Prediction Equilibria in Dynamic Traffic Assignment

Tobias Harks with L. Graf, M. Markl (Uni P), K. Kollias (Google)

Passau University

Torino, 11.11.2022

Part I: Basic DTA Theory

Part II: Prediction Models in DTA

Part I

Basic DTA Theory

Layered DTA Modelling

DTA as a two-layer system:

physical layer

...

flow propagation (discrete, continuous)

queueing models (Vickrey point queue, horizontal queue,)

outflow functions (depending on travel time, volume, FIFO)

travel time functions (depending on inflow, flow volume, FIFO)

Layered DTA Modelling

DTA as a two-layer system:

- physical layer
 - flow propagation (discrete, continuous)
 - queueing models (Vickrey point queue, horizontal queue,)
 - outflow functions (depending on travel time, volume, FIFO)
 - travel time functions (depending on inflow, flow volume, FIFO)
- ...behavioral layer
 - How do/can travelers behave?
 - fixed departure rate, flexible departure rate, elastic demand,...
 - What is the information available?
 - full information, partial information, prediction,...

Research Questions

Given a physical flow model and a behavioral model:

- Do dynamic equilibria exist ?
- How can they be computed ?
- Are they unique ?
- Does the equilibrium set have a specific structure?
- Price of anarchy/stability ?
- Engineer equilibria (tolls, network design, *information design*,...)?

Mathematical Tools

Modelling dynamic equilibria ("Terry Friesz school"):

full information

▶ strategy space $\Lambda_i := \{h \in (L_2[0, T])^{\mathcal{P}_i} | \sum_{p \in \mathcal{P}_i} h_p(t) = r_i(t), t \in [0, T] \}$ with $h_p(t)$ inflow rate into path p for commodity $i \in I$.

Mathematical Tools

Modelling dynamic equilibria ("Terry Friesz school"):

full information

▶ strategy space $\Lambda_i := \{h \in (L_2[0, T])^{\mathcal{P}_i} | \sum_{p \in \mathcal{P}_i} h_p(t) = r_i(t), t \in [0, T]\}$ with $h_p(t)$ inflow rate into path *p* for commodity $i \in I$. ▶ path-delay function (using $\mathcal{P} = \bigcup_{i \in I} \mathcal{P}_i$)

$$\Psi: (L_2[0,T])^{\mathcal{P}} \to (L_2[0,T])^{\mathcal{P}}$$
$$h(\cdot) \mapsto (\Psi_p(\cdot,h))_{p \in \mathcal{P}}.$$

Mathematical Tools

Modelling dynamic equilibria ("Terry Friesz school"):

full information

▶ strategy space $\Lambda_i := \{h \in (L_2[0, T])^{\mathcal{P}_i} | \sum_{p \in \mathcal{P}_i} h_p(t) = r_i(t), t \in [0, T]\}$ with $h_p(t)$ inflow rate into path *p* for commodity $i \in I$. ▶ path-delay function (using $\mathcal{P} = \bigcup_{i \in I} \mathcal{P}_i$)

$$\Psi: (L_2[0,T])^{\mathcal{P}} \to (L_2[0,T])^{\mathcal{P}}$$
$$h(\cdot) \mapsto (\Psi_p(\cdot,h))_{p \in \mathcal{P}}.$$

Definition 1

 $h^* \in \Lambda$ is a dynamic equilibrium with fixed inflow rates, if for all $i \in I$, the following conditions hold:

$$h_p^*(t) > 0, p \in \mathcal{P}_i \Rightarrow \Psi_p(t, h^*) \le \Psi_q(t, h^*)$$
 (1)

for almost all
$$t \in [0, T], q \in \mathcal{P}_i$$
. (2)

Friesz et al. (1993,+), Zhu and Marcote (2000)

Theorem 2

Let $\Psi_p(\cdot, h)$ be positive and measurable for all $p \in \mathcal{P}$ and $h \in \Lambda$. Then, $h^* \in \Lambda$ is a dynamic equilibrium with fixed inflow rates r, if and only if it solves the following variational inequality:

Find $h^* \in \Lambda$ such that : $\langle \Psi(h^*), (h - h^*) \rangle \ge 0$ for all $h \in \Lambda$. $(VI(\Psi, r, [0, T]))$

Existence

"Friesz School (starting from 2015)"

- ► Browder (1968): A convex and compact, Ψ "continuous" \Rightarrow VI has solution h^* .
- Use piecewise constant h_p^i with discretization $\Delta_i \Rightarrow \Lambda(\Delta_i)$ compact.
- Take the limit $\Delta_i \rightarrow 0$ and prove convergence.

Existence

"Friesz School (starting from 2015)"

- ► Browder (1968): A convex and compact, Ψ "continuous" \Rightarrow VI has solution h^* .
- Use piecewise constant h_p^i with discretization $\Delta_i \Rightarrow \Lambda(\Delta_i)$ compact.
- ► Take the limit $\Delta_i \rightarrow 0$ and prove convergence.

"Zhu and Marcotte, Cominetti, Correa et al. School (starting from 2000, 2015)"

- Brézis, Lions (1968): Λ convex and closed and bounded, Ψ "sequentially weak-strong continuous" ⇒ VI has solution h^{*}.
- Prove "sequential weak-strong continuity" of Ψ .

Computing Equilibria – "Friesz School"

Pose the problem as a fixed point "path-balancing" problem:

$$h_p^{k+1}(t) := \left[h_p^k(\theta) - \alpha^k \cdot \left(\Psi_p(t, h^k) - \min_q \{\Psi_q(t, h^k)\}\right)\right]_+$$

Problem 1

- Convergence (local, global)?
- Numerical Stability ?
- Network Loading ?
- Relation to packet-based simulations (MatSim)?

"Koch/Skutella/Correa/Cominetti School"

Vickrey Model

- Use specific structure of "derivatives of equilibria":
- ▶ Node label functions (specific form of $\Psi_p(t, h)$!)
- Thin flows
- "Extension methodology"

"Koch/Skutella/Correa/Cominetti School"

Vickrey Model

- Use specific structure of "derivatives of equilibria":
- ▶ Node label functions (specific form of $\Psi_p(t, h)$!)

Thin flows

"Extension methodology"

Problem 2

- Finite number of extension steps ?
- For which physical models (Ψ(t, h)) can we apply the extension methodology ?

Uniqueness of Equilibria

uniqueness of dynamic equilibria in the Vickrey- and more general models, single sink!

- Cominetti et al. (2015)
- Smith and Iryo (2017)
- Olver et al. (2022)

Problem 3

For which physical models $(\Psi(t, h))$ can we say more about uniqueness ?

Part II

Information Models - Prediction Equilibria

• digraph
$$G = (V, E)$$

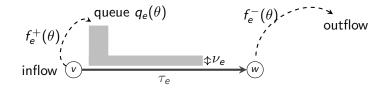
• digraph
$$G = (V, E)$$

▶ edge
$$e \in E$$
 has length $au_e \in \mathbb{Z}_+$

• digraph
$$G = (V, E)$$

▶ edge
$$e \in E$$
 has length $\tau_e \in \mathbb{Z}_+$

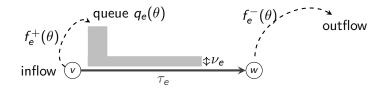
▶ edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)


• digraph
$$G = (V, E)$$

▶ edge
$$e \in E$$
 has length $au_e \in \mathbb{Z}_+$

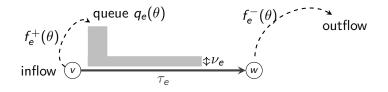
▶ edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

• digraph
$$G = (V, E)$$


- ▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- ▶ edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- ▶ commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant

• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$


• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

• digraph
$$G = (V, E)$$

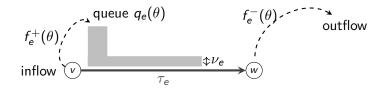
▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$

• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

$$u = 2 \text{ for } \theta \in [0, 1]$$

$$\tau_{sv} = 1$$

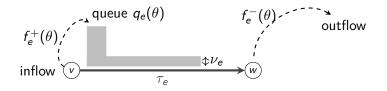
$$\tau_{vt} = 1$$


$$\tau_{vt} = 1$$

$$\tau_{vt} = 1$$

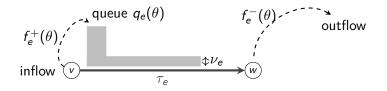
• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$


• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

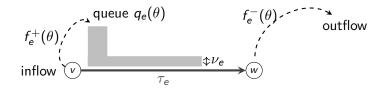
• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$


• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

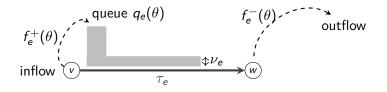
• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$


• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

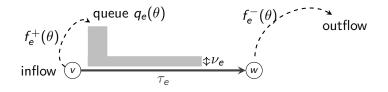
• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$


• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

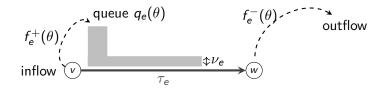
• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$


▶ edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$


• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

• digraph
$$G = (V, E)$$

▶ edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$

• edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)

Meni	◆ 📾 ፼ 🛧 🗞 Löwen, Belgien Dortmund	× •	Hanning Annsbeddam Jange Demeine Hanges Demeine Han
⊙			Rotterdam Munster Munster
	Jetzt starten 👻 OPT	IONEN	100 Doddfechti -s-Henogenbooch
Ð	Wegbeschreibung auf mein Smartphone senden	K	Mddeburg Doos Beegen Bredy Tiburg Door Begen Doorman
8	über E314 2 Std. 4' Schnellste Route; übliche 2 Verkehrstege	1 Min. 43 km	Andream CD COLOR C
	Verwehrstage A Diese Route verläuft durch Niederlande. DETAILS	í.	Gent Gummerstach
	über E314 und A40 2 Std. 5	Min.	
	4	AVY KIII	
8	über E314 und A46 2 Std. 5: 2	52 km	Alfred Manual California Californ

Neni Veni	� 🗭 男 方 必 🛧 Löwen, Beigien Dortmund	× •	Haarten o Amsterdan	Amerisfoort III Apeldoorn	Arress eNerdhorn Hengelo Para Sheine Enschade Emsdatten
•			Rotterdam	Anthem	Bicholi (1)
	Jetzt starten 👻 O	PTIONEN	Dootrecht	Hentogerbosch	a da Har
Ð	Wegbeschreibung auf mein Smartphone send	Mide	delburg loss perpen Breds Tib	Bindhoven	Essen
	über E314 2 Std.	41 Min.			Duisburg
	Schneliste Route; übliche Verkehrslage Diese Route verläuft durch Niederlande. DETALS	243 km	Gent	243 km	Pusseldorf owuppertal
	DETAILS		Gent m	Hereit With 2 2 2 2 2	Kala FC
	über E314 und A40 2 Std.	51 Min. 249 km	LöwenO	Hacself Selection 2 2 Std. Medistricht Alachen	Bonn
		107		Lattich ICI	0.0
	über E314 und A46 2 Std.	53 Min. 252 km fpärk vatave		Hay Star	CI Neuwed Koliegz

Dortmu mp-Listfort Section 1 Wegbeschreibung auf mein Smartphone senden Eindhove Duisburg über A46 Beste Route; weniger Verkehr als 152 km a ablich A 2 Std. 1 Min Düsseldor A 1 Std. 55 Mi über A46 und A1 1 Std. 55 Min. 153 km DETAILS über A52 2 Std. 1 Min. Weniger Verkehr als üblich 155 km

Current length of a v-t path P: travel time + waiting times in queues

$$c_P(heta) = \sum_{e \in P} au_e + q_e(heta) /
u_e$$

Current length of a v-t path P: travel time + waiting times in queues

$$c_P(heta) = \sum_{e \in P} au_e + q_e(heta) /
u_e$$

Definition 3 (Instantaneous Dynamic Equilibrium (IDE))

At every point in time: if positive flow enters an edge, the edge must lie on a currently shortest path towards the respective sink.

IDE – Single Sink

- ► total travel time of edge e at time θ : $c_e(\theta) = \tau_e + q_e(\theta)/\nu_e$
- define node labels ℓ_ν(θ) measuring the currently earliest arrival time at t:

$$\ell_{v}(\theta) = \begin{cases} \theta, & \text{for } v = t \\ \min_{e=vw \in E} \{ c_{e}(\theta) + \ell_{w}(\theta) \}, & \text{for all } v \in V \setminus \{t\}. \end{cases}$$

Definition 4 (Active Edges)

An edge $e = vw \in E$ is active at time θ if

$$\ell_v(\theta) = \ell_w(\theta) + c_e(\theta).$$

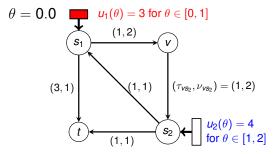
 $E(\theta) \subseteq E$ set of active edges

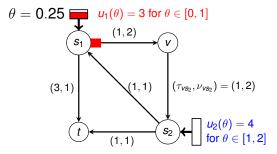
IDE – Single Sink

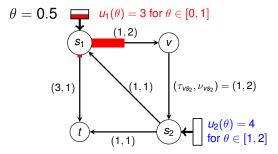
- total travel time of edge e at time heta: $c_e(heta) = au_e + q_e(heta)/
 u_e$
- define node labels ℓ_ν(θ) measuring the currently earliest arrival time at t:

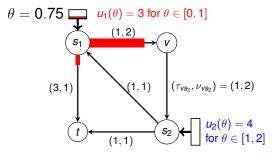
$$\ell_{v}(\theta) = \begin{cases} \theta, & \text{for } v = t \\ \min_{e=vw \in E} \{ c_{e}(\theta) + \ell_{w}(\theta) \}, & \text{for all } v \in V \setminus \{t\}. \end{cases}$$

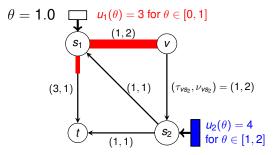
Definition 4 (Active Edges)

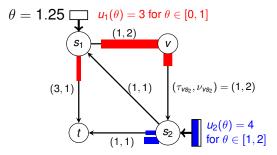

An edge $e = vw \in E$ is active at time θ if

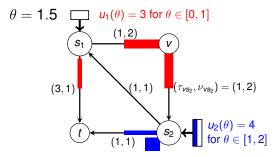

$$\ell_{v}(\theta) = \ell_{w}(\theta) + c_{e}(\theta).$$

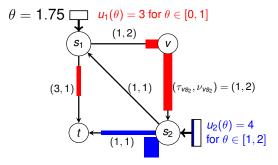

 $E(\theta) \subseteq E$ set of active edges

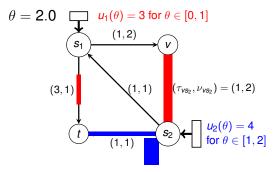

Definition 5 (Instantaneous Dynamic Equilibrium)

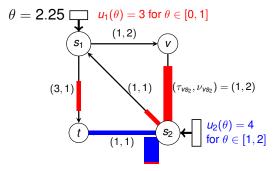

For every $\theta \geq 0$: $f_e^+(\theta) > 0 \Rightarrow e \in E(\theta)$.

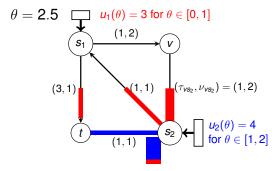


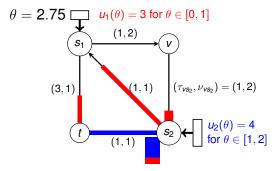


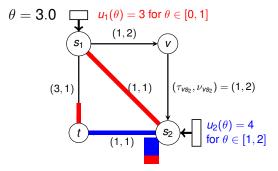


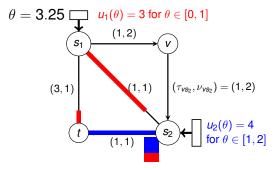


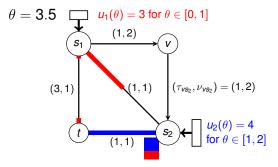


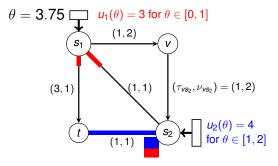


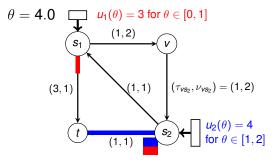


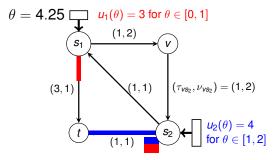


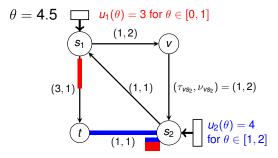


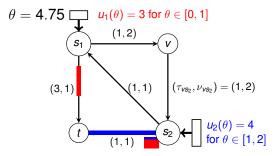


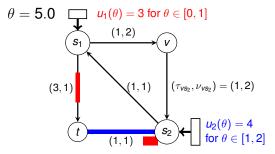


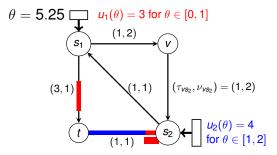


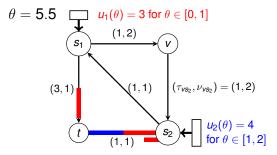


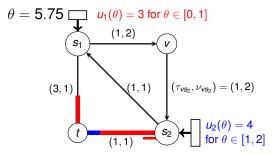


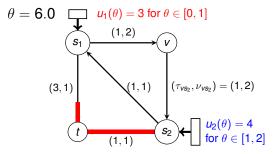


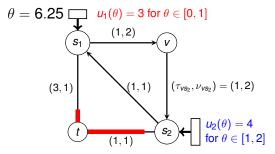


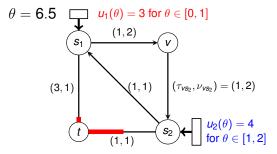


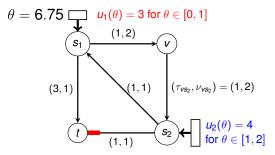


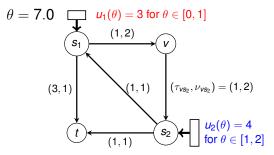












Dynamic Nash – Single Sink

total travel time of edge e at time θ: c_e(θ) = τ_e + q_e(θ)/ν_e
 exit time T_e(θ) = θ + c_e(θ).

• node labels $\ell_v(\theta)$: earliest arrival time at t from v at θ :

$$\ell_{v}(\theta) = \begin{cases} \theta, & \text{for } v = t \\ \min_{e=vw \in E} \{\ell_{w}(T_{e}(\theta))\}, & \text{for all } v \in V \setminus \{t\}. \end{cases}$$

Definition 6 (Active Edges)

An edge $e = vw \in E$ is active at time θ if

$$\ell_v(\theta) = \ell_w(T_e(\theta)).$$

 $E(\theta) \subseteq E$ set of active edges

Dynamic Nash – Single Sink

total travel time of edge e at time θ: c_e(θ) = τ_e + q_e(θ)/ν_e
 exit time T_e(θ) = θ + c_e(θ).

• node labels $\ell_v(\theta)$: earliest arrival time at t from v at θ :

$$\ell_{v}(\theta) = \begin{cases} \theta, & \text{for } v = t \\ \min_{e=vw \in E} \{\ell_{w}(T_{e}(\theta))\}, & \text{for all } v \in V \setminus \{t\}. \end{cases}$$

Definition 6 (Active Edges)

An edge $e = vw \in E$ is active at time θ if

$$\ell_{v}(\theta) = \ell_{w}(T_{e}(\theta)).$$

 $E(\theta) \subseteq E$ set of active edges

Definition 7 (Dynamic Equilibrium)

 $\text{For every } \theta \geq 0 \text{: } f_e^+(\theta) > 0 \Rightarrow e \in E(\theta).$

Related Works

Nash Equilibrium

- Koch and Skutella ('11)
- Cominetti, Correa and Larre ('15)
- Cominetti, Correa and Olver ('17)
- Sering, Skutella (18)
- Sering, Vargas-Koch, Olver ('19, '22)

Related Works

Nash Equilibrium

- Koch and Skutella ('11)
- Cominetti, Correa and Larre ('15)
- Cominetti, Correa and Olver ('17)
- Sering, Skutella (18)
- Sering, Vargas-Koch, Olver ('19, '22)

IDE

- Ran and Boyce ('89, '95) for paths
- Friesz et al. ('88) for paths
- Graf, H, Sering (20)
- Graf, H (21)

Related Works

Nash Equilibrium

- Koch and Skutella ('11)
- Cominetti, Correa and Larre ('15)
- Cominetti, Correa and Olver ('17)
- Sering, Skutella (18)
- Sering, Vargas-Koch, Olver ('19, '22)

IDE

- Ran and Boyce ('89, '95) for paths
- Friesz et al. ('88) for paths
- Graf, H, Sering (20)
- Graf, H (21)
- Stochastic Equilibrium, Day-to-Day Learning, bounded rationality
 - Cantarella and Watling (2006+)
 - Yu, Han, Ochien (2020)
 - path/route based DTA !

Queue Predictions

So far:

Fixed time $\bar{\theta}$:

- ▶ full information model: $q_e(\theta)$ is known for all $\theta \ge \overline{\theta}$.
- ▶ instantaneous model: $q_e(\bar{\theta})$ is known for current $\bar{\theta}$.

Queue Predictions

So far:

Fixed time $\bar{\theta}$:

- ▶ full information model: $q_e(\theta)$ is known for all $\theta \ge \overline{\theta}$.
- ▶ instantaneous model: $q_e(\bar{\theta})$ is known for current $\bar{\theta}$.

Prediction Functions (PF)

A PF is a mapping $\hat{q}_{i,e}(\theta; \bar{\theta}; f)$ with signature:

$$\hat{q}_{i,e}:\mathbb{R}_{\geq 0} imes\mathbb{R}_{\geq 0} imes(\mathcal{R} imes\mathcal{R})^{I imes E}
ightarrow\mathbb{R}_{\geq 0}$$

where $\mathcal{R} \coloneqq L_1^{\mathrm{loc}}(\mathbb{R}_{\geq 0}, \mathbb{R}_{\geq 0}).$

Queue Predictions

So far:

Fixed time $\bar{\theta}$:

- ▶ full information model: $q_e(\theta)$ is known for all $\theta \ge \overline{\theta}$.
- ▶ instantaneous model: $q_e(\bar{\theta})$ is known for current $\bar{\theta}$.

Prediction Functions (PF)

A PF is a mapping $\hat{q}_{i,e}(\theta; \bar{\theta}; f)$ with signature:

$$\hat{q}_{i,e}:\mathbb{R}_{\geq 0} imes\mathbb{R}_{\geq 0} imes(\mathcal{R} imes\mathcal{R})^{I imes E}
ightarrow\mathbb{R}_{\geq 0}$$

where $\mathcal{R}\coloneqq \mathcal{L}_1^{\mathrm{loc}}(\mathbb{R}_{\geq 0},\mathbb{R}_{\geq 0}).$

- \blacktriangleright θ current time
- ▶ $\bar{\theta}$ time of prediction
- ► f (historical) flow

Properties of Prediction Functions

Definition 8

A PF $\hat{q}_{i,e}$ is *p*-continuous for some p > 1 if the mapping

$$f^+\mapsto \hat{q}_{i,e}(\,\cdot\,,\,\cdot\,,f)$$

is sequentially weak-strong continuous from $L^p([0, M])^{I \times E}$ to $C([0, M] \times D)$ for all M > 0 and compact intervals D.

Properties of Prediction Functions

Definition 8

A PF $\hat{q}_{i,e}$ is *p*-continuous for some p > 1 if the mapping

$$f^+\mapsto \hat{q}_{i,e}(\,\cdot\,,\,\cdot\,,f)$$

is sequentially weak-strong continuous from $L^p([0, M])^{I \times E}$ to $C([0, M] \times D)$ for all M > 0 and compact intervals D.

Definition 9

A PF $\hat{q}_{i,e}$ is oblivious, if for all $\bar{\theta} > 0$ it holds

$$\forall f, f' \colon f_{|[0,\bar{\theta}]} = f'_{|[0,\bar{\theta}]} \implies \hat{q}_e(\cdot;\bar{\theta};f) = \hat{q}_e(\cdot;\bar{\theta};f').$$

Properties of Prediction Functions

Definition 8

A PF $\hat{q}_{i,e}$ is *p*-continuous for some p > 1 if the mapping

$$f^+\mapsto \hat{q}_{i,e}(\,\cdot\,,\,\cdot\,,f)$$

is sequentially weak-strong continuous from $L^p([0, M])^{I \times E}$ to $C([0, M] \times D)$ for all M > 0 and compact intervals D.

Definition 9

A PF $\hat{q}_{i,e}$ is oblivious, if for all $\bar{\theta} > 0$ it holds

$$\forall f, f' \colon \quad f_{|[0,\bar{\theta}]} = f'_{|[0,\bar{\theta}]} \implies \hat{q}_e(\,\cdot\,;\bar{\theta};f) = \hat{q}_e(\,\cdot\,;\bar{\theta};f').$$

Definition 10

A PF $\hat{q}_{i,e}$ is FIFO, if $\theta \mapsto \theta + \frac{\hat{q}_{i,e}(\theta,\bar{\theta},f)}{\nu_e}$ is monotone.

Prediction Equilibria

• edge e = vw at time θ

• travel time predicted at time $\bar{\theta} \leq \theta$ is:

$$\hat{c}_{i,e}(\theta; \bar{\theta}; f) \coloneqq \tau_e + \frac{\hat{q}_{i,e}(\theta; \bar{\theta}; f)}{\nu_e}$$

predicted exit time

$$\hat{T}_{i,e}(\theta;\bar{\theta};f) \coloneqq \theta + \hat{c}_{i,e}(\theta;\bar{\theta};f).$$

Prediction Equilibria

• edge e = vw at time θ

• travel time predicted at time $\bar{\theta} \leq \theta$ is:

$$\hat{c}_{i,e}(\theta; \bar{\theta}; f) \coloneqq \tau_e + \frac{\hat{q}_{i,e}(\theta; \bar{\theta}; f)}{\nu_e}$$

predicted exit time

$$\hat{T}_{i,e}(\theta;\bar{\theta};f) \coloneqq \theta + \hat{c}_{i,e}(\theta;\bar{\theta};f).$$

label functions = earliest predicted arrival:

$$\hat{\ell}_{i,v}(\theta;\bar{\theta};f) = \begin{cases} \theta & \text{if } v = t_i, \\ \min_{vw \in \delta_v^+} \hat{\ell}_{i,w}(\hat{T}_{i,vw}(\theta;\bar{\theta};f);\bar{\theta};f) & \text{if } v \neq t_i. \end{cases}$$
(3)

Existence of DPE

We say that an edge e = vw is $\bar{\theta}$ -estimated active at time θ , if

$$\hat{\ell}_{i,v}(\theta;\bar{\theta};f) = \hat{\ell}_{i,w}\Big(\hat{T}_{i,e}(\theta;\bar{\theta};f);\bar{\theta};f\Big).$$

Definition 11

A tuple (\hat{q}, f) of PF and dynamic flow is a *dynamic prediction* equilibrium (DPE), if for all $e \in E$, $i \in I$ and $\theta \ge 0$:

$$f_{i,e}^+(\theta) > 0 \implies e \in \hat{E}_i(\theta; \theta; f),$$

where $\hat{E}_i(\theta; \theta; f)$ is the set of θ -estimated active edges at time θ .

Existence of DPE

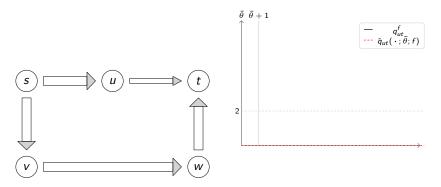
We say that an edge e = vw is $\bar{\theta}$ -estimated active at time θ , if

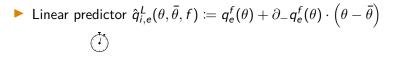
$$\hat{\ell}_{i,v}(\theta;\bar{\theta};f) = \hat{\ell}_{i,w}\Big(\hat{T}_{i,e}(\theta;\bar{\theta};f);\bar{\theta};f\Big).$$

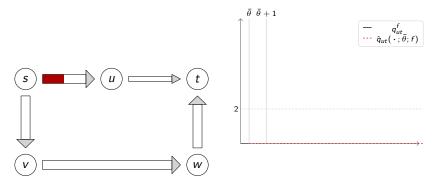
Definition 11

A tuple (\hat{q}, f) of PF and dynamic flow is a *dynamic prediction* equilibrium (DPE), if for all $e \in E$, $i \in I$ and $\theta \ge 0$:

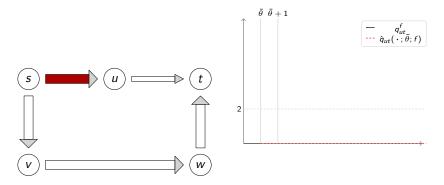
$$f^+_{i,e}(heta) > 0 \implies e \in \hat{E}_i(heta; heta; f),$$

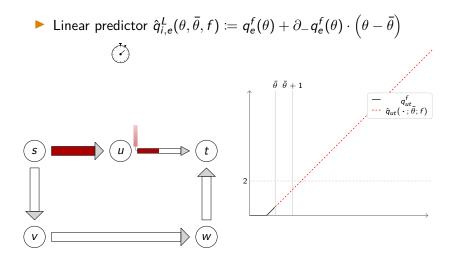

where $\hat{E}_i(\theta; \theta; f)$ is the set of θ -estimated active edges at time θ .

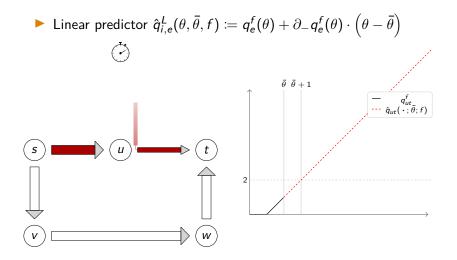

Theorem 12 (Graf, H., Kollias, Markl)

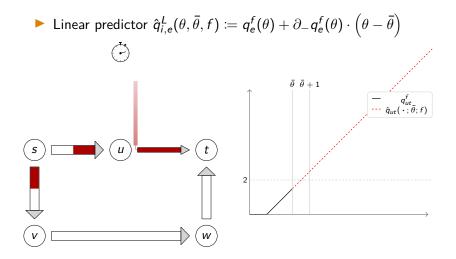

For p-continuous, oblivious, and FIFO PFs, there is a DPE.

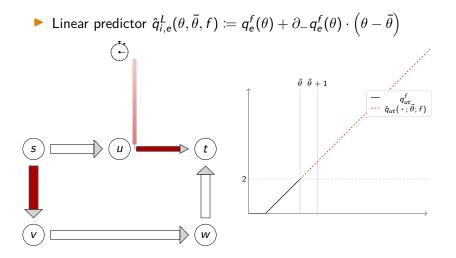
Proof: ϵ -extension via solution of variational inequality in a reflexive Banach space.

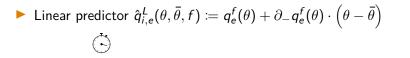

Linear predictor
$$\hat{q}_{i,e}^{L}(\theta, \bar{\theta}, f) \coloneqq q_{e}^{f}(\theta) + \partial_{-}q_{e}^{f}(\theta) \cdot (\theta - \bar{\theta})$$

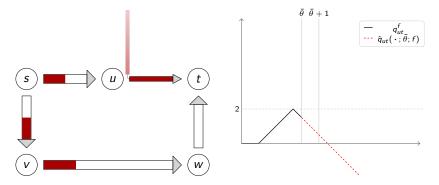


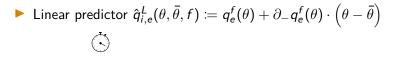


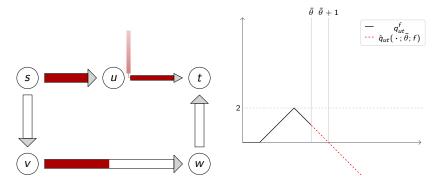


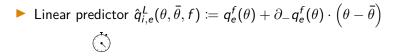

Linear predictor
$$\hat{q}_{i,e}^{L}(\theta, \bar{\theta}, f) \coloneqq q_{e}^{f}(\theta) + \partial_{-}q_{e}^{f}(\theta) \cdot (\theta - \bar{\theta})$$

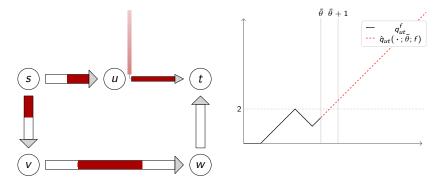


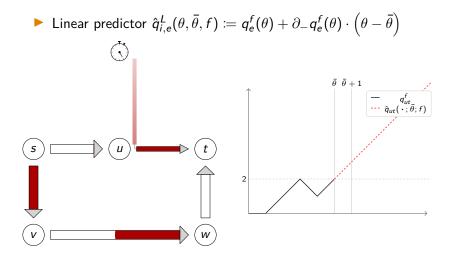


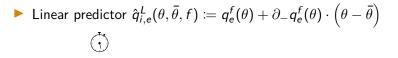


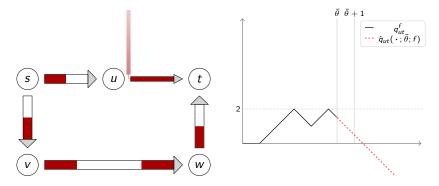


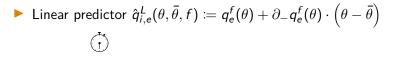


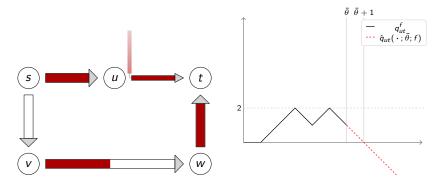


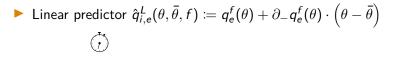


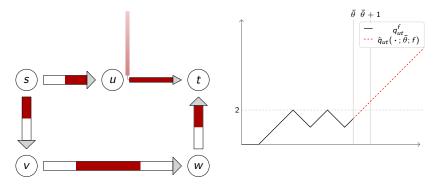


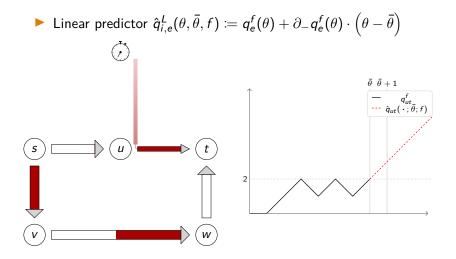


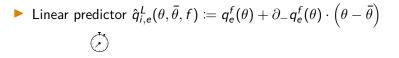


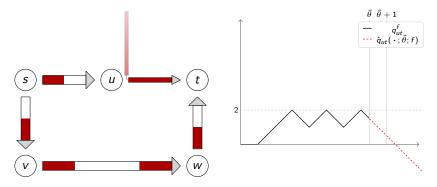


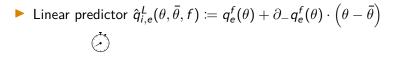


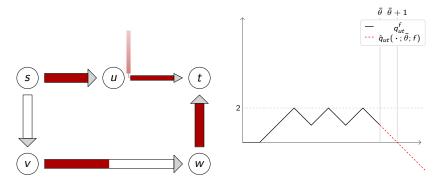


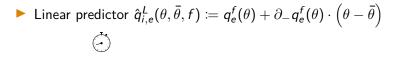


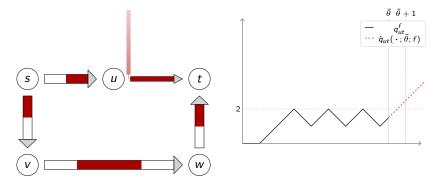












Example PFs

- Zero-predictor: $\hat{q}_{i,e}^{\mathsf{Z}}(\theta; \bar{\theta}; f) = 0.$
- Constant predictor: $\hat{q}_{i,e}^{\mathsf{C}}(\theta; \bar{\theta}; f) = q_{e}^{f}(\bar{\theta}).$

▶ Linear Predictor with horizon *H* > 0:

$$\hat{q}_{i,e}^{\mathsf{L}}(\theta;\bar{\theta};f) \coloneqq \left(q_{e}^{f}(\bar{\theta}) + \partial_{-}q_{e}^{f}(\bar{\theta}) \cdot \min\{\theta - \bar{\theta},H\}\right)^{+},$$

Regularized Linear Predictor:

$$\hat{q}_{i,e}^{\mathsf{RL}}(\theta;\bar{\theta};f) \coloneqq \left(q_e^f(\bar{\theta}) + \frac{q_e^f(\bar{\theta}) - q_e^f(\bar{\theta} - \delta)}{\delta} \cdot \min\{\theta - \bar{\theta}, H\}\right)^+$$

Machine-Learned Predictors

Machine-learned predictors

 $\left(\theta, \bar{\theta}, f\right)$ σ (extracts past samples of the queues and edge loads) $\begin{pmatrix} q_{e'}^f(\bar{\theta}-j\delta), \\ L_{e'}^f(\bar{\theta}-j\delta) \end{pmatrix}_{\substack{e' \in N(e) \subseteq E\\ j \in \{0,\dots,k_p-1\}}}$ $\phi_{i,e}$ (applies a machine-learned transformation) $\left(\hat{q}_{i,e}^{\mathsf{ML,raw}}(\bar{\theta}+j\delta,\bar{\theta},f)\right)_{i\in\{1,\dots,k_{\ell}\}}$

Machine-learned predictors

 $\left(\theta, \bar{\theta}, f\right)$ σ (extracts past samples of the queues and edge loads) $\begin{pmatrix} q_{e'}^{f}(\bar{\theta}-j\delta), \\ L_{e'}^{f}(\bar{\theta}-j\delta) \end{pmatrix}_{\substack{e' \in N(e) \subseteq E\\ j \in \{0,\dots,k_{\theta}-1\}}}$ $\int \phi_{i,e}$ (applies a machine-learned transformation) $\left(\hat{q}_{i,e}^{\mathsf{ML,raw}}(\bar{\theta}+j\delta,\bar{\theta},f)\right)_{i\in\{1,\dots,k_{\ell}\}}$

The predicted points are linearly interpolated.

Machine-learned predictors

 $(\theta, \overline{\theta}, f)$ σ (extracts past samples of the queues and edge loads) $\begin{pmatrix} q_{e'}^{f}(\bar{\theta}-j\delta), \\ L_{e'}^{f}(\bar{\theta}-j\delta) \end{pmatrix}_{\substack{e' \in N(e) \subseteq E\\ j \in \{0,\dots,k_{p}-1\}}}$ $\phi_{i,e}$ (applies a machine-learned transformation) $\left(\hat{q}_{i,e}^{\mathsf{ML,raw}}(\bar{\theta}+j\delta,\bar{\theta},f)\right)_{i\in\{1,\dots,k_f\}}$

- The predicted points are linearly interpolated.
- With appropriate post-processing, any continuous φ_{i,e} yields a p-continuous, oblivious, and FIFO PF.

Computational Study

Two machine-learned PFs:

- $\triangleright \hat{q}_{i,e}^{LR}$: Linear Regression
- ▶ $\hat{q}_{i,e}^{\text{NN}}$: 4-layered Dense Neural Network

Input Features: $k_p = 20$ samples of edges at most 3 jumps away Output: $k_f = 20$ samples of the predicted queue length Training Data: Computed DPE using the constant predictor exclusively

Computational Study

Two machine-learned PFs:

- $\triangleright \hat{q}_{i,e}^{LR}$: Linear Regression
- ▶ $\hat{q}_{i,e}^{\text{NN}}$: 4-layered Dense Neural Network

Input Features: $k_p = 20$ samples of edges at most 3 jumps away Output: $k_f = 20$ samples of the predicted queue length Training Data: Computed DPE using the constant predictor exclusively

Evaluation:

- Compute approx. DPE with all predictors used side by side.
- Monitor average travel time T_i^{avg} of each predictor.
- Compare with optimal average travel time T^{avg}_{OPT}.

Computational Study: Results

Network	E	V	1
Synthetic	5	4	1
Nguyen	19	13	4
Sioux Falls	75	24	528
Anaheim	914	416	1.406

Table. Attributes of the considered networks.

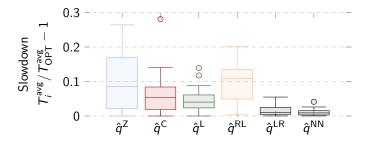


Figure. Slowdown in the Anaheim network

Summary

	10005			
		Existence	Termination	Cycling
	Single-Sink	Yes	Yes	Yes
	Multi-Sink	Yes	No	Yes
DE F	lows			
		Existence	Termination	Cycling
	Single-Sink	Yes	Yes	No
	Multi-Sink	Yes	Yes	No

Summary

		Existence	Termination	Cycling
	Single-Sink	Yes	Yes	Yes
	Multi-Sink	Yes	No	Yes
🕨 DE F	lows	1		
		Existence	Termination	Cycling
	Single-Sink	Existence Yes	Termination Yes	Cycling No
	Single-Sink Multi-Sink			<u> </u>

Problem 4

► For which PFs finite Termination ?

► Good ML-models ?

Summary

		Existence	Termination	Cycling
	Single-Sink	Yes	Yes	Yes
	Multi-Sink	Yes	No	Yes
🕨 DE F	lows	1		
		Existence	Termination	Cycling
	Single-Sink	Existence Yes	Termination Yes	Cycling No
	Single-Sink Multi-Sink			<u> </u>

Thank You!

Problem 4

For which PFs finite Termination ?

Good ML-models ?