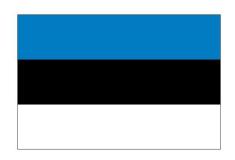
Single-Peaked Preferences: Learning Axes from Samples

Sonja Kraiczy, Edith Elkind University of Oxford

In a country far, far away...

- Estonian Parliament 2021:
 - Sotsiaaldemokraatlik Erakond
 - Eesti Reformierakond
 - Isamaa
 - Eesti Konservatiivne Rahvaerakond
 - Eesti Keskerakond
- Can you order these parties from left to right on the political spectrum?



How many voters do we need to ask?

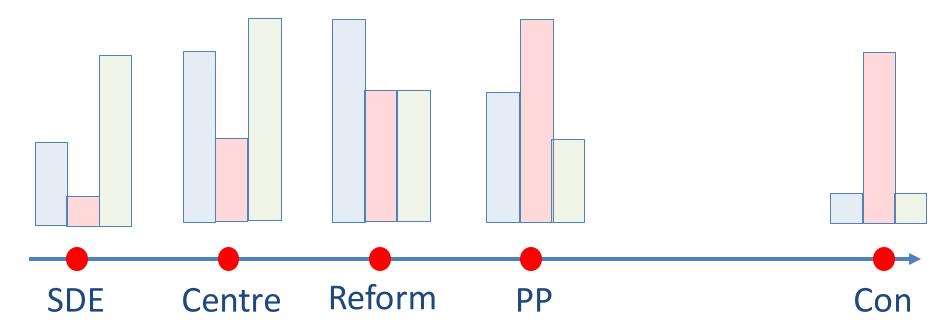
- Estonian Parliament 2021:
 - Social Democratic Party (SDE)
 - Estonian Reform Party (Reform)
 - Pro Patria (PP)
 - Conservative People's Party of Estonia (Con)
 - Estonian Centre Party (Centre)
- v₁: PP > Con > Reform > Centre > SDE
- v₂: Reform > Centre > PP > SDE > Con
- v₃: Centre > SDE > Reform > PP > Con

Single-peaked preferences

- <u>Setup</u>:
 - a set of m candidates C
 - each voter ranks candidates from best to worst
 top(v): most preferred candidate of voter v
- <u>Definition</u>: a vote v is single-peaked (SP) wrt an ordering < of candidates (axis) if it holds that:
 - if top(v) < d < e, v prefers d to e</p>
 - if a < b < top(v), v prefers b to a</p>

Example: Estonian Parliament

- v₁: PP > Con > Reform > Centre > SDE
- v₂: Reform > Centre > PP > SDE > Con
- V₃: Centre > SDE > Reform > PP > Con



Example: Temperature

• Perfect water temperature?

+16 +20 +23 +25 +27 +30

Challenge

 A population of voters, with preferences single-peaked on an axis < over C

- assume $c_1 < c_2 < c_3 < < c_m$

- We sample a random voter and ask her to report her ranking
- How many samples do we need to uniquely identify the axis (up to a swap) w.p. 1 δ ?

- the answer may depend on the distribution

Warm-up

- <u>Observation 1</u>: each voter ranks c₁ or c_m last
- <u>Observation 2</u>: there are 2^{m-1} votes s.p. on <
- Best case: two votes may be enough
 - $c_1 c_2 ... c_{m-1} c_m$, $c_m c_{m-1} ... c_2 c_1$
- Worst case: 2^{m-2} votes may not be enough
 - there are 2^{m-3} votes over $C \setminus \{c_1, c_m\}$ that are s.p. on $c_2 < < c_{m-1}$
 - to each such vote, we can append $c_1 c_m$ or $c_m c_1$
 - from these votes, we cannot decide if the axis is

 $c_1 < c_2 < ... < c_{m-1} < c_m$ or $c_m < c_2 < ... < c_{m-1} < c_1$

C_{m-1} C_m

Understanding the worst case

- How do we distinguish between
 a < b < c < d < e < f and f < b < c < d < e < a?
- If all votes rank {a, f} in the last two positions, we cannot
- But suppose we have votes ...a, ...f, and ...fba
 - in our set of votes there is no "cut" between positions 1, 2, 3, 4 and 5, 6
 - then b is "glued" to a

b

а

С

 Lemma [DF'94]: we can identify the axis iff there no cut between positions 1, ..., j and j+1, ..., m for any j

e

Average case: uniform distribution

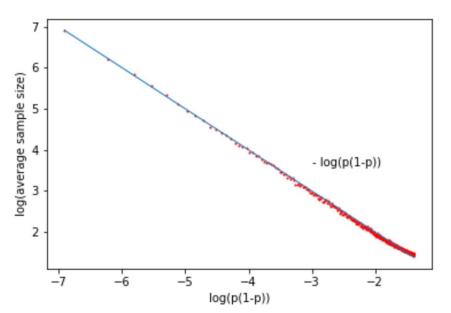
- *P*(<): the set of all votes s.p. on < (size of *P*(<): 2^{m-1})
- (<): uniform distribution over (<)
- How do we sample votes from 2/(<)?
- Bottom up:
 - last candidate is c_1 or c_m w.p. 1/2
 - if c_1 is last, then 2^{nd} last candidate is c_2 or c_m , w.p. 1/2
 - if c_m is last, then 2^{nd} last candidate is c_1 or c_{m-1} , w.p. 1/2
 - etc.
 - m-1 binary choices (left or right)
- Note: both c₁... and c_m... are exponentially unlikely

Main result

- <u>Theorem</u>: For any δ > 0, we can identify the axis < using O(log 1/δ) samples from 𝒴(<) w.p. at least 1 − δ
- Proof sketch:
 - a vote from *malk* in 1D
 - a sample of k votes admits a cut iff the respective k random walks all meet at the same point
 - <u>Lemma</u> (hard): with constant probability, four random walks never meet
 - Algorithm: draw O(log $1/\delta$) lots of 4 votes each
- Empirically: 5 votes always suffice

Skewed distribution

- *M*_p(<): skewed uniform distribution
 (L w.p. p, R w.p. 1-p)
- <u>Theorem</u>: For any $\delta > 0$, and any 0 $we can identify the axis < using <math>O(\log 1/\delta)$ samples from $\mathcal{U}_p(<)$ w.p. at least $1 - \delta$
 - skewed random walk
- Dependence on p (empirical): 1/(p(1-p))



Random peak distribution

- Uniformly random peak distribution \$\$\approx\$\$(<):
 - generate the vote top to bottom
 - each candidate is equally likely to be ranked first
 - then move left or right on < w.p. 1/2

• <u>Theorem</u>: For any $\delta > 0$, we can identify the axis < using O(log 1/ δ) samples from $\mathbb{P}(<)$ w.p. at least $1 - \delta$

Sampling pairwise comparisons

- Suppose we ask each voter about one pair of candidates
 - impossible to learn with certainty
 - but possible to learn w.h.p., both for 22(<) and 22(<)</p>
- <u>Theorem</u>: Suppose that we sample pairwise comparisons from $\mathcal{U}(<)$. For any $\delta > 0$, we can learn < w.p. at least $1 - \delta$ using $O(m^3 \log(m/\delta))$ samples (and $O(m^4 \log(m/\delta))$ for $\mathcal{P}(<)$)
 - order candidates by number of wins
 - we obtain $\{c_1, c_m\} < \{c_2, c_{m-1}\} < \{c_3, c_{m-2}\} < \dots$
 - break "ties" moving from the center outwards

с_{m-1}

Two axes

- Suppose there are two axes on C (<1 and <2)
- Half of the votes come from U(<1), half from U(<2)

- or, 80% and 20%

- <1: political left-right axis</p>
- <2: conflict in Ukraine
- Can we learn <2 if <1 is known?
- Can we learn <1 and <2 if both are unknown?

One known, one unknown axis

- Suppose <₁ is known, <₂ is unknown
- If all endpoints of <1 and <2 are distinct, we can discard votes s.p. on <1
- But if <1 and <2 share one endpoint, we may be unable to identify <2 even given P(<1)UP(<2)
- Which votes are s.p. on <2, but not on <2?
 - exactly the votes in $P(<_2)$ that rank b last
 - but such votes are also compatible with c < d < e < f < a < b</p>

Two axes: results

 <u>Theorem</u>: For any δ > 0, given <₁, we can identify <₂ using O(m log m/δ) samples from 1/2 x 2ℓ(<₁)+ 1/2 x 2ℓ(<₂) w.p. at least 1 - δ as long as <₁, <₂ have 0 or 2 common endpoints

<u>Theorem</u>: For any δ > 0, if m > 4, we can identify the pair of axes <₁, <₂ using O(m log m/δ) samples from 1/2 x 𝒴(<₁)+ 1/2 x 𝒴(<₂) w.p. at least 1 − δ as long as <₁, <₂ have 0 or 2 common endpoints

Future work

• Can we characterize distributions that enable axis identification?

• Single-peakedness on richer graphs?

• Learning partial information about the axis?