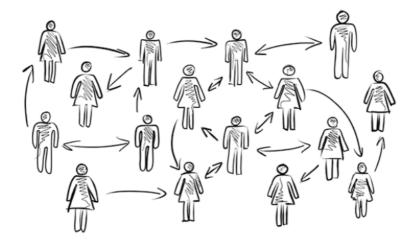


Target interventions in opinion dynamics

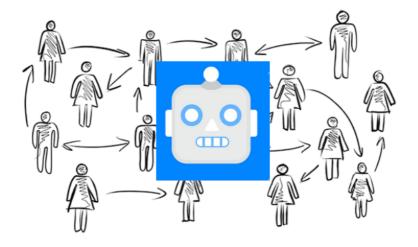
Luca Damonte Algorithmic game theory, mechanism design, and learning 8-11 November 2022

POLITECNICO DI TORINO

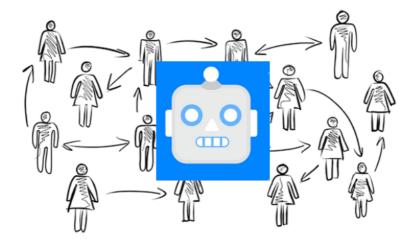
Opinion formation process



Opinion formation process



Opinion formation process



Characterize the **optimal intervention** for the defender.

The model

Linear time-invariant dynamics:

$$x(t+1) = Ax(t) + Bu, \qquad t \in \mathbb{N},$$

- ► A in ℝ^{n×n}₊ and B in ℝ^{n×m}₊ are nonnegative matrices;
- u in \mathbb{R}^m is a constant input vector;
- x(t) in ℝⁿ represents the system state vector at time t ≥ 0.

The model

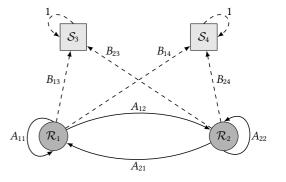
Linear time-invariant dynamics:

$$x(t+1) = Ax(t) + Bu, \qquad t \in \mathbb{N},$$

- ► A in ℝ^{n×n}₊ and B in ℝ^{n×m}₊ are nonnegative matrices;
- \blacktriangleright *u* in \mathbb{R}^m is a constant input vector;
- x(t) in ℝⁿ represents the system state vector at time t ≥ 0.

$$G = \left(\begin{array}{cc} A & B \\ 0 & I \end{array}\right)$$

 $\begin{array}{l} \text{directed graph } \mathcal{G} = (\mathcal{R} \cup \mathcal{S}, \mathcal{E}) \\ \mathcal{E} = \{(i, j) | G_{ij} > 0\} \end{array}$



$$x(t+1) = [\lambda] W x(t) + (I - [\lambda]) x(0) .$$

$$[\lambda] = \operatorname{diag} (\lambda_1, \lambda_2, \dots, \lambda_n), A = [\lambda] W, B = (I - [\lambda]).$$

$$x(t+1) = [\lambda] W x(t) + (I - [\lambda]) x(0) \,.$$

$$[\lambda] = \operatorname{diag} (\lambda_1, \lambda_2, \ldots, \lambda_n), A = [\lambda] W, B = (I - [\lambda]).$$

Assumption 1: A has spectral radius $\rho(A) < 1$.

$$\lim_{t \to \infty} x(t) = Mu,$$

$$M = (I - A)^{-1}B.$$

Assumption 2: the graph \mathcal{G} is weakly connected.

$$x(t+1) = [\lambda] W x(t) + (I - [\lambda]) x(0) \,.$$

$$[\lambda] = \operatorname{diag} (\lambda_1, \lambda_2, \ldots, \lambda_n), A = [\lambda] W, B = (I - [\lambda]).$$

Assumption 1: A has spectral radius $\rho(A) < 1$.

$$\lim_{t \to \infty} x(t) = Mu,$$

$$M = (I - A)^{-1}B.$$

Assumption 2: the graph \mathcal{G} is weakly connected.

Defense-attack: *u* has the form

$$u = [\nu]^{-1/2} \omega,$$

Adversarial optimization problem

$$\Phi(\nu,\omega) = \|x\|^2 = \omega^{\top} [\nu]^{-1/2} H[\nu]^{-1/2} \omega, \quad H = M^{\top} M,$$

$$\min_{\nu \in \mathcal{Q}_c} \max_{\|\omega\|_2 \le 1} \Phi(\nu,\omega).$$
(1)

Let $d \in \mathbb{R}^m_{++}$, $c \ge \mathbb{1}^\top d$. The set of **admissible interventions** is

$$\mathcal{Q}_c = \{ \nu \in \mathbb{R}^m \mid
u_i \geq d_i, \ \mathbb{1}^\top \nu \leq c \}.$$

Adversarial optimization problem

$$\Phi(\nu,\omega) = \|x\|^2 = \omega^{\top} [\nu]^{-1/2} H [\nu]^{-1/2} \omega, \quad H = M^{\top} M,$$

$$\min_{\nu \in \mathcal{Q}_c} \max_{\|\omega\|_2 \le 1} \Phi(\nu,\omega).$$
(1)

Let $d \in \mathbb{R}^{m}_{++}$, $c \geq \mathbb{1}^{\top} d$. The set of **admissible interventions** is

$$\mathcal{Q}_c = \{ \nu \in \mathbb{R}^m \mid \nu_i \geq d_i, \ \mathbb{1}^\top \nu \leq c \}.$$

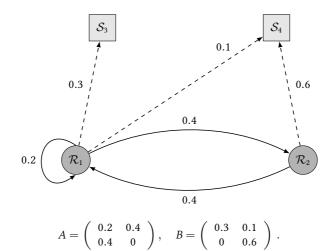
Adversarial Perturbations of Opinion Dynamics in Networks ^[1]

Set $\nu_i u_i^2 = \omega_i^2$, c = n, and assume $\nu > 0$, then min-max problem results

$$\min_{\substack{\nu>0\\\sum_i\nu_i=n}}\max_{\substack{u\in\mathbb{R}^n\\\|[\nu]^{1/2}u\|^2=1}}u^\top Hu.$$

[1] Gaitonde, Jason, Jon Kleinberg, and Eva Tardos. "Adversarial perturbations of opinion dynamics in networks." Proceedings of the 21st ACM Conference on Economics and Computation. 2020.

Example



Worst perturbation

Define the function $\phi : \mathcal{Q}_c \to \mathbb{R}$ as

$$\phi(\nu) = \max_{\|\omega\|_{2}=1} \omega^{\top} [\nu]^{-1/2} H[\nu]^{-1/2} \omega, \quad \nu \in \mathcal{Q}_{c}.$$

Lemma

Let d in \mathbb{R}^m_{++} and $c \geq \mathbb{1}^\top d$. Then, for every ν in \mathcal{Q}_c , we have

(i)
$$\phi(\nu) = \rho\left([\nu]^{-1/2}H[\nu]^{-1/2}\right) = \rho\left(M[\nu]^{-1}M^{\top}\right).$$

Moreover, if H is irreducible, then:

(ii) $\phi(\nu)$ is strictly convex in ν .

Worst perturbation

Define the function $\phi : \mathcal{Q}_c \to \mathbb{R}$ as

$$\phi(\nu) = \max_{\|\omega\|_{2}=1} \omega^{\top} [\nu]^{-1/2} H[\nu]^{-1/2} \omega, \quad \nu \in \mathcal{Q}_{c}.$$

Lemma

Let d in \mathbb{R}^m_{++} and $c \geq \mathbb{1}^\top d$. Then, for every ν in \mathcal{Q}_c , we have

(i)
$$\phi(\nu) = \rho\left([\nu]^{-1/2}H[\nu]^{-1/2}\right) = \rho\left(M[\nu]^{-1}M^{\top}\right).$$

Moreover, if H is irreducible, then:

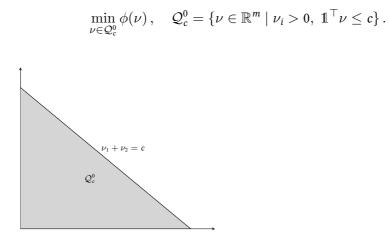
(ii) $\phi(\nu)$ is strictly convex in ν .

$$\min_{\nu \in \mathcal{Q}_c} \max_{\|\omega\|_2 \le 1} \Phi(\nu, \omega) = \min_{\nu \in \mathcal{Q}_c} \rho\left(M[\nu]^{-1}M^{\top}\right).$$

$$\nu^*(c) = \operatorname*{argmin}_{\nu \in \mathcal{Q}_c} \rho\left(M[\nu]^{-1}M^{\top}\right).$$
(2)

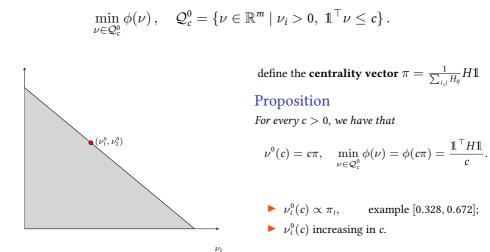
Unbounded problem

 V_2



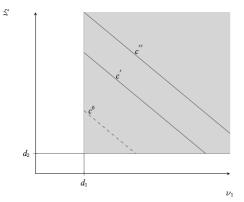
 ν_1

Unbounded problem



High budget regime

$$u^0(c)\in \mathcal{Q}_c\iff c\geq c^0=\max_{i=1}^mrac{d_i}{\pi_i}.$$

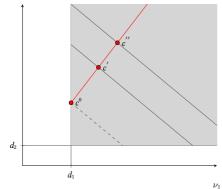


9/15

High budget regime

 V_2

$$u^0(c)\in \mathcal{Q}_c\iff c\geq c^0=\max_{i=1}^mrac{d_i}{\pi_i}.$$



considering that $\mathcal{Q}_c \subseteq \mathcal{Q}_c^0$:

$$c \ge c^0 \implies \nu^*(c) = \nu^0(c)$$

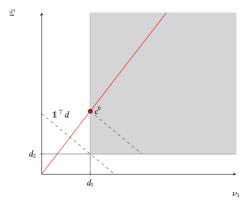
Theorem

For every $d \in \mathbb{R}^m_{++}$ and $c \geq c^0$ we have

$$\nu^*(c) = c\pi, \quad \phi(\nu^*(c)) = \frac{\mathbb{1}^\top H \mathbb{1}}{c}.$$
(3)

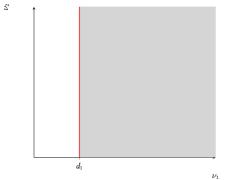
$$\mathbb{1}^{\top} d \leq c < c^0 \implies \nu^0(c) \not\in \mathcal{Q}_c \implies \nu_i^*(c) = d_i \text{ for some } i \in \mathcal{S} \,.$$

 $\nu^*(\mathbf{c})$ exhibits one or more components saturated to their lower bound level



Saturated problem

$$\phi(
u^{\mathcal{U}}(c)) = \min_{
u \in \mathcal{Q}_c^{\mathcal{U}}} \phi(
u), \qquad \mathcal{W} = \{i \in \mathcal{S} \mid
u_i = d_i\}, \ \mathcal{S} = \mathcal{U} \cup \mathcal{W} \ \mathcal{Q}_c^{\mathcal{U}} = \{
u \in \mathbb{R}^m_{++} \mid
u_i = d_i \ orall i \in \mathcal{W}, \ \mathbb{1}^{\top}
u \leq c\}$$



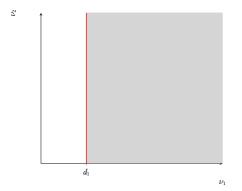
$$\mathcal{W} = \{1\} \Rightarrow
u_1 = d_1$$

 $\mathcal{U} = \{2\} \Rightarrow
u_2 = c - d_1.$

•

Saturated problem

$$\phi(\nu^{\mathcal{U}}(c)) = \min_{\nu \in \mathcal{Q}_c^{\mathcal{U}}} \phi(\nu) , \qquad \mathcal{W} = \{i \in \mathcal{S} \mid \nu_i = d_i\}, \ \mathcal{S} = \mathcal{U} \cup \mathcal{W} \\ \mathcal{Q}_c^{\mathcal{U}} = \{\nu \in \mathbb{R}_{++}^m \mid \nu_i = d_i \ \forall i \in \mathcal{W}, \ \mathbb{1}^\top \nu \leq c\} \quad .$$



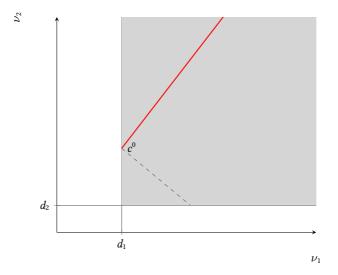
$$\mathcal{W} = \{1\} \Rightarrow
u_1 = d_1$$

 $\mathcal{U} = \{2\} \Rightarrow
u_2 = c - d_1$.

Proposition

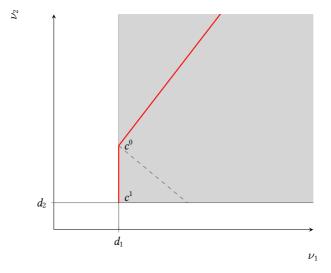
Fix $d \in \mathbb{R}_{++}^{\mathcal{W}}$. Then, for every $c \geq \mathbb{1}^{\top}$, the solution $\nu^{\mathcal{U}}(c)$ is completely described by these relations:

$$\begin{cases} \nu^{\mathcal{U}}(c) = (M_{\mathcal{U}}^{\top} (\rho I - M_{\mathcal{W}}[d]^{-1} M_{\mathcal{W}}^{\top})^{-1} M_{\mathcal{U}} \mathbb{1}, d) \\ \mathbb{1}^{\top} M_{\mathcal{U}}^{\top} (\rho I - M_{\mathcal{W}}[d]^{-1} M_{\mathcal{W}}^{\top})^{-1} M_{\mathcal{U}} \mathbb{1} = c - \mathbb{1}^{\top} d. \end{cases}$$
(4)



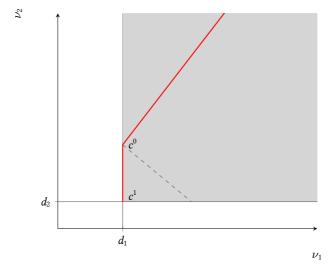
Step 0:

$$c > c^0 \implies \nu^*(c) = \nu^0(c)$$
.



$$egin{aligned} c = c^0 \implies \exists i \in \mathcal{S} \;\; ext{s.t} \;\;
u_i^*(c) = \pi_i c = d_i \,. \ ext{define} \; \mathcal{W}^0 = \{i\}, \; \mathcal{U}^0 = \mathcal{S}ackslash \{i\} \,, \end{aligned}$$

$$\exists \ \mathbb{1}^\top d < c^1 < c^0 \text{ s.t } \quad \nu^*(c) = \min_{\nu \in \mathcal{Q}_c^{\mathcal{U}^0}} \phi(\nu) \,, \quad \text{ for } \ c \in (c^1, c^0] \,.$$



Step 2 and so on:

$$\exists \ \mathbb{1}^\top d < c^2 < c^1 \text{ s.t } \quad \nu^*(c) = \min_{\nu \in \mathcal{Q}_c^{\mathcal{U}^1}} \phi(\nu) \,, \quad \text{ for } c \in (c^2, c^1] \,.$$

Theorem

Fix $d \in \mathbb{R}^{m}_{++}$. Then,

- the function $\nu^* : \mathcal{Q}_c \to \mathbb{R}^m_{++}$ is continuous and (entrywise) non decreasing;
- ► there exists a finite sequence of points $c^0 = \max_{i=1}^m \frac{d_i}{\pi_i} > c^1 > \cdots > c^s = \mathbb{1}'d$ and subsets $S \supseteq U^0 \supseteq U^1 \supseteq \cdots \supseteq U^{s-1}$ such that

$$egin{aligned} \mathcal{U}_c = \left\{ egin{aligned} \mathcal{S} & ext{if } c > c^0 \ \mathcal{U}^k & ext{if } c^{k+1} < c \leq c^k, \ k = 0, \dots, s-1 \end{aligned}
ight.
onumber \
u^*(c) = \left\{ egin{aligned}
u^0(c) & ext{if } c > c^0 \
u^{\mathcal{U}^k}(c) & ext{if } c^{k+1} < c \leq c^k, \ k = 0, \dots, s-1. \end{array}
ight. \end{aligned}
ight.$$

- iterative solution to calculate $\nu^*(c)$
- ► sensitivity of $\nu^*(c)$ in c
- $\blacktriangleright\,$ new notion of centrality $\pi\,$

- iterative solution to calculate $\nu^*(c)$
- sensitivity of $\nu^*(c)$ in c
- $\blacktriangleright\,$ new notion of centrality $\pi\,$

- ▶ network with more components (delete Assumption 2)
- ▶ consider other system measures, e.g. **polarization**
- consider other resource constraints

Thank you for the attention

POLITECNICO DI TORINO