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In a country far, far away…

• Estonian Parliament 2021:

– Sotsiaaldemokraatlik Erakond

– Eesti Reformierakond

– Isamaa

– Eesti Konservatiivne Rahvaerakond

– Eesti Keskerakond

• Can you order these
parties from left to right
on the political spectrum?



How many voters do we need to ask?

• Estonian Parliament 2021:
– Social Democratic Party (SDE)
– Estonian Reform Party (Reform)
– Pro Patria (PP)
– Conservative People's Party of Estonia (Con)
– Estonian Centre Party (Centre)

• v1: PP > Con > Reform > Centre > SDE
• v2: Reform > Centre > PP > SDE > Con
• v3: Centre > SDE > Reform > PP > Con 

SDE ConPPCentre Reform



a    b c          d e          f

Single-peaked preferences 

• Setup: 
– a set of m candidates C

– each voter ranks candidates from best to worst

– top(v): most preferred candidate of voter v

• Definition: a vote v is single-peaked (SP) wrt an 
ordering < of candidates (axis) if it holds that: 
– if top(v) < d < e, v prefers d to e

– if a < b < top(v), v prefers b to a



Example: Estonian Parliament

• v1: PP > Con > Reform > Centre > SDE

• v2: Reform > Centre > PP > SDE > Con

• v3: Centre > SDE > Reform > PP > Con 

SDE ConPPCentre Reform



Example: Temperature

• Perfect water temperature?

+16 +30+20 +23 +25 +27



Challenge 

• A population of voters, with preferences 
single-peaked on an axis < over C
– assume c1 <  c2 <   c3 < …. < cm

• We sample a random voter and
ask her to report her ranking

• How many samples do we need to uniquely 
identify the axis (up to a swap) w.p. 1 - d?
– the answer may depend on the distribution

c1 c2 c3 cm



Warm-up 
• Observation 1: each voter ranks c1 or cm last

• Observation 2: there are 2m-1 votes s.p. on <

• Best case: two votes may be enough
– c1c2…. cm-1 cm ,     cmcm-1… c2 c1

• Worst case: 2m-2 votes may not be enough
– there are 2m-3 votes over C\{c1, cm} 

that are s.p. on c2 < …. < cm-1

– to each such vote, we can append c1cm or cmc1

– from these votes, we cannot decide if the axis is 
c1 <  c2 <  … < cm-1 < cm or    cm <  c2 <  … < cm-1 < c1

c1 c2 c3 cm-1 cm



Understanding the worst case 
• How do we distinguish between

a < b < c < d < e < f and f < b < c < d < e < a?

• If all votes rank {a, f} in the last two positions, 
we cannot

• But suppose we have votes …a, …f, and …fba
– i.e., in our set of votes there is no “cut” between 

positions 1, 2, 3, 4 and 5, 6

– then b is “glued” to a

• Lemma [DF’94]: we can identify the axis iff there no 
cut between positions 1, …, j and j+1, …, m for any j

a b c          d e f



Average case: uniform distribution 
• P(<): the set of all votes s.p. on < (size of P(<): 2m-1)

• U(<): uniform distribution over P(<)

• How do we sample votes from U(<)?

• Bottom up:
– last candidate is c1 or cm w.p. 1/2

– if c1 is last, then 2nd last candidate is c2 or cm, w.p. 1/2

– if cm is last, then 2nd last candidate is c1 or cm-1, w.p. 1/2

– etc.

– m-1 binary choices (left or right)

• Note: both c1… and cm… are exponentially unlikely

c1 c2 c3 cm-1 cm



Main result 
• Theorem: For any d > 0, we can 

identify the axis < using O(log 1/d) samples 
from U(<) w.p. at least 1 − d

• Proof sketch:
– a vote from U(<)  =  a uniform random walk in 1D

– a sample of k votes admits a cut iff the respective k 
random walks all meet at the same point

– Lemma (hard): with constant probability, 
four random walks never meet

– Algorithm: draw O(log 1/d) lots of 4 votes each

• Empirically: 5 votes always suffice 



Skewed distribution 
• Up(<): skewed uniform distribution 

(L w.p. p, R w.p. 1-p)

• Theorem: For any d > 0, and any 0 < p < 1 
we can identify the axis < using O(log 1/d) 
samples from Up(<) w.p. at least 1 − d

– skewed random walk

• Dependence on p
(empirical): 1/(p(1-p))



Random peak distribution 
• Uniformly random peak distribution RP(<):

– generate the vote top to bottom

– each candidate is equally likely to be ranked first

– then move left or right on < w.p. 1/2

• Theorem: For any d > 0, 
we can identify the axis < using O(log 1/d) 
samples from RP(<) w.p. at least 1 − d

c1 c2 c3 cm-1 cm



Sampling pairwise comparisons 
• Suppose we ask each voter about 

one pair of candidates
– impossible to learn with certainty

– but possible to learn w.h.p., both for U(<) and RP(<)

• Theorem: Suppose that we sample pairwise
comparisons from U(<). For any d > 0, we can 
learn < w.p. at least 1 − d using O(m3 log(m/d)) 
samples (and O(m4log(m/d)) for RP(<))
– order candidates by number of wins

– we obtain {c1, cm} < {c2, cm-1} < {c3, cm-2} < …

– break “ties” moving from the center outwards
c1 c2 c3 cm-1 cm



Two axes 
• Suppose there are two axes on C (<1 and <2)

• Half of the votes come from U(<1),
half from U(<2) 

– or, 80% and 20%

• <1: political left-right axis

• <2: conflict in Ukraine

• Can we learn <2 if <1 is known?

• Can we learn <1 and <2 if both are unknown?

a     b     c      d e      f c f e      d a     b



One known, one unknown axis 
• Suppose <1 is known, <2 is unknown

• If all endpoints of <1 and <2 are distinct, 
we can discard votes s.p. on <1

• But if <1 and <2 share one endpoint, we may be 
unable to identify <2 even given P(<1)ꓴP(<2)

• Which votes are s.p. on <2, but not on <1? 
– exactly the votes in P(<2) that rank b last

– but such votes are also compatible with 
c < d < e < f < a < b

a b     c      d e      f b     c     d     e f      a<1: <2:



Two axes: results 
• Theorem: For any d > 0, given <1, we can 

identify <2 using O(m log m/d) samples 
from 1/2 x U(<1)+ 1/2 x U(<2) w.p. at least 1 − d 

as long as <1 , <2 have 0 or 2 common endpoints

• Theorem: For any d > 0, if m > 4, we can 
identify the pair of axes <1 , <2 

using O(m log m/d) samples 
from 1/2 x U(<1)+ 1/2 x U(<2) w.p. at least 1 − d 

as long as <1 , <2 have 0 or 2 common endpoints



Future work 
• Can we characterize distributions that enable 

axis identification?

• Single-peakedness on richer graphs?

• Learning partial information about the axis?


