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The Financial Network Model
Introduction

What the 2008 crisis taught us...
• High interconnectedness of modern financial
system;
• default risk of a bank depends on the whole
set of connections (network);
• the network topology can trigger default
cascade and shock’s amplification effects.

Main challenges
• Defining a network model that accounts for
propagation effects;
• understanding how the topology affects
systemic risk;
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The Financial Network Model
Introduction

i j

External Sector

wij

wji

ci > 0 cj < 0

εi εj

xji

xij

ci − εi cj − εj

• wij inter-bank liability;
• ci > 0 positive money inflow;
• cj < 0 outside debt.

Everything is fine
In normal conditions, every bank i can meet its
total liability: wi =

∑
j
wij .
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The Financial Network Model
Introduction

i j

External Sector

wij

wji

ci > 0 cj < 0

εi εj

xji

xij

ci − εi cj − εj

• Shocks ε hit the network by reducing c;
• Nodes may default and not be able to pay their
liabilities (direct effect);
• Shocks propagate across the network because
of reduced payments (indirect effect).

Clearing Vectors
x is a set of consistent payments after the
shock:

x = Sw0 (P>x+ c− ε)
where (P )ij = wij

wi
and Sw0 is a saturation:

w

w

0

Sw0

• Notice that any solution is such that
x ∈ Lw0 := {x ∈ Rn : 0 ≤ x ≤ w}
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The model
The saturated equilibrium model1

We study saturated equilibrium models in networks. Precisely, we consider the following fixed point
equation

xi = min

max


n∑

j=1
xjPji + ci, 0

 , wi

 , i = 1, . . . , n

or, more compactly,
x = Sw

0
(
P>x+ c

)
where:
• (Sw0 (x))i = min {max {xi, 0} , wi} , i = 1, . . . , n,;
• P ∈ Rn×n+ is a non-negative square matrix and w ∈ Rn+ that jointly describe the network;
• the solutions x ∈ X are called equilibria of the network (P,w) with exogenous flow c;
• x ∈ Lw0 = {x ∈ Rn : 0 ≤ x ≤ w}

1L. Massai, G. Como, and F. Fagnani. “Equilibria and Systemic Risk in Saturated Networks”. In: Mathematics of
Operations Research (2021). url: https://doi.org/10.1287/moor.2021.1188.
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Applications
Network games with monotone linear saturated best responses
Consider a set of players V = {1, . . . , n} playing an action xi ∈ [0, wi] and with quadratic utility

ui(x) = ui (xi, x−i) = cixi −
x2

i

2 + xi

∑
j

Pjixj

• Pij ≥ 0 strength of interaction: games of pure strategic complements.

Quadratic utility =⇒ best response of a player i is always unique and given by

Bi (x−i) = min

max


n∑

j=1
xjPji + ci, 0

 , wi

 .

• Nash equilibria are exactly such that x = Sw0 (P>x+ c);

• more in general, our analysis applies to ui(x) = ϕi

(
xi − ci +

∑
j 6=i Pjixj

)
for a continuous ϕi : R 7→ R that

is increasing on (−∞, 0] and decreasing in [0,+∞);
• these are supermodular games (increase of one player’s action encourages the others to do so as well).
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Applications
Iterative algorithms and contagion spreading

Example {
x(t+ 1) = Sw0 (P>x(t) + c)
x(0) = w

3
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External Sector
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U2U1
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Applications
Iterative algorithms and contagion spreading
Example
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Applications
Iterative algorithms and contagion spreading
Example

t = 14 {
x(t+ 1) = Sw0 (P>x(t) + c)
x(0) = w

3

2

External Sector

1

4
5

6

7

5

7

3

0

0

10

5

10

715

5

6

U2U1

T

8 Equilibria and Systemic Risk in Saturated Networks 10.11.2022



Uniqueness of Clearing Vectors
Existence and uniqueness of equilibria

• Existence of equilibria follows from Brower fixed point Theorem.

In general however the equilibrium will not be unique:

Example

Consider the network described by P =
[

0 1
1 0

]
, w =

[
1
1

]
and c =

[
0
0

]
.

1 2

1

1

It is immediate to check that any x =
[
t
t

]
, t ∈ [0, 1] is an equilibrium.
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Uniqueness of Clearing Vectors
The irreducible case

Theorem (Uniqueness for the irreducible case (Massai, Como, Fagnani, 2021))
Let (P,w) be a network such that P is irreducible and ρ(P ) = 1. Let π and p be, respectively, left and right
dominant eigenvectors of P . Let ν be any solution of ν = P>ν + c. Then it holds:

p>c

Unique equilibrium

min
k

{
νk
πk

}
+ min

k

{
wk − νk
πk

}

6= 0

= 0
Multiple equilibria

> 0

≤ 0

• In case we have multiple equilibria, the set of equilibria X is:

X =
{
x = ν + απ : −min

k

{
νk
πk

}
≤ α ≤ min

k

{
wk − νk
πk

}}
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Uniqueness of Clearing Vectors
A geometrical interpretation
When p>c = 0, we have multiple equilibria when the line H = {x ∈ Rn : x = ν + απ, α ∈ R}
intersects non trivially the lattice Lw

0 .

x3

x1

x2

6
4
2
0
−2
−4

4

2
2 0

40

x

x

H

Lw
0

(a) Multiple equilibria (the red dots and segment).

min
k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}
> 0

x3

x1

x2

6
4
2
0
−2
−4

4

2
2 0

40

H

Lw
0

x

(b) Unique equilibrium (the red dot).

min
k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}
≤ 0
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Continuity of network equilibria and the lack thereof
The dependence of equilibria on the flow
• Uniqueness ultimately depends on exogenous flow c.
• There exists a setM of critical vectors c∗ such that we have multiple solutions, namely:
U = {c ∈ Rn : |X (c)| = 1} , M = Rn \ U

Theorem (Continuity of network equilibria (Massai, Como, Fagnani, 2021))
For a network (P,w) such that ρ(P ) ≤ 1, let m be number of basic classes of P . Then,
(i) the non-uniqueness setM has Lebesgue measure 0 and is contained in the closed set consisting of the union

of at most m graphs of scalar continuous functions;
(ii) the map c 7→ x(c) is continuous on the uniqueness set U ;
(iii) for every exogenous flow c∗ inM,

lim inf
c∈U

c→c∗

x(c) = x (c∗) , lim sup
c∈U

c→c∗

x(c) = x̄ (c∗)

• For networks such that ρ(P ) = 1 the equilibrium is generically unique.
• x(c) is piece-wise continuous (and monotone) with jump discontinuities occurring exactly when crossingM.
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Continuity of network equilibria and the lack thereof
Systemic risk in financial networks
Jump discontinuity =⇒ slight change of c may lead to a catastrophic aggregated loss and to sudden
defaults of several nodes.
Loss function
• Take an asset c◦ such that the system is healthy (x(c◦) = w) and another c < c◦ after a shock;
• Net worth before the shock: v◦ = P>w + c◦ − w;
• Net worth after the shock: v = P>x(c) + c− w;
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Continuity of network equilibria and the lack thereof
Systemic risk in financial networks
Example

• Consider a network with P =

[ 0 0.75 0.25
0 0 1

0.3 0.7 0

]
and w =

[5
3
2

]
.

• Consider an initial vector c◦ = [5, 2, 2]> that we perturb with a shock ε such that:

c = c◦ − εv, v =

[0.07
0.59
0.34

]
, ε ∈ [0, 14]

1

3

2

1.25 3

1.40.6

3.75

External Sector

5
2

2

1

3

2

1.25 3

1.40.6

3.75

External Sector

5
2

2

0.59ε

0.34ε

0.07ε

c◦ = [5, 2, 2]> c = c◦ − ε[0.07, 0.59, 0.34]>

Shock
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Continuity of network equilibria and the lack thereof
Systemic risk in financial networks
Example

• We expect a jump discontinuity when 1>c = 0 =⇒ ε = 9 =⇒ c∗ = [4.4,−3.3,−1.1]>.

2 4 6 8 10 12 14

5

10

15

20

25

ε

l(ε)

0 9 2 4 6 8 10 12 14

1

w3 =2

w2 =3

4

w1 =5

ε

x(ε)

0 9

Node failure

Node 1

Node 2

Node 3

• The size of the jump is ∆l (c∗) = mini
{
νi
πi

}
+ mini

{
wi−νi
πi

}
≈ 4.44

• At c∗ the network suffers a dramatic crisis as node 1 and 3 suddenly default.
• Node 3 goes from fully solvent (x3 = w3) to completely insolvent (x3 = 0).
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Continuity of network equilibria and the lack thereof
Sensitivity of Nash equilibria in constrained quadratic network games

• P (δ) = δG where G is some fixed matrix and δ > 0 describes the strength of interactions among players.
• If we put δ∗ = ρ(G)−1, we have that ρ(δG) < 1 for δ < δ∗.
• The sensitivity of the unique Nash equilibrium to the variation of c may grow unbounded when δ approaches
δ∗ if the limit network admits multiple equilibria.

Proposition (Sensitivity of Nash equilibria (Massai, Como, Fagnani, 2021))

Let P (δ) = δG with G irreducible, δ ∈ (0, δ∗] and let x̄(δ)(c) and x(δ)(c) to be the min. and max. equilibria of(
P (δ), w

)
with c ∈ Rn. Write x(δ) for the equilibrium when it is unique. Let c∗ be such that the

(
P δ
∗
, w
)
has

multiple network equilibria. Then,

sup
δ<δ∗c:‖c−c∗‖≤ε

∥∥x(δ)(c)− x(δ) (c∗)
∥∥ ≥ ∥∥∥x̄(δ∗) (c∗)− x(δ∗) (c∗)

∥∥∥ > 0,

for every monotone norm ‖ · ‖ and every ε > 0.

• Arbitrarily small variations in the exogenous flow c will determine, for δ close to δ∗, a variation in the
equilibrium of the size of the set of equilibria for the limit case δ = δ∗.
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Results and ongoing research
Main results and future goals

Main results
• Sufficient and necessary condition for uniqueness of network equilibria;
• structure of solutions with respect to the network’s properties;
• discontinuity jumps of equilibria and implications for systemic risk;
• global stability and convergence of equilibria in a dynamical setting.

Ongoing research
• Analytical results on particular topologies and random graphs;
• risk-based centrality measures;
• model extensions (fire sales, bankruptcy costs, cross holdings, etc...).
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Thank you for your attention!
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Results and ongoing research
A Fundamental Partition
To every solution x ∈ X , we attach a node partition: a node i ∈ V is called a
The Fundamental Partition

• i ∈ V+
x surplus node if ci +

∑
k 6=i Pkixk > wi =⇒ xi = wi;

• i ∈ V0
x exposed node if 0 ≤ ci +

∑
k 6=i Pkixk ≤ wi =⇒ xi = ci +

∑
k 6=i Pkixk;

• i ∈ V−x deficit node if ci +
∑

k 6=i Pkixk < 0 =⇒ xi = 0.

Theorem (Invariance of the Fundamental Partition)

The partition V−x ,V+
x ,V0

x is invariant over all solutions x ∈ X .

The unique partition of nodes can be denoted with the triple V+,V0,V−. For every x we have:

x =

xV+

xV0

xV−

 =

wV+

xV0

0


• What remains to be studied is the structure of the solutions on V0.
• Notice that xV0 = Sw0 (P

′
V0xV0 + cV0 ) = P

′
V0xV0 + cV0 ; a linear equation!
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The Fundamental Partition

• i ∈ V+
x surplus node if ci +

∑
k 6=i Pkixk > wi =⇒ xi = wi;

• i ∈ V0
x exposed node if 0 ≤ ci +

∑
k 6=i Pkixk ≤ wi =⇒ xi = ci +

∑
k 6=i Pkixk;

• i ∈ V−x deficit node if ci +
∑

k 6=i Pkixk < 0 =⇒ xi = 0.

Theorem (Invariance of the Fundamental Partition)

The partition V−x ,V+
x ,V0

x is invariant over all solutions x ∈ X .

The unique partition of nodes can be denoted with the triple V+,V0,V−. For every x we have:

x =

xV+

xV0

xV−

 =

wV+

xV0

0


• What remains to be studied is the structure of the solutions on V0.
• Notice that xV0 = Sw0 (P

′
V0xV0 + cV0 ) = P

′
V0xV0 + cV0 ; a linear equation!
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Results and ongoing research
The Out-connected Case
Theorem (Uniqueness for out-connected graphs)
Let P be an out-connected matrix, then the clearing vector is unique.

Proof.
By the invariance of the partition, we just need to check uniqueness for nodes in V0. We have
xV0 = P

′
V0xV0 + cV0 =⇒ xV0 =

(
I − P

′
V0

)−1
cV0 and hence the solution is unique. Notice that

(
I − P

′
V0

)
is

invertible since PV0 is an out-connected matrix.

• We can partition any graph in a transient part T and trapping sets U . I.e. V = T ∪ (∪kUk);
• PT is out-connected =⇒ the solution xT is unique.

T U

• What about the solution on U? Notice that PU is stochastic and irreducible.
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Results and ongoing research
The Stochastic Irreducible Case
Theorem (Uniqueness for the stochastic irreducible case)

Let P be an irreducible stochastic matrix; let π be its unique invariant probability measure and

ν = 1
2
∑
k≥0

(
I + P ′

2

)k
c. Then it holds:

1′c

Unique solution

min
k

{
νk
πk

}
+ min

k

{
wk − νk
πk

}

6= 0

= 0
Multiple solutions

> 0

≤ 0

• In case we have multiple solutions, we have that:

X =
{
x = ν + απ : −min

k

{
νk
πk

}
≤ α ≤ min

k

{
wk − νk
πk

}}
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Results and ongoing research
A geometrical Interpretation
When 1′c = 0, we have multiple solutions when the line H = {x ∈ Rn : x = ν + απ} intersects non

trivially the lattice Lw
0 . This corresponds to min

k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}
> 0

x3

x1

x2

6
4
2
0
−2
−4

4

2
2 0

40

x

x

H

Lw
0

(m) Multiple solutions (the red dots and the red
segment).

x3

x1

x2

6
4
2
0
−2
−4

4

2
2 0

40

H

Lw
0

x

(n) Unique solution (the red dot).
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Results and ongoing research
The General Case

The Out-Connected Case
Unique solution.

1

3

2

External Sector

The Stochastic-Irreducible Case
Uniqueness depends on c, i.e. on what is coming
from and going to the external environment.

1

3

2

External Sector

The General Case

4

6

51

3

2

External Sector

T
U

Input of U coming from T

• xT is unique;
• For every trapping set U , we use the Theorem;
• To do so, we also need to consider the input
coming from T : hU := cU + PUT xT

23 Equilibria and Systemic Risk in Saturated Networks 10.11.2022



Results and ongoing research
The General Case

The Out-Connected Case
Unique solution.

1

3

2

External Sector

The Stochastic-Irreducible Case
Uniqueness depends on c, i.e. on what is coming
from and going to the external environment.

1

3

2

External Sector

The General Case

4

6

51

3

2

External Sector

T
U

Input of U coming from T

• xT is unique;
• For every trapping set U , we use the Theorem;
• To do so, we also need to consider the input
coming from T : hU := cU + PUT xT

23 Equilibria and Systemic Risk in Saturated Networks 10.11.2022



Results and ongoing research
The General Case

The Out-Connected Case
Unique solution.

1

3

2

External Sector

The Stochastic-Irreducible Case
Uniqueness depends on c, i.e. on what is coming
from and going to the external environment.

1

3

2

External Sector

The General Case

4

6

51

3

2

External Sector

T
U

Input of U coming from T

• xT is unique;
• For every trapping set U , we use the Theorem;
• To do so, we also need to consider the input
coming from T : hU := cU + PUT xT

23 Equilibria and Systemic Risk in Saturated Networks 10.11.2022



Critical Transitions
The Dependence of Clearing Vectors on the Shock

Dependence of x on c

• The uniqueness ultimately depends on the input \ output vector c.
• There exists a set of critical vectors c∗ such that we have multiple solutions, namely:
M =

{
c ∈ Rn : 1′c = 0, min

k

{
νk
πk

}
+ min

k

{
wk − νk
πk

}
> 0
}

What happens to the solutions when c approaches a critical c∗ ∈M ?
Let A = Rn\M be the set where the solution is unique. Then:
• The map c 7→ x(c) is continuous on A.
• One can prove that for every c∗ ∈M,

lim inf
c∈A
c→c∗

x(c) = x(c∗) , lim sup
c∈A
c→c∗

x(c) = x̄(c∗) .

• This means that the clearing vector undergoes a jump discontinuity at c∗.
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Critical Transitions
Critical Transitions and Jumps
Jump discontinuity as a financial breakdown
A jump discontinuity means that even a slight change in the asset/shock value c may lead to a catastrophic
aggregated loss and to sudden defaults of several nodes.

Loss function
• Consider shock ε that lowers the value of the external asset from c to c− ε;
• Loss function is: l = 1′(ε+ w − x)

Jump size of the loss function at c∗ ∈M

∆l(c∗) = lim inf
c∈A
c→c∗

l(c)− lim sup
c∈A
c→c∗

l(c) = 1
′ (x̄(c∗)− x(c∗)) = min

k

{
νk
πk

}
+ min

k

{
wk − νk
πk

}

Maximal norm of a jump discontinuity

max
c∈Rn

||x(c)− x(c)||pp =
(

min
k

wk
πk

)p
||π||p
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Critical Transitions
Critical Transitions and Jumps
Example

Consider the network below with P =

[ 0 0.75 0.25
0 0 1

0.3 0.7 0

]
and w =

[5
3
2

]
.

1

3

2

0.25 1

0.70.3

0.75

Consider an initial asset c = [5, 2, 2]′ and a total shock magnitude ε ∈ [0, 12] that hits all nodes uniformly, i.e.
c(ε) = c− ε[ 1

3 ,
1
3 ,

1
3 ]′. We expect a jump discontinuity when 1′c(ε) = 0 =⇒ ε = 9.

l(ε)

ε
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Results and Ongoing Research
Main Results and Future Goals

Main Results
• Sufficient and necessary condition for Uniqueness of clearing vectors;
• Systemic risk measures and existence of critical shocks;
• Structure of solutions with respect to the topological property of the network.

Ongoing Research
• Optimal policies for risk reduction;
• Analytical results on particular topologies and random graphs;
• Continuous Model.
• Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);
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Thank you!
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