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Ticket for a concert Sequence of ! agents  with 
independent valuations 

"! ∼ $!Theorem. [Krengel and  Sucheston, Bull AMS‘77] 
We can get  ½ of the expected optimal welfare.

E.g. 
- Post price = Median of the r.v. max! "! [Samuel-Cahn, Ann Prob’84] 

- Post price ) = "
# ⋅ , max! "! [Kleinberg, Weinberg, STOC’12] 

- Sample all distributions and use max as threshold [Rubinstein, Wang, Weinberg, ITCS’21]

Classic Prophet Inequality 



! tickets

Sequence of ! agents with 
independent valuations 

"! ∼ $!

We can get  1 − / "
$ of the optimal welfare. [Alaei  FOCS’11]

Tight fixed threshold algorithm recently found [Arnosti and Ma EC’22]. 



Sequence of " agents  with 

independent valuations 

#! ∼ %!

#!: 2" → ℝ#

#! * is valuation of set * ⊆ ,
Set 0 with 1 heterogeneous items



Results (informal)

Theorem. [Correa and Cristi, 22+]

If there are no complementarities between items, then there is an 

online policy that gets 
2
345

of the optimal welfare.

Theorem. [Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22]

If nobody wants more than ! items, then there are item prices that 

guarantee 
2

642
of the optimal welfare (and we can compute them).



Online combinatorial auction

! agents  with 

monotone independent valuations 

"! ∼ $! "!: 2% → ℝ&

1 2 3 4 5

$ heterogeneous items



1 2 3 4 5

#% #& ? ? ?

If agent " gets the set #$%;
we want to maximize

& #$% = & (
;

); #$%;

Online welfare



Incentive Compatible Dynamic Program

Optimal online solution: 

!!"# " = 0
!$ " = % max%⊆' {*$ + + !$"# " ∖ + }

When set " is available, offer agent / per-bundle prices

0$ +," = !$"# " − !$"# " ∖ +

If the agent maximizes utility, then she selects the same as the DP:

max(⊆' *$ + − 0$ +," = max(⊆' *$ + + !$"# " ∖ + − !$"# "



1 2 3 4 5

& *+, = & max
<),…,<*
?@ABCBCDE

(); 0;

Benchmark: Optimal offline welfare



If agents arrive sequentially, is there a small number 1
such that

1 ⋅ & #$% ≥ & *+, ?

It can be proved that in general 1 is at least superconstant, 

1 = Ω
log 8

loglog 8

Prophet Inequality



Subadditive valuations
(a.k.a. complement-free)

! " ∪ $ ≤ ! " + ! $

Gross-substitutes ⊆ Submodular ⊆ Fractionally-subadditive ⊆ Subadditive



Offline:

Theorem. [Feige STOC’06]

If valuations are deterministic, we can find in polynomial time a 2-approximation.

Theorem. [Feldman, Fu, Gravin, Lucier STOC’13]

Simultaneous First-Price auctions result in a 2-approximation.

Online:

Theorem. [Dütting, Kesselheim, Lucier FOCS’20]

There is an - log log1 Prophet Inequality.

Subadditive valuations



Theorem. [Correa and Cristi 2022+]
For every 9 > 0, if valuations are subadditive, there is a 6 + 9
Prophet Inequality, i.e.,  there is an online algorithm such that

6 + 9 ⋅ & #$% ≥ & *+,



Ticket for a concert Sequence of ! agents  with independent valuations "! ∼ $!

Theorem. We can get  ½ of the expected optimal welfare.

- Sample all distributions and use max as threshold [Rubinstein, Wang, Weinberg, ITCS’21]

- n pairs of numbers. 
(say k largest come from 
different distributions)

Connection to single item



Theorem. We can get  ½ of the expected optimal welfare.

- Sample all distributions and use max as threshold

- n pairs of numbers. 
(say k largest come from 
different distributions)

Blue box contains max w.p. 1/2 
à ALG gets max if max is in blue box and second max is not. Prob=1/4.

Blue box contains second max but not max w.p. 1/4. 
à ALG gets second max (or better) if max and second max are in blue box and third max is not. Prob=1/8.

Blue box contains third max but not max nor second max w.p. 1/8. 
à ALG gets third max if max, second max, and third max are in blue box, and fourth max is not. Prob=1/16.

Connection to single item



Random Score Generators (RSG)

Valuation #!

2!,%

2!,&

2!,(

Random vector of scores

2! ∼ 3!(#!)
?;

Imagine we could ask each agent how much they like each item

Formally, imagine there are functions 3!: 6! → Δ 8#"



Algorithm

Set threshold

9)
* = max

!
2!,)
*

Give it to first 

agent such that

s!,) > 9)
*

Simulate valuations +!
" and scores ,!,$

" ∼ .!(+!
") True valuations +! and scores ,!,$ ∼ .!(+!)



Mirror Lemma. For every  agent ",

& );(#$%;) ≥
1
2 ⋅ & ); D: F;,F > max ,FG, ,FGG

Where ,FG and ,FGG are two independent samples of  max
;
F;,FG



& );(#$%;) ≥
1
2 ⋅ & ); D: F;,F > max ,FG, ,FGG

1$
" = max

!
,!,$
" +! and scores ,!,$ ∼ .!(+!)

Is available if nobody beats the threshold, 1$
" ≥ 1$

"" 7 gets the item if ,!,$ > 1$
" ≥ 1$

""



Key observation

Set of available items 
and set of allocated 
items have the same 

distribution

,F ≤ ,FG

max F;,F ≤ max F;,FG



,F ′′ ≤ ,FG

max IHG , IHGG < F;,F



Lemma 2.  There exist RSGs such that

(
;

& ); D: F;,F > max ,FG, ,FGG ≥
1

3 + 9 ⋅ & *+,

The proof uses a fixed-point argument.

Intuitively: we design a simultaneous auction with PoA 3 + B, where 

each agent gets this set, and we take the equilibrium bids



Thus… for subadditive valuations

• Pricing implementation (Dynamic Program):
• Uses item bundling 

• Uses dynamic pricing. 

• Question: What if we cannot?

Theorem’. 
For every 9 > 0, there are RSGs such that

6 + 9 ⋅ & #$% ≥ & *+,



Demands of size !
!(#) = max

!⊆#: ! %&
!())

Theorem. [Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22]
If demands are of size at most !, there are item prices such that

! + 1 ⋅ & LMN ≥ & OPI

and this is best possible. Moreover, we can compute them in 
polynomial time.



#9 ∼ %9

#: ∼ %:

#; ∼ %;
Edges come one-by-one

Select matching on the fly

Maximize expectation

Matching: ! = #



OPI optimal matching

Algorithm:
Q = (R, S) arrives:

Q buys R and S as long as
they are not sold yet and
)I ≥ TJ + TK

TL

TM TN

TO

TP

TQ

TR

LMN(T) resulting matching



Theorem. There is a vector of prices T ∈ ℝ4S s.t. for any arrival order,

3 ⋅ & LMN T ≥ & OPI



& OPI = & (
T∈S(WXY)

[T + (
I∈WXY

)I − [T − [[

& OPI ≤ (
T∈S

[T +(
I∈\

& )I − [T − [[ 4

& OPI ∶= (
T∈S

[T +(
I∈\

^I T

To bound OPI, imagine that edges in OPI had to pay the prices



We want balanced prices:
“high enough” so we get good revenue, yet “low enough” so 

buyers buy (and get good utility)

& LMN T = revenue + utility

& LMN T = & (
T∈S ]^_ `

[T + & (
I∈]^_ `

)I − [T − [[



To lower bound &(#$% [ ), utility is the tricky part:

& (
I∈]^_ `

)I − [T − [[ =(
I∈a

& g I∈]^_ ` ⋅ )I − [T − [[

89 = set of remaining vertices when I arrives

J< is independent of K<
hI

Recall that LMN O takes I = (P, Q) iff

• the two nodes are free, and

• #9 ≥ S= + S>



Utility = X
9?(=,>)∈A

Y Z =,>∈B! ⋅ #9 − S= − S> #

= X
9?(=,>)∈C

ℙ P,Q ∈ 89 ⋅ Y #9 − S= − S> #

≥ X
9?(=,D)∈C

ℙ P,Q ∉ 6 `ab S ⋅ c9(O)

= Y X
=,>∉F GHI J

c9 O



Y LMN O = revenue + utility

Y LMN O = Y X
=∈F GHI J

S= + Y X
9∈GHI J

#9 − S= − S>

Y LMN O ≥ Y X
=∈F GHI J

S= + Y X
9? =,> :=,>∉F GHI J

c9(S)

Y LMN O ≥ min
L⊆F

X
=∉L

S= + X
9∈C(L)

c9 S



& OPI ≤ (
T∈S

[T +(
I∈\

^I T

vs.

& LMN T ≥ min
<⊆S

(
T∉<

[T + (
I∈\ <

^I T

0



[T = (
I∈d T

^I TWhat if we set prices? =

0



We want prices 

[T = (
I∈d T

^I T

Recall that   c9 O = Y #9 − S= − S> #

Define  the operator:   iT T = ∑I∈d T ^I T

Brouwer’s thm ⇒ there are prices T = i(T)



Can we compute T? Brouwer’s only guarantees existence. 

YES! For 9 > 0, we can compute T in polynomial time s.t.

3 + 9 ⋅ & LMN T ≥ & OPI

For N > 0, $ edges, P nodes and a bound Q ≥ %!"#
& '() , we can compute R in time STUV $, P, *+ , Q , using

STUV $, P, *+ , Q samples.



Sample: 

#9
W

9∈C

For large *, ij is good approx 

(concentration bound)

convex QP

Calculate “empirical” j:  

ij=
W O = X

9∈X =

#9
W − S= − S>

#

Average

ij = %
Y
∑W?%
Y ij W

Find

O = ij(O)

Repeat for 2 = 1,… , *



All = l
$ ! S. [. 1 − 9
$ 2
5

S. [. 9Any = $1

o = !

Example

& LMN T ≤ 1

& OPI = 1 + !(1 − 9)



We show a 6 + 4 -approx. for OCA with subadditive valuations
§ Algorithm uses samples to “protect” items. We use simple scores to represent complex 

valuation functions and use a fixed-point argument to show existence of good scores.
§ We improve upon the 5 log log9 -approx solving an important open question.

We find the best possible prices for online combinatorial auctions with random valuation 
parametrized by :
§ Existence follows by a fixed-point argument. Polynomial time computation follows by 

carefully analyzing the underlying function and classic optimization tools.
§ The result improves upon some recent results in the literature:

• Best-known factor of 4[ − 2 [Dütting, Feldman, Kesselheim, Lucier, FOCS’20]
• Single-minded and random valuations generalizes Prophet Inequality for intersection of [ partition 

matroids. Best known approximation is ^ [ − 1 . [Feldman, Svensson, Zenklusen, SODA’16]
• For Prophet Inequality for matching ([ = 2) a 3-approx. is known, and a 2.96-approx. using adaptive 

thresholds (prices).  [Gravin, Wang, EC’19], [Ezra, Feldman, Gravin, Tang, EC’20]

SUMMARY


