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Introduction

We study sender-receiver games on communication networks, where the sender
and receiver are distant nodes.

• There is a sender S and a receiver R.

• The sender knows a payoff-relevant state ω ∈ Ω.

• The receiver takes a decision a ∈ A.

• The sender and receiver are two distinct nodes in a communication
network N (an undirected graph), with I a set of intermediaries.

• The payoff to i ∈ I ∪ {S ,R} is ui (a, ω).



The Main Theoretical Question

We ask when it is possible to implement the equilibrium outcomes of the direct
communication games as perfect Bayesian equilibrium (PBE) outcomes of
indirect communication games, i.e., when the information flows from the
sender to the receiver via intermediaries.

Remarks:

- Implementing Bayes-Nash equilibrium outcomes but also communication
equilibrium outcomes of direct communication games.

- When does indirect communication helps in achieving outcomes, which
wouldn’t be achievable with direct and unmediated communication?

- In other words, when can intermediaries emulate the Forges-Myerson
mediator?
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Motivation: Organization Theory

In large organizations, such as public administrations, multinational
corporations, armed forces, information typically flows through the different
layers of the organizations, from engineers, sale representatives, accountants to
executives.

Communication is thus indirect.

While indirect communication is necessary in large organizations, this creates
the opportunity for individuals to suppress, distort or delay the flow of
information so as to achieve their own goals.

Are they organizational arrangements, which mitigate these issues?



Motivation: Matrix Organization

Matrix organizations (or arrangements) mitigate these issues.

Matrix organizations consist in organizing activities along several dimensions,
e.g., functions (R&D, accounting, sales), geography (Europe, US, Asia), or
products.

Firms such as NASA, IBM, Starbuck, or Siemens have adopted this mode of
organizations.

A central feature of matrix organization is multiple reporting , i.e., information
flows via different channels, mirroring the dimensions along which the
organization is structured.

The multiplicity of reporting lines (paths) explains why matrix organization
facilitates effective communication.



Model

• There is a sender S and a receiver R.

• The sender knows a payoff-relevant state ω ∈ Ω.

• The receiver takes a decision a ∈ A.

• The payoff to i ∈ {S ,R} is ui (a, ω).

Direct communication game: The sender sends a message m ∈ M to the
receiver, prior to the receiver taking an action a ∈ A.

Let Ed be the set of (Bayes-Nash) equilibrium distributions over A× Ω.



Mediated communication game

• The sender sends a message m ∈ M to a mediator. The mediator then
sends a message r ∈ R, possibly randomly, to the receiver, who then takes
an action a ∈ A.

• A strategy for the sender is σ : Ω→ ∆(M).

• A strategy for the receiver is τ : R → ∆(A).

• The mediator follows a recommendation rule: ϕ : M → ∆(R).

• A communication equilibrium is a communication device 〈M,R, ϕ〉 and an
equilibrium (σ∗, τ∗) of the mediated game induced by the communication
device.

• Thanks to the revelation principle (Forges, 1986 and Myerson, 1986), we
can restrict attention to canonical communication equilibria, where
M = Ω, R = A and the sender has an incentive to be truthful, and the
receiver has an incentive to be obedient.

Let CEd the set of communication equilibrium distributions.



Communication equilibria might be Pareto improving

Farrell’s example (1988), where both states are equally likely:

(uS , uR) a b c
ω 2, 3 0, 2 −1, 0
ω′ 1, 0 2, 2 0, 3

• The receiver takes b in all equilibria of the direct communication game
(sender’s payoff is then 0 or 2, while the receiver’s is 2)

• As argued by Myerson (1991), there exists a communication equilibrium
where both the sender and the receiver are better off

• The mediator recommends action b at ω′ and randomizes uniformly
between a and b at ω

• Upon observing a (resp. b), the receiver infers that the state is ω with
proba 1 (resp. 1

3 ) ⇒ incentive to be obedient

• Incentive for the sender to be truthful

• Sender’s payoff is 1 or 2, while the receiver’s is 9
4



Indirect communication game

The sender and receiver are two distinct nodes in a communication network N
(an undirected graph).

The set of nodes, other than S and R, is I := {1, . . . , n}.

A communication game on the network N is a multi-stage game, with T <∞
stages.

At each stage, a player can broadcast messages to each possible subset of their
neighbors.

Broadcasting: A player broadcasts a message to a subset of neighbors if all
receive the same message, and it is a common belief among them.

E.g., face-to-face group meetings, online meetings via Zoom or Microsoft
Teams, or Whatsapp groups.

A communication mechanism, denoted M, is the sets of messages players can
send to each others.



PBE implementation of direct communication

Definition

PBE implementation of all communication equilibrium (resp. Bayes-Nash
equilibrium) outcomes of direct communication games is possible on the
network N if there exists M on N such that for all (ui )i∈I , for all distributions
µ ∈ CEd (resp. µ ∈ Ed) of all direct communication games, there exists a
perfect Bayesian equilibrium σ of the indirect communication game satisfying:

margA×ΩPσ = µ.



Strong reliability

Alternative question: the sender wishes to transmit the message m ∈ M, a
realization of the random variable m with distribution ν, to the receiver,
through the network N .

The transmission of the message is strongly reliable on the network N if we
can construct a protocol, i.e., a communication mechanism and a profile of
strategies, such that the receiver correctly “learns” the message sent at all
terminal histories consistent with at most one intermediary deviating at every
stage.

Remark: in computer science, the adversary controls the same k nodes
throughout the execution of the protocol



Histories consistent with unilateral deviations

Let σ = (σi,t)i,t be a profile of strategies, where i ∈ {S ,R} ∪ I .

Define Σ(σ) as the subset of strategies consistent with at most one
intermediary deviating at each stage from σ, that is,

σ′ ∈ Σ(σ) if there exists a sequence of intermediaries (i1, . . . , it , . . . ) such that

σ′t = (σ′it ,t , σ−it ,t),

for all t.



Strong reliability

Definition
The transmission of messages is strongly reliable on the network N is possible
if there exist a protocol and a decoding rule md : HT+1

R → M such that

Pσ′

({
hT+1
R : md(hT+1

R ) = m
}∣∣∣m = m

)
= 1,

for all σ′ ∈ Σ(σ), for all m.



Main Theoretical Result

Assume that the sender and receiver are not directly connected in the network
N .

Theorem
The following statements are equivalent.

(i) PBE implementation of all communication equilibrium outcomes of direct
communication games is possible on the network N .

(ii) PBE implementation of all Bayes-Nash equilibrium outcomes of direct
communication games is possible on the network N .

(iii) The transmission of messages is strongly reliable on the network N .

(iv) There are (at least) two disjoint paths of communication between the
sender and the receiver in the network N .
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Necessity of (iv): Idea

1S R

Intermediary 1 controls all the information received by the R ⇒ for some
utility functions, he will always prevent R from learning the message from S .
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A First Look at the Difficulties (iv) ⇒ (iii)

The sender wants to truthfully report the state.

Naive idea: use a majority argument.

R

S

1 2 3

4 5 6

Problem: inconsistent messages.

If S sends ω, 1 reports ω′ and 5 reports ω′′, R observes (ω′, ω′′, ω).

If S sends ω′, 3 reports ω and 5 reports ω′′, R also observes (ω′, ω′′, ω).



Strong Reliability: A (Simplified) Protocol

R

2

S

1

Communication protocol in 6 stages:

• At t = 1, S broadcasts m.

• At all stages t = 2, . . . , 6:
• 1 and 2 broadcast m,
• 1 and 2 broadcast x t

1 and x t
2

uniformly drawn in [0, 1]:
authentication keys,

• if 1 (resp., 2) does not broadcast
m at t, S broadcasts (1, t, x t

1)
(resp., (2, t, x t

2)) at stage t + 1,
• 1 and 2 broadcast the keys

received by S ,
• if S , 1 or 2 does not broadcast

the key at stage t when he was
supposed to so, he broadcasts it
at stage t + 1.



Strong Reliability: A (Simplified) Protocol

R

2

S

1

Decoding rule of R:

• If R receives mt
1 = mt

2 at some
stage t ≥ 2, then he decodes it as
the correct message, and takes an
action accordingly.

• Otherwise, at the end of stage 6, R
analyzes his messages:

• if at stages t1 < t2 < t3, he
receives three times the (same)
message mi from i ∈ {1, 2},

• and if he did not receive before t3

the authentication key x t1
i of i ,

⇒ then mi is decoded as the
correct message, and R takes his
action accordingly.



Strong Reliability: A (Simplified) Protocol

R

2

S

1

Why does it work?

• Assume that m1 is sent by 1 at
stages t1, t2 and t3

• If m1 is not the correct message
sent by S , then

• 1 deviated at stages t1, t2 and t3

• Hence, S and 2 were not
deviating at stages t1, t2 and t3.

• Therefore, S broadcasts
(1, t1, x

t1
1 ) at or before stage t2,

and 2 broadcasts it at or before
stage t3.

• Therefore, R does not decode m1

as the correct message



Strong Reliability: A (Simplified) Protocol

R

2

S

1

Why does it work?

• If m1 is the correct message sent by
S , then

• either S never deviates and R
does not receive x t1

1 before t3,
since the probability of 2 guessing
correctly the key x t1

1 is zero.

⇒ R decodes m1 as the correct
message

• or S deviates at some stage t,
but then neither 1 nor 2 deviates
at stage t under unilateral
deviations and both send
m1 = m2 = m

⇒ R decodes m1 as the correct
message



Strong Reliability: A (Simplified) Protocol

R

2

S

1

Why does it work?

• If S deviates at some stage t ⇒ R
learns the correct message at stage
t.

• If S never deviates, there must exist
a sequence of three stages
(t1, t2, t3), where 1, or 2, broadcast
three times the correct message,
since

• whenever 1 (resp., 2) does not
broadcast the correct message, 2
(resp., 1) does,

• and there are 5 stages of
reporting.



Strong Reliability: The General Case

The two disjoints paths: (S , i1, . . . , ik , . . . , ik̄ ,R) and (S , j1, . . . , j`, . . . , j ¯̀,R).

nC := 2 + k̄ + ¯̀ nodes on these two paths.

Do blocks of length 2nC − 3. (In the above example, nC = 4, so 2nC − 3 = 5.)

At each block, apply the same logic as above, with roughly the same protocol,
i.e., checking sequences of messages of length nC − 1.

But, at each block, the role of the “receiver/decoder” is played by a different
node, started initially with i2 or j2.

We show at the end of a block a new node necessarily learns the message sent
by the sender.

After sufficiently many blocks, R then learns the message.



Emulating the Mediator (iii) ⇒ (i)

• We can use our protocol to (PBE) implement all distributions over actions
and states of the mediated communication games between the sender and
the receiver, as follows:

Phase I: Let S truthfully report the state ω to intermediaries 1 and
2.

Phase II: Replication of the communication device: Let S and 1
simultaneously draw random numbers x and y . Use our
protocol to guarantee that 1 transmit y to 2 (and S). S
transmits x to 1 and 2.

Phase III: Use x and y to output a recommendation a; S , 1 and 2 do
it simultaneously and then transmit it to R, using three
times our protocol in parallel. Use a majority rule for R to
take a decision.



Thank you!


