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Part I

Basic DTA Theory



Layered DTA Modelling

DTA as a two-layer system:
▶ physical layer

▶ flow propagation (discrete, continuous)
▶ queueing models (Vickrey point queue, horizontal queue, )
▶ outflow functions (depending on travel time, volume, FIFO)
▶ travel time functions (depending on inflow, flow volume, FIFO)
▶ ...

▶ behavioral layer
▶ How do/can travelers behave?

▶ fixed departure rate, flexible departure rate, elastic demand,..
▶ What is the information available?

▶ full information, partial information, prediction,..
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Research Questions

Given a physical flow model and a behavioral model:
▶ Do dynamic equilibria exist ?
▶ How can they be computed ?
▶ Are they unique ?
▶ Does the equilibrium set have a specific structure?
▶ Price of anarchy/stability ?
▶ Engineer equilibria (tolls, network design, information

design,...)?



Mathematical Tools
Modelling dynamic equilibria (“Terry Friesz school”):
▶ full information

▶ strategy space
Λi := {h ∈ (L2[0, T ])Pi |

∑
p∈Pi

hp(t) = ri(t), t ∈ [0, T ]} with
hp(t) inflow rate into path p for commodity i ∈ I.

▶ path-delay function (using P = ∪i∈IPi)

Ψ : (L2[0, T ])P → (L2[0, T ])P

h(·) 7→ (Ψp(·, h))p∈P .

Definition 1
h∗ ∈ Λ is a dynamic equilibrium with fixed inflow rates, if for all
i ∈ I, the following conditions hold:

h∗
p(t) > 0, p ∈ Pi ⇒ Ψp(t, h∗) ≤ Ψq(t, h∗) (1)

for almost all t ∈ [0, T ], q ∈ Pi . (2)
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Friesz et al. (1993,+), Zhu and Marcote (2000)

Theorem 2

Let Ψp(·, h) be positive and measurable for all p ∈ P and h ∈ Λ.
Then, h∗ ∈ Λ is a dynamic equilibrium with fixed inflow rates r , if
and only if it solves the following variational inequality:

Find h∗ ∈ Λ such that :
⟨Ψ(h∗), (h − h∗)⟩ ≥ 0 for all h ∈ Λ.

(VI(Ψ, r , [0, T ]))



Existence

“Friesz School (starting from 2015)”
▶ Browder (1968): Λ convex and compact, Ψ “continuous” ⇒

VI has solution h∗.
▶ Use piecewise constant hi

p with discretization ∆i ⇒ Λ(∆i)
compact.

▶ Take the limit ∆i → 0 and prove convergence.

“Zhu and Marcotte, Cominetti, Correa et al. School (starting from
2000, 2015)”
▶ Brézis, Lions (1968): Λ convex and closed and bounded, Ψ

“sequentially weak-strong continuous” ⇒ VI has solution h∗.
▶ Prove “sequential weak-strong continuity” of Ψ.
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Computing Equilibria – “Friesz School”

Pose the problem as a fixed point “path-balancing” problem:

hk+1
p (t) :=

[
hk

p(θ) − αk ·
(

Ψp(t, hk) − min
q

{Ψq(t, hk)}
)]

+
.

Problem 1
▶ Convergence (local, global)?
▶ Numerical Stability ?
▶ Network Loading ?
▶ Relation to packet-based simulations (MatSim)?



“Koch/Skutella/Correa/Cominetti School”

Vickrey Model
▶ Use specific structure of “derivatives of equilibria”:
▶ Node label functions (specific form of Ψp(t, h)!)
▶ Thin flows
▶ “Extension methodology”

Problem 2
▶ Finite number of extension steps ?
▶ For which physical models (Ψ(t, h)) can we apply the

extension methodology ?
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Uniqueness of Equilibria

uniqueness of dynamic equilibria in the Vickrey- and more general
models, single sink!
▶ Cominetti et al. (2015)
▶ Smith and Iryo (2017)
▶ Olver et al. (2022)

Problem 3
For which physical models (Ψ(t, h)) can we say more about
uniqueness ?



Part II

Information Models – Prediction Equilibria



Vickrey Queueing Model

▶ digraph G = (V , E )

▶ edge e ∈ E has length τe ∈ Z+
▶ edge e ∈ E has inflow capacity νe ∈ Z+ (queue service rate)
▶ commuters (si , ti), i ∈ I with ui : [ri , Ri ] → R+ constant

v w
τe

inflow

queue qe(θ)
f +
e (θ)

outflowf −
e (θ)

νeu = 2 for θ ∈ [0, 1]
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Route Planning

Current length of a v -t path P: travel time + waiting times in
queues

cP(θ) =
∑
e∈P

τe + qe(θ)/νe

Definition 3 (Instantaneous Dynamic Equilibrium (IDE))
At every point in time: if positive flow enters an edge, the edge
must lie on a currently shortest path towards the respective sink.
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IDE – Single Sink
▶ total travel time of edge e at time θ: ce(θ) = τe + qe(θ)/νe
▶ define node labels ℓv (θ) measuring the currently earliest

arrival time at t:

ℓv (θ) =
{

θ, for v = t
mine=vw∈E {ce(θ) + ℓw (θ)}, for all v ∈ V \ {t}.

Definition 4 (Active Edges)
An edge e = vw ∈ E is active at time θ if

ℓv (θ) = ℓw (θ) + ce(θ).

E (θ) ⊆ E set of active edges

Definition 5 (Instantaneous Dynamic Equilibrium)
For every θ ≥ 0: f +

e (θ) > 0 ⇒ e ∈ E (θ).



IDE – Single Sink
▶ total travel time of edge e at time θ: ce(θ) = τe + qe(θ)/νe
▶ define node labels ℓv (θ) measuring the currently earliest

arrival time at t:

ℓv (θ) =
{

θ, for v = t
mine=vw∈E {ce(θ) + ℓw (θ)}, for all v ∈ V \ {t}.

Definition 4 (Active Edges)
An edge e = vw ∈ E is active at time θ if

ℓv (θ) = ℓw (θ) + ce(θ).

E (θ) ⊆ E set of active edges

Definition 5 (Instantaneous Dynamic Equilibrium)
For every θ ≥ 0: f +

e (θ) > 0 ⇒ e ∈ E (θ).



Example:



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 0.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 0.25 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 0.5 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 0.75 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 1.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 1.25 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 1.5 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 1.75 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 2.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 2.25 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 2.5 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 2.75 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 3.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 3.25 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 3.5 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 3.75 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 4.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 4.25 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 4.5 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 4.75 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 5.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 5.25 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 5.5 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 5.75 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 6.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 6.25 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 6.5 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 6.75 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Example:

s1 v

t s2

(1,2)

(3,1) (1,1)

(1,1)

(τvs2 , νvs2) = (1,2)

s1 v

t s2

θ = 7.0 u1(θ) = 3 for θ ∈ [0,1]

u2(θ) = 4
for θ ∈ [1,2]



Dynamic Nash – Single Sink
▶ total travel time of edge e at time θ: ce(θ) = τe + qe(θ)/νe
▶ exit time Te(θ) = θ + ce(θ).
▶ node labels ℓv (θ) : earliest arrival time at t from v at θ:

ℓv (θ) =
{

θ, for v = t
mine=vw∈E {ℓw (Te(θ))}, for all v ∈ V \ {t}.

Definition 6 (Active Edges)
An edge e = vw ∈ E is active at time θ if

ℓv (θ) = ℓw (Te(θ)).

E (θ) ⊆ E set of active edges

Definition 7 (Dynamic Equilibrium)
For every θ ≥ 0: f +

e (θ) > 0 ⇒ e ∈ E (θ).
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▶ path/route based DTA !
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Queue Predictions
So far:
Fixed time θ̄:
▶ full information model: qe(θ) is known for all θ ≥ θ̄.
▶ instantaneous model: qe(θ̄) is known for current θ̄.

Prediction Functions (PF)
A PF is a mapping q̂i ,e(θ; θ̄; f ) with signature:

q̂i ,e : R≥0 × R≥0 × (R × R)I×E → R≥0

where R := Lloc
1 (R≥0,R≥0).

▶ θ current time
▶ θ̄ time of prediction
▶ f (historical) flow
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Properties of Prediction Functions
Definition 8
A PF q̂i ,e is p-continuous for some p > 1 if the mapping

f + 7→ q̂i ,e( · , · , f )

is sequentially weak-strong continuous from Lp([0, M])I×E to
C([0, M] × D) for all M > 0 and compact intervals D.

Definition 9
A PF q̂i ,e is oblivious, if for all θ̄ > 0 it holds

∀f , f ′ : f | [0,θ̄] = f ′
| [0,θ̄] =⇒ q̂e( · ; θ̄; f ) = q̂e( · ; θ̄; f ′).

Definition 10

A PF q̂i ,e is FIFO, if θ 7→ θ + q̂i,e(θ,θ̄,f )
νe

is monotone.
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Prediction Equilibria

▶ edge e = vw at time θ

▶ travel time predicted at time θ̄ ≤ θ is:

ĉi ,e(θ; θ̄; f ) := τe + q̂i ,e(θ; θ̄; f )
νe

▶ predicted exit time

T̂i ,e(θ; θ̄; f ) := θ + ĉi ,e(θ; θ̄; f ).

label functions = earliest predicted arrival:

ℓ̂i ,v (θ; θ̄; f ) =

θ if v = ti ,

min
vw∈δ+

v
ℓ̂i ,w (T̂i ,vw (θ; θ̄; f ); θ̄; f ) if v ̸= ti .

(3)
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Existence of DPE
We say that an edge e = vw is θ̄-estimated active at time θ, if

ℓ̂i ,v (θ; θ̄; f ) = ℓ̂i ,w
(
T̂i ,e(θ; θ̄; f ); θ̄; f

)
.

Definition 11
A tuple (q̂, f ) of PF and dynamic flow is a dynamic prediction
equilibrium (DPE), if for all e ∈ E , i ∈ I and θ ≥ 0:

f +
i ,e(θ) > 0 =⇒ e ∈ Êi(θ; θ; f ),

where Êi(θ; θ; f ) is the set of θ-estimated active edges at time θ.

Theorem 12 (Graf, H., Kollias, Markl)

For p-continuous, oblivious, and FIFO PFs, there is a DPE.

Proof: ϵ-extension via solution of variational inequality in a
reflexive Banach space.



Existence of DPE
We say that an edge e = vw is θ̄-estimated active at time θ, if

ℓ̂i ,v (θ; θ̄; f ) = ℓ̂i ,w
(
T̂i ,e(θ; θ̄; f ); θ̄; f

)
.

Definition 11
A tuple (q̂, f ) of PF and dynamic flow is a dynamic prediction
equilibrium (DPE), if for all e ∈ E , i ∈ I and θ ≥ 0:

f +
i ,e(θ) > 0 =⇒ e ∈ Êi(θ; θ; f ),
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An example DPE

▶ Linear predictor q̂L
i ,e(θ, θ̄, f ) := qf

e (θ) + ∂−qf
e (θ) ·

(
θ − θ̄

)

s u t

v w

θ̄ θ̄ + 1

2

qf
ut

q̂ut ( · ; θ̄; f )
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Example PFs

▶ Zero-predictor: q̂Z
i ,e(θ; θ̄; f ) = 0.

▶ Constant predictor: q̂C
i ,e(θ; θ̄; f ) = qf

e (θ̄).
▶ Linear Predictor with horizon H > 0:

q̂L
i ,e(θ; θ̄; f ) :=

(
qf

e (θ̄) + ∂−qf
e (θ̄) · min{θ − θ̄, H}

)+
,

▶ Regularized Linear Predictor:

q̂RL
i ,e (θ; θ̄; f ) :=

(
qf

e (θ̄) + qf
e (θ̄) − qf

e (θ̄ − δ)
δ

· min{θ − θ̄, H}
)+

▶ Machine-Learned Predictors



Machine-learned predictors

(
θ, θ̄, f

)
qf

e′(θ̄ − jδ),
Lf

e′(θ̄ − jδ)


e′∈N(e)⊆E

j∈{0,...,kp−1}

(
q̂ML,raw

i ,e (θ̄ + jδ, θ̄, f )
)

j∈{1,...,kf }

σ (extracts past samples of the queues and edge loads)

ϕi,e (applies a machine-learned transformation)

▶ The predicted points are linearly interpolated.
▶ With appropriate post-processing, any continuous ϕi ,e yields a

p-continuous, oblivious, and FIFO PF.
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Computational Study

Two machine-learned PFs:
▶ q̂LR

i ,e : Linear Regression
▶ q̂NN

i ,e : 4-layered Dense Neural Network

Input Features: kp = 20 samples of edges at most 3 jumps away

Output: kf = 20 samples of the predicted queue length

Training Data: Computed DPE using the constant predictor exclusively

Evaluation:
▶ Compute approx. DPE with all predictors used side by side.
▶ Monitor average travel time T avg

i of each predictor.
▶ Compare with optimal average travel time T avg

OPT.
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Computational Study: Results
Network |E | |V | |I|
Synthetic 5 4 1
Nguyen 19 13 4

Sioux Falls 75 24 528
Anaheim 914 416 1.406

Table. Attributes of the considered networks.
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Figure. Slowdown in the Anaheim network



Summary
▶ IDE Flows

Existence Termination Cycling

Single-Sink Yes Yes Yes

Multi-Sink Yes No Yes
▶ DE Flows

Existence Termination Cycling

Single-Sink Yes Yes No

Multi-Sink Yes Yes No

▶ DPE: Existence for p-continuous, oblivious, and FIFO PFs

Problem 4
▶ For which PFs finite Termination ?
▶ Good ML-models ?

Thank You!
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