaviour — population game theory (user set is a continuum)

o Wardrop equilibrium: flow f©) s.t. no users have interest in deviating from their route
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Wardrop equilibria

@ User behaviour — population game theory (user set is a continuum)

o Wardrop equilibrium: flow f©) s.t. no users have interest in deviating from their route

Routing games are potential [Beckmann '56]
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£© = arg min Z/ Te(s)ds

flow f ecE
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Wardrop equilibria

@ User behaviour — population game theory (user set is a continuum)

o Wardrop equilibrium: flow f©) s.t. no users have interest in deviating from their route

Routing games are potential [Beckmann '56]
o f(© Wardrop equilibrium iff

£© = arg min Z/ Te(s)ds

flow f ecE

o Existence of at least an equilibrium

o If 7 strictly increasing = uniqueness of equilibrium
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Intervention in transportation: two classes of strategies

First strategy

Influence indirectly user behaviour to align Wardrop equilibria with system-optimum flows:
@ Tolls [Sandholm '02, Fleischer '04, Cole '06]
@ Information design [Das '17, Wu '19, Zhu '22]
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Intervention in transportation: two classes of strategies

First strategy

Influence indirectly user behaviour to align Wardrop equilibria with system-optimum flows:

@ Tolls [Sandholm 02, Fleischer '04, Cole '06]
@ Information design [Das '17, Wu '19, Zhu '22]

Second strategy
Intervention on the infrastructure:
o Network design problem (NDP) [LeBlanc '75, Yang '98, Farahani '13]
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NDP: problem formulation

o Write delay functions as 7e(f.) = 7(0) + ac(f.) for every link e
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NDP: problem formulation

o Write delay functions as 7e(f.) = 7(0) + ac(f.) for every link e

@ Let system planner design intervention vector u € Ri with cost

V(u) = Zwe(ue)

ecé

s.t. delay functions become
ae(fe)

() (£,) = 7(0
T (fe) Te()+1_|_ue
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NDP: problem formulation

o Write delay functions as 7e(f.) = 7(0) + ac(f.) for every link e

@ Let system planner design intervention vector u € Ri with cost

V(u) = Zwe(ue)

ecé

s.t. delay functions become
ae(fe)

() (£,) = 7(0
T (fe) Te()+1+ue

@ Wardrop equilibrium after intervention

£
() = arg min Z/ T(”e)(s)ds
0

flow f ecE
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Network interventions

o Intervention vector u € RS with cost W(u) = 3", ¢ Ve (ue)

o New delay functions Té”*’)(fe) = T7.(0) + %ﬁj
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Network interventions

o Intervention vector u € RS with cost W(u) = 3", ¢ Ve (ue)

ae(fe)
1+ue

o Total Travel Time at Wardrop Equilibrium after intervention

T(u) = Z FL) L o) (£(u)

ecf

o New delay functions (”")( fe) = 7e(0) +
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Network interventions

o Intervention vector u € RS with cost W(u) = 3", ¢ Ve (ue)

ae(fe)
1+ue

Total Travel Time at Wardrop Equilibrium after intervention

T(u) = Z £l e (£(0)y

ecf

New delay functions (”*’)( fo) = 7e(0) +

Optimal intervention problem

min T(u) + V(u)
ueRE
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NDP vs toll design

@ In NDP, TTT evaluated w.r.t. new delay functions and new Wardrop eq., i.e.,

fE
T(w)= ST (), ) —argmin 3 / 74%)(s)ds.

ecE flow f ecE
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NDP vs toll design

@ In NDP, TTT evaluated w.r.t. new delay functions and new Wardrop eq., i.e

u) = Z fe(u) .Téue)(fe(“))7 £(*) = arg min Z/ (”e

ecE flow f ecE

@ In toll design, TTT evaluated w.r.t. old delay functions, i.e.,

u) :Zfe(”) 7o (F1), £(*) = arg min Z/ 7)) .

ecE flow f ccE
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A simplified problem

@ Bi-level problem, non-convex, very complex in the general formulation
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@ Bi-level problem, non-convex, very complex in the general formulation
@ We define a simplified problem and provide:

> interpretation in terms of resistor networks
» efficient algorithm

. S



A simplified problem

@ Bi-level problem, non-convex, very complex in the general formulation
@ We define a simplified problem and provide:

> interpretation in terms of resistor networks
» efficient algorithm

Assumptions

o Affine routing game (i.e., Te(f.) = acfe + be) (will be relaxed in numerical analysis)

@ Assume intervention on single link (i.e., u = x6(%)), so interventions are pairs (e, k).

Goal

Find optimal intervention (e, k)*
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Part Il: Electrical interpretation



A related resistor network

Transportation network with affine delays 7o(f.) = aefe + be

@ Undirected resistor network: same node set A

Link {/,/} in resistor network if there exists either e = (i, ) or e = (j, i) with 9 <0
o Conductance of link {i,j}is W; = 1

de

Transportation network Resistor network
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Electrical interpretation

@ y denotes electrical current on links when net current m is injected from o to d

e For a link e = (i, ), r. denotes effective resistance between i and j, i.e.,
fre = Xj — Xj
where x voltage vector when unitary current from i to j is injected, i.e.,

Z th(Xh — Xk) = 5(1) — 5(‘/) Yhe N
k
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Electrical interpretation

@ y denotes electrical current on links when net current m is injected from o to d

@ For a link e = (/,J), re denotes effective resistance between i and j, i.e.,
fre = Xj — XJ
where x voltage vector when unitary current from i to j is injected, i.e.,

Z th(Xh - Xk) = (S(I) - 5(‘/) Yhe N
k

Theorem 1 [Cianfanelli,Como,Ozdaglar,Parise, 22]

@ Assumption: support of Wardrop eq. not modified with intervention
@ Result: intervention (e, ) yields TTT variation

re’
K e

Ye
AT(e,r) = af® 257
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Some observations

AT(e, k) = a.f®

1

Ye




Some observations

AT(e, k) = a.f® Ye

e 1 re *

K ae

@ Assumption does not hold for every network



Some observations

Ye
AT(e, k) = a.f® T

K ae

@ Assumption does not hold for every network

Proposition[Cianfanelli, Como,Ozdaglar,Parise, 22]

Assumption holds if:

network is series-parallel, and
throughput m large
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Some observations

Ye
AT(e, k) = a.f® T

K ae

@ Assumption does not hold for every network

Proposition[Cianfanelli, Como,Ozdaglar,Parise, 22]

Assumption holds if:

network is series-parallel, and
throughput m large

Complexity
o f(© observable
@ vector y computed by solving a sparse linear system

@ r. to be computed for every link (|€| linear systems to be solved)
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Part Ill: Effective resistance approximation



Local approximation of effective resistance

Question: can we compute an efficient approximation of r.?

. T



Local approximation of effective resistance

Question: can we compute an efficient approximation of r.?

Idea: effective resistance can be locally approximated

r=0.4871
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Cutting and shorting

Upper bound: cutting (distance 1) Lower bound: shorting (distance 1)
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Upper and lower bound

o r. effective resistance
o rY% computed on network cut at distance d
e rts computed on network shorted at distance d

Proposition [Cianfanelli,Como,Ozdaglar,Parise, 22]
° réderlee’-d Vd >1

Usy — Usp

re’t > re

o if d<dr =
ret < e
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Effective resistance bounds

o Can use Theorem 1 with (r¥% + rke)/2 instead of r,



Effective resistance bounds

o Can use Theorem 1 with (r¥% + rke)/2 instead of r,
o If local structure of the network does not depend on the size (e.g., in grids):
» complexity for effective resistance appproximation does not depend on the size of the network

. S



Effective resistance bounds

o Can use Theorem 1 with (r¥% + rke)/2 instead of r,
o If local structure of the network does not depend on the size (e.g., in grids):
» complexity for effective resistance appproximation does not depend on the size of the network
@ Define random walk with rates W
@ Definition: random walk is recurrent iff it visits its starting node infinite times with probability one
(for infinite networks)

Proposition [Cianfanelli,Como,Parise,Ozdaglar, 22]

If random walk is recurrent, then for every link e

lim reUd — reLd =0
d—+oo
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Effective resistance bounds

o Can use Theorem 1 with (r¥% + rke)/2 instead of r,
o If local structure of the network does not depend on the size (e.g., in grids):
» complexity for effective resistance appproximation does not depend on the size of the network
@ Define random walk with rates W
@ Definition: random walk is recurrent iff it visits its starting node infinite times with probability one
(for infinite networks)

Proposition [Cianfanelli,Como,Parise,Ozdaglar, 22]

If random walk is recurrent, then for every link e

lim reUd — reLd =0
d——+oo

@ 2d-grids and most of planar networks are recurrent

o Also for non-recurrent networks bounds often converge (for 3d-grids, r¥% — rké = O(d=5/2))
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Part IV: Numerical examples



Bound gap with finite distance

o Consider infinite square grid

d=1 d=2 d=3 d=4 d=5

(f—r)jr. 1/5 0.0804 00426 00262 0.0178

(re—rk)/r. 1/5  0.0804 0.0426 0.0262 0.0178

Y —ro=r,—rte = 0(d7?)
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Case-study: Oldenburg transportation network

o |N|=6105,|&| = 7035, diameter = 104
@ Bounds computed at distance d:

» d =4, |N| =~ 15, relative bound gap ~ 0.06
» d =17, |N| =~ 45, relative bound gap ~ 0.03

025

o
© N o
= o IS

Average relative bounds gap

o
o
o

2 4 6 8 10
Distance
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Relaxing assumptions

o What if Wardrop support changes with intervention?

Social cost variation
250 T T T T

[ Exact
L 5 O—G - [ Approximated

28

o Cost variation computed by convex optimization (k = 3)
@ Cost variation computed by our theorem, ignoring that Wardrop support varies
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Relaxing assumptions

e Non-affine delay functions 7.(f.) = acfs + b

. . . £(0)
(] Construct resistor network Wlth resistances %
A

Social cost variation

1 2 3 05 T
G .
» ® I Exact
5 w o |n 1 0.4r [N Approximated | A
NCEN 0.3}
5 18 19 ® o 02 L
DO ®\ 0.1}

28

Link

@ The method is validated for other functional forms of delay

24/25



Conclusions

Summary
@ Rephrased a NDP in terms of resistor networks
@ Provided method to approximate the effective resistance between neighbors
o Constructed efficient algorithm to solve the NDP

Future research
@ Improve characterization of bound performance in order to optimize selection of distance d

@ Relax assumptions:

Multiple origins and destinations
Intervention on multiple links

o Study different types of intervention, e.g., adding new links

L. Cianfanelli, G. Como, A. Ozdaglar, F. Parise, Optimal intervention in transportation networks, conditionally
accepted to TAC (preliminary version: arXiv preprint arXiv:2102.08441 (2021))
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An example

Intervention x

@ No decoupling: the optimal link depends on k!
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Algorithm

@ Construct the resistor network
o Compute y by solving sparse linear system (quasi-linear in |A)
@ Foreveryee &
» Compute Y4 and rte
» Select K} s.t.
ke € arg max aefe(o)% atpe(ke).
Ke>0 iy 9 red
2a,
@ Select optimal link e* s.t.
* (0) Ye *
e’ €argmax  acfe ——5— — athe(ky).
ecE 14 orefdr?
KX 2a.
e Optimal intervention is (e*, k)
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