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Equilibrium theory of repeated games
– Static outcomes with low discount factors.
– Folk theorems when players are patient.

• Repetition does not rule out the static equilibria, can only add
equilibria and not take them away.

• Intuition: people tend to cooperate when this is an
equilibrium.

• Economic analyses often assume that people play the
equilibrium with the most cooperation, but this is a poor fit
for observed behavior in the laboratory.

2 / 40



Laboratory Evidence: Repeated PD with Perfectly
Observed Actions

• In Roth and Murnighan [1978] and Murnighan and Roth
[1983], subjects only played one iteration of the indefinietly
reepeated prisoner’s dilemma (PD).
• Effect of discount factor mostly but not that much
cooperation even when discount factor high.
• Reason: Subjects only played the repeated game once, didn’t
get a chance to learn from experience.

• In Dal Bo [2005], subjects played 7–10 iterations of the
repeated game, with a different partner each time.
• Much more effect of the discount factor than when theu just
play once.
• Launched a revival of repeated game experiments, mostly on
variations of the PD.
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• Past work has focused on trying to learn how individuals play
the game. We consider different problem: How overall
cooperation rates depend on parameters.
• We consider the problem of predicting cooperation rates out
of sample, using data from past experiments on the repeated
prisoner’s dilemma with observed actions.
• No theoretical results; we use simulations of a simple learning
model to make our predictions.
• Use machine learing performance as a benchmark.
• The simplest version of the model, where learning only affects
choices in the initial round of each supergame, performs at
least as well on our data as more complicated models and
machine learning algorithms.
• Our results help explain past findings on the impact of risk
dominance considerations, and also suggest some
modifications to them.
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Preliminaries

• Data come from the 12 papers covered in the Dal Bó and
Fréchette [2018] meta-analysis and 5 papers published since
then: 161 experimental sessions and 2,612 participants.

• Participants played a sequence of repeated prisoner’s dilemma
games with perfect monitoring. The game parameters were
held fixed within each session.

• Randomly chosen partners and a random stopping time, so the
discount factor δ determines the probability (1− δ) that the
current repeated game ends at the end of the current round.

• We will refer to the “rounds” of a given repeated game, and
call each repeated game a new “supergame.”

• Normalize the payoff to joint cooperation to 1 and the payoff
to joint defection to 0; this is w.l.o.g. for agents who
maximize expected utility.
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C D
C R,R S, T
D T, S P, P

T > R > P > S,
2R > T + S

Normalize: substract P from all the payoffs, divide by R− P

C D
C 1, 1 −l, 1 + g
D 1 + g,−l 0, 0

g − l < 1
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C D
C 1, 1 −l, 1 + g
D 1 + g,−l 0, 0

• “Cooperate every round” is the outcome of a subgame-perfect
equilibrium if and only if

1 ≥ (1− δ)(1 + g) ⇐⇒ δ ≥ g/(1 + g) ≡ δSPE.

• Note that the loss l incurred to (C,D) does not enter in to
this equation!

• Little experimental support for the idea that players cooperate
if δ > δSPE.

• Cooperation in repeated game experiments can be better
predicted by measures that reflect uncertainty about the
opponents’ play.

7 / 40



• A strategy is risk dominant in a 2x2 game if it is the best
response to a 50-50 randomization.
• Grim is risk dominant in a 2x2 matrix game with the
strategies Grim and Always Defect iff

δ ≥ (g + l)/(1 + g + l) ≡ δRD.

• The RD-difference is

∆RD ≡ δ − δRD = δ − (g + l)/(1 + g + l).

• No good reason to think people only consider Grim and
Always Defect, but ∆RD proves to be a useful composite
parameter or “feature.”
• Unlike δSPE = g/(1 + g), ∆RD depends on l as well as g,
which makes sense if people aren’t sure how their partners will
play.
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Overview: Prediction Tasks

• We consider two prediction tasks: Predicting average
cooperation in a given session, and predicting the time path of
cooperation over the course of a session.

• Predicting time paths lets us make predictions about what
cooperation levels would be if sessions were longer.

• And predicting the time paths is also a good way to predict
the average: when predicting the average cooperation level in
a session, each session is a single observation, while when
predicting the time path of cooperation, a data point is the
average (across participants) cooperation level on each round
of each supergame.
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The IRL-SG Model
• The simplest model we consider is IRL-SG: “Initial Round
Learning-Semi Grim.”
• In this model, learning only influences how agents play in the
initial round of each supergame.
• Subsequent play in the supergame is determined by a
“semi-grim” strategy.
• With a semi-grim strategy, the action played only depends on
the outcome of the previous round, so it is “memory-1.”
• The restriction to memory-1 strategies is motivated by past
work, and also by our machine learning analysis
• And play after CD is assumed to be the same as after DC.
• The IRL-SG assumes the same semi-grim strategy is used by
all individuals in all treatments.
• So we need to estimate 3 parameters to pin it down.
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Initial Play in the IRL-SG
• We allow initial-round cooperation in supergame s to depend

on ∆RD.
• And we also allow it to depend on each individual i’s past

experiences ei(s)— this is where learning comes in.
• Specifically, we assume that initial-round cooperation
pinitiali (s) is given by :

pinitiali (s) = 1
1 + exp (−(α+ β ·∆RD + ei(s)))

.

• Cooperation or defection in the initial round is reinforced via
the updating of ei:

ei(s) = λ · ai(s− 1) · Vi(s− 1) + ei(s− 1),
where ai(s) is −1 if i played D in the initial round of
supergame s, and 1 if i played C, and Vi(s) is the total payoff
i received in supergame s.
• λ determines the strength of learning.
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• To initialize the system we set ei(1) = 0, so in the initial
round of the first supergame all individuals in a session
randomize in the same way.

• Given a simulated population, we can calculate either average
cooperation or the time path of cooperation.

• Key:Our predictions don’t use endogenous data like actions
played and payoffs received, they only depend on the game
parameters and realized game lengths.

• We estimate the learning model based on the time path of
cooperation, even when predicting average cooperation. That
is, we find the parameters that best predict the time path of
cooperation in the training set, and use those parameters to
predict both the average cooperation and the time path of
cooperation in the test sets.

• This lets use more of the data to estimate the model.
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Estimation
• We estimate model parameters numerically on 10 folds,
holding fixed the realizations of the random variables as we
tune the parameters.
• We evaluate models by their 10-fold cross-validated mean
squared error (MSE).
• Our method doesn’t have performance guarantees, but it
performs well on on simulated data; in particular it can
distinguish our IRL-SG model from pure-strategy
reinforcement learning.
• Train/test splits are on the level of the session, so each
observation is predicted using only data from other sessions.
• To estimate the standard errors of the estimated MSE, we do
10 different such 10-fold cross-validations. This results in 100
different MSE values from which we estimate the standard
errors.
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Machine Learning Algorithms

• We used ML algorithms (and OLS) to make predictions.

• The ML algorithms include Lasso, Support Vector Regressions
(SVR), and Gradient Boosting Trees (GBT). (Tried others
that didn’t work well.)
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Features

• For average cooperation we used ∆RD, δ, g, l, total #rounds,
#supergames, an indicator for ∆RD > 0, summary statistics
for the difference between expected and realized supergame
lengths, and some interactions.

• For predicting time paths, added current supergame, current
round, and an indicator for the initial round. Details

• With enough data, ML algorithms can figure out interactions
or composite variables by themselves. With limited data,
including these as features can help, so we can’t rule out that
other features could yield better predictions.

15 / 40



Predicting average cooperation

Model MSE SE Improvement

Constant 0.0517 (0.0040) -
OLS on ∆RD 0.0189 (0.0020) 63.4%
SVR 0.0145 (0.0016) 71.9%

IRL-SG 0.0138 (0.0015) 73.3%

• Our learning model (slightly) outperforms the ML algorithms
because it better predicts the influence of realized supergame
lengths—in particular, the model predicts that there is more
cooperation when the realized supergames are long.

• If we remove supergame lengths from the learning model and
ML algorithms, they both have prediction error .0158.

• Similar results for the time-path problem. Time-path table
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Actual and predicted initial round cooperation

Actual (solid line) and out of sample predicted (dashed line) initial-round
cooperation by supergame for sessions of at least 20 supergames.
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Interpreting λ

• The estimated learning rate (λ = 0.182) implies a strong
learning effect.

• With the estimated parameters, approx 88% of the between-
treatment variance in predicted cooperation in the initial
round of the last supergame in a session is driven by learning.
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∆RD and Learning

Average empirical difference between total payoff in supergames where
the participant cooperated and defected in the first round. Each dot
corresponds to one experimental session.
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∆RD and Learning

• For ∆RD < 0, initial-round defection is reinforced in all but 1
session.

• For positive but low values of ∆RD, the difference in
reinforcement π(C)− π(D) is centered around 0, so
cooperating and defecting are on average reinforced equally.

• This helps explain why there aren’t clear time trends in the
sessions where 0 < ∆RD < 0.15.

• Simulations of our model show a similar pattern.
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Adding one parameter

• Our baseline IRL-SG model has 6 parameters: α and β
determine how ∆RD influences initial play, λ determines the
strength of reinforcement, and σCC , σDD,and σCD=DC are
the memory-1 mixed strategies.

• The following keep those parameters and add one more:

– Recency effect: ei(s) = λ · ai(s− 1) · Vi(s− 1) + ρ · ei(s− 1),
where ρ ∈ [0, 1] discounts previous experiences.

– Flexible reinforcement threshold : cooperation is reinforced for
payoffs greater than τ instead of greater than 0.

– Learning with memory-1 : drop the requirement that
σDC = σCD; 7 parameters
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Variations with more parameters

• Initial round learning with flexible memory-1. Allow play after
each memory-1 history to depend on ∆RD; 11 parameters.

• Learning at all memory-1 histories: Cooperation probabilities
are updated at the beginning of each supergame, and remain
constant in its subsequent rounds; 11 parameters.

• Learning at all memory-1 histories with two rates: Separate
learning rates λ for initial-round actions and non-initial
actions; 12 parameters.
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• Exogenous heterogeneity : Two types of IRL-SG agent, and a
parameter that determines their population shares. This is the
only variant that has better outsample performance, but the
improvement is slight, and it has 13.

• IRL-SG and AllD: Two types, one follows IRL-SG and the
other Defects with constant probability 1− ε. (This variant is
suggested by the obervation that some subjects seem to
defect almost all the time.)
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Alternative Models from the Literature

• Dal Bó and Fréchette [2011] estimate a learning model where
all participants make a noisy choice between either Tit for Tat
(TFT) or AllD, with expected payofffs computed as in
fictitious play with recency.

• They estimate insample fit. To make cross-treatment
predictions we let initial beliefs depend on ∆RD, adding 2
parameters. We also allow for “trembles.”

• And we consider a reinforcement learning model with TFT,
AllD and Grim.

• Most of the more flexible learning models performed a bit
worse than the IRL-SG; the two-type IRL-SG did slightly
better.
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Extrapolating to Longer Experiments

• We are interested in what would happen over a longer time
scale than feasible in the lab.

• We use our learning model to make predictions about that.

• But first we test how well we can extrapolate from the first
half of the sessions to the second half: If we can’t do that well
it’s hard to be very confident about extrapolations to
out-of-sample session lengths.

• As before, each session is in either a training or a test fold but
not both.

• But now we use the first halves of the training sessions to
predict play in the second halves of the test sets.
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Prediction loss (MSE) from estimating on first half of a session
and evaluating on its second half.

Model 2nd half MSE for avg C
Constant 0.0695 (0.0055)
SVR 0.0285 (0.0030)
Lasso 0.0284 (0.0030)
OLS on ∆RD 0.0281 (0.0032)
GBT 0.0266 (0.0027)
IRL-SG 0.0220 (0.0026)

• The learning model is better at extrapolating to the second
halves of the sessions than our black-box algorithms or simple
OLS, and the difference is statistically significant.
• Could be due to our particular ML implementations, but a
more structured model that encodes some intuition or
knowledge about the problem domain can sometimes better
extrapolate to related prediction problems.
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• The performance of the IRL-SG in extrapolating from 1st
halves of sessions to their second halves gives us some
confidence in our extrapolation to cooperation rates in longer
sessions than we see in our data.

• When we do this we see very wide 90% intervals for
intermediate values of ∆RD, less variation when ∆RD < 0 or
∆RD > 0.3
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• We now extrapolate long-run play in the six treatments in
Dal Bó and Fréchette [2011].

• For each treatment, 1,000 populations with 14 participants
were simulated for 10,000 supergames, with randomly drawn
supergame lengths.

• Randomness in both behavior and the differing experiences
can lead to substantially different outcomes.

– For ∆RD < 0, we see less than 50% cooperation.

– For ∆RD = 0.11, even after 10,000 supergames the 90%
interval goes from 0% cooperation to 79%.

– For ∆RD = 0.36 relatively certain prediction of high rates of
cooperation.
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Long-run predictions and actual behavior for six different treatments.

The solid black line corresponds to the average actual cooperation.

The dashed red line is the average of 1,000 simulated populations, the
dotted red lines depict the middle 90% interval.
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• Wide 90% intervals for intermediate values of ∆RD due to the
randomness of behavior and small population size.

• Randomness comes from random initial play in a finite
population: When ∆RD = 0.11 and population size is 100, the
90% interval is [15, 64]; with 1,000 participants it is [24, 56].

• Randomness also comes from the realized supergame lengths:
If population size is 1,000 and all of the simulated supergames
have their expected number of rounds, the 90% interval
shrinks to [44, 49].

• The intervals are smaller in treatments where ∆RD is more
extreme in either direction.
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Discussion

• The key to predicting cooperation in a given match is the
prediction of play in the initial round.

• Initial-round play depends on the game parameters and on
experience in previous matches.

• Can predict fairly well with a simple learning model that holds
play fixed except in the initial round of each supergame, and
has only 6 parameters

• The learning model with a single type has endogenous
heterogeneity; little gain by adding exogenous
type-heterogeneity—neglecting learning might lead researchers
to overemphasize heterogeneity in participants. (Paper reports
a similar finding for predicting the next action played.)
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• Why does there seem to be little adjustment to play at
non-initial rounds?

• Conjecture: there is a cognitive cost associated with learning
from experience and adjustment to game parameters, so we
should expect learning and adjustment to happen where the
relative payoff is the greatest, and this is in the initial round.

• To test this, we assume all other individuals behave according
to our estimated IRL-SG model, and calculate the potential
gain from learning and adjustment at different histories.

• The best IRL-SG does much better than best model w/o
learning, and learning at all histories yields only small
improvement, which supports the conjecture.
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• The main way ∆RD influences cooperation is through the
probability of cooperation in the initial rounds of each match.
• Initial cooperation trends up or down depending on whether it
is positively or negatively reinforced, which depends on ∆RD.
• Our model also predicts that the values of g and l have an
effect that isn’t captured by the composite parameter ∆RD:
increasing g− l for fixed g+ l dampens the effect of any given
∆RD. (There aren’t enough experiments with the same ∆RD

and different g, l to directly test this prediction.) Details

• Our model lets us predict what average cooperation rates
would be with longer lab sessions (assuming the participants
did not loose focus on the task).
• Many real-world settings have implementation errors or
imperfect monitoring. Not yet enough experimental studies of
these games to test cross-treatment predictions. Once there
are it would be useful to extend our analysis to them.
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One Step Ahead Prediction (OSAP)

• We also considered the problem of predicting an individual’s
next action a(t+ 1) conditional on the history h(t).

• Resembles a common approach in the literature: choose
parameters of a structural model to maximize the in-sample
likelihood of all individual decisions.

• If participants use memory-2 or memory-3 strategies, access to
the 3 preceding rounds, instead of just the previous, should
improve predictions.

• Most of the time, participants just repeat the previous action.
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Models for OSAP

• Allow heterogeneity: We assume there are a finite number
strategies or learning rules used in the population, and
estimate the parameters and the shares of these strategies by
maximum likelihood.

• Each round we calculate the posterior probability of an
individual being of each type and make the corresponding
predictions.

• Compare performance to a naive benchmark that predicts the
previous action taken by the individual, and to the predictions
made by a gradient boosting tree.
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Model N types Loss Accuracy

Naive 0.383 87.3%

Memory-1 mixed strategy 1 0.343 81.4%
3 0.245 89.7%

Flexible memory-1 1 0.307 86.3%
3 0.241 90.2%

IRL-SG 1 0.266 90.4%
3 0.236 90.8%

Learning at all memory-1 1 0.267 90.6%
3 0.226 91.3%

GBT with memory-1 0.167 93.7%
GBT with memory-3 0.164 93.8%

Table: Out of sample prediction errors for predicting the next action
taken by an individual evaluated on the last third of the supergames.
Loss is average negative log-likelihood
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OSAP or Time-path?

• OSAP estimated models give noisy and unstable predictions of
average cooperation.

• Most individual actions are easy to predict. The "naive"
model has an accuracy of 87.3 %, best model has 93.8 %.

• Initial round actions have most of the impact on the time
path.

• Time paths of aggregate behavior are what matters for
welfare.
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Ongoing Research – Learning in Static Games

• Learning in static games with random matching is relatively
well understood theoretically; we’ d like to better understand
the learning rules actually used.

• Current literature focuses on maximizing likelihood of
individual decisions, as in the OSAP problem.

• This appoach has low power and biased wstimates (Salmon
(2001), Cabrales and Garcia-Fontes (2000), and Wilcox
(2006).)
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• We will extend the idea of predicting aggregate time paths to
study populations who play a static game with anonymous
random matching.

• We plan to collect a large new data set, because much of the
existing data isn’t publicly available and considers a limited
set of games.
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Thank you!
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Additional Previous Work
• Dal Bó and Fréchette [2011] uses the related measure

(1− δ)l
1− (1− δ)(1 + g − l) ;

it is very correlated with ∆RD and again reflects the role of l.
• [Dal Bó and Fréchette, 2018, 2011; Engle-Warnick and
Slonim, 2006] find there is more cooperation in the first round
increased if the realized length of the previous supergame is
longer than expected.
• Past work also suggests that most participants use memory-1
strategies at least when the PD has perfect monitoring; see
e.g. Dal Bó and Fréchette [2018, 2011] and Fudenberg, Rand,
and Dreber [2012].
• Romero and Rosokha [2018] and Dal Bó and Fréchette [2019]
elicit pure strategies from participants and confirm the finding
that a small set of memory-1 strategies are enough to capture
most of the strategies used.
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Details on g-l
• We have 2 treatments for ∆RD = −.05, with 3 sessions of
one parameter constellation and 1 of the other, and 4
treatments for ∆RD = .0833, but only 5 sessions in total.

Figure: Predicted average cooperation over 27 supergames for fixed g + l
but varying g − l.
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Details of Features 1

• The expected length of a supergame is 1
1−δ . Let l(s) be the

realized length (number of rounds) of supergame s.

• The absolute difference between realized and expected is then
l(s)− 1

1−δ , in relative terms it is (1− δ)l(s)− 1.

• The absolute and relative difference between expected and
realized lengths can be averaged over different time-spans, for
example over the whole session or the cumulative until
supergame s.
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Details of Features 2

• Features for average predictions: δ, g, l, ∆RD,
rd = (∆RD > 0), #supergames, #rounds, rd ·∆RD,
rd · (#supergames), rd · (#rounds), difference in length in the
first third of supergames, total difference in length.

• Features for time-path predictions: δ, g, l, ∆RD,
rd = (∆RD > 0), current supergame, current round of
supergame, (round = 1), rd ·∆RD, rd · (current supergames),
rd · (current round), previous supergame difference in length,
cumulative difference in supergame length.

• We include both the absolute and relative difference for each
of the difference measures.
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Time-path Predictions

Model Time-path
Constant prediction 0.0775 (0.0050)
OLS on ∆RD 0.0398 (0.0025)
GBT:time-path 0.0321 (0.0020)

IRL-SG 0.0309 (0.0020)

Out of sample prediction loss (MSE) of predictions for time path for
different learning models.
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