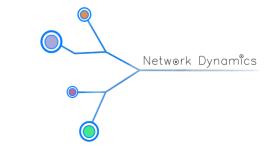


Contagion in Financial Networks

Author: Leonardo Massai

Advisors: Fabio Fagnani, Giacomo Como

Department of Mathematical Sciences (DISMA) , Politecnico di Torino



What the 2008 crisis taught us...

- High interconnectedness of modern financial system;
- default risk of a bank depends on the whole set of connections (network);
- the network topology can trigger default cascade and shock's amplification effects.

- Defining a network model that accounts for propagation effects;
- understanding how the topology affects systemic risk;

What the 2008 crisis taught us...

- High interconnectedness of modern financial system;
- default risk of a bank depends on the whole set of connections (network);
- the network topology can trigger default cascade and shock's amplification effects.

- Defining a network model that accounts for propagation effects;
- understanding how the topology affects systemic risk;

What the 2008 crisis taught us...

- High interconnectedness of modern financial system;
- default risk of a bank depends on the whole set of connections (network);
- the network topology can trigger default cascade and shock's amplification effects.

- Defining a network model that accounts for propagation effects;
- understanding how the topology affects systemic risk;

What the 2008 crisis taught us...

- High interconnectedness of modern financial system;
- default risk of a bank depends on the whole set of connections (network);
- the network topology can trigger default cascade and shock's amplification effects.

- Defining a network model that accounts for propagation effects;
- understanding how the topology affects systemic risk;

What the 2008 crisis taught us...

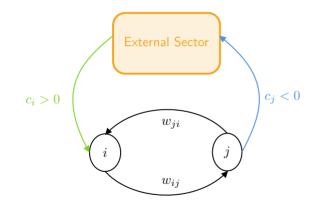
- High interconnectedness of modern financial system;
- default risk of a bank depends on the whole set of connections (network);
- the network topology can trigger default cascade and shock's amplification effects.

- Defining a network model that accounts for propagation effects;
- understanding how the topology affects systemic risk;

What the 2008 crisis taught us...

- High interconnectedness of modern financial system;
- default risk of a bank depends on the whole set of connections (network);
- the network topology can trigger default cascade and shock's amplification effects.

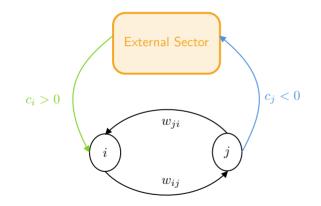
- Defining a network model that accounts for propagation effects;
- understanding how the topology affects systemic risk;



- w_{ij} inter-bank liability;
- $c_i > 0$ positive money inflow;
- $c_j < 0$ outside debt.

Everything is fine

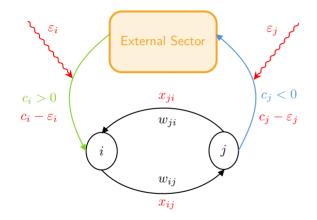
In normal conditions, every bank i can meet its total liability: $w_i = \sum_j w_{ij}.$



- w_{ij} inter-bank liability;
- $c_i > 0$ positive money inflow;
- $c_j < 0$ outside debt.

Everything is fine

In normal conditions, every bank i can meet its total liability: $w_i = \sum_j w_{ij}.$



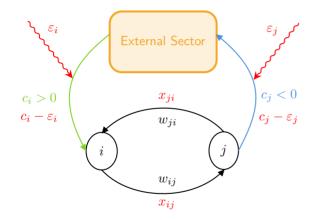
- Shocks ε hit the network by reducing c;
- Nodes may default and not be able to pay their liabilities (direct effect);
- Shocks propagate across the network because of reduced payments (indirect effect).

Clearing Vectors

x is a set of consistent payments after the shock:

$$x = \mathcal{S}_0^w (P^\top x + c - \varepsilon)$$

where $(P)_{ij} = \frac{w_{ij}}{w_i}$ and \mathcal{S}_0^w is a saturation: S_0^w \dots \vdots



• Shocks ε hit the network by reducing c;

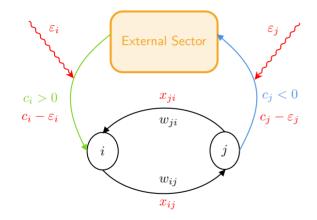
- Nodes may default and not be able to pay their liabilities (direct effect);
- Shocks propagate across the network because of reduced payments (indirect effect).

Clearing Vectors

x is a set of consistent payments after the shock:

$$x = \mathcal{S}_0^w (P^\top x + c - \varepsilon)$$

where $(P)_{ij} = \frac{w_{ij}}{w_i}$ and \mathcal{S}_0^w is a saturation: S_0^w



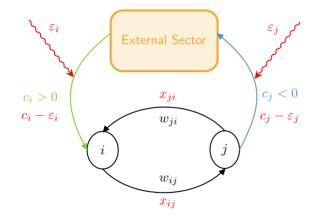
- Shocks ε hit the network by reducing c;
- Nodes may default and not be able to pay their liabilities (direct effect);
- Shocks propagate across the network because of reduced payments (indirect effect).

Clearing Vectors

x is a set of consistent payments after the shock:

$$x = \mathcal{S}_0^w (P^\top x + c - \varepsilon)$$

where $(P)_{ij} = \frac{w_{ij}}{w_i}$ and \mathcal{S}_0^w is a saturation:



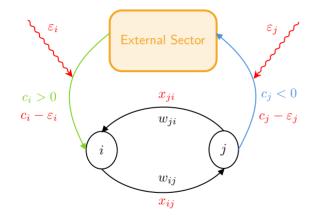
- Shocks ε hit the network by reducing c;
- Nodes may default and not be able to pay their liabilities (direct effect);
- Shocks propagate across the network because of reduced payments (indirect effect).

Clearing Vectors

x is a set of consistent payments after the shock:

$$x = \mathcal{S}_0^w (P^\top x + c - \varepsilon)$$

where $(P)_{ij} = \frac{w_{ij}}{w_i}$ and \mathcal{S}_0^w is a saturation: S_0^w



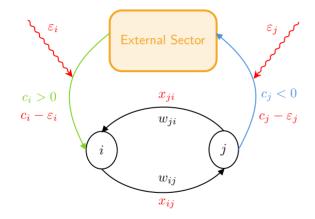
- Shocks ε hit the network by reducing c;
- Nodes may default and not be able to pay their liabilities (direct effect);
- Shocks propagate across the network because of reduced payments (indirect effect).

Clearing Vectors

 \boldsymbol{x} is a set of consistent payments after the shock:

$$x = \mathcal{S}_0^w (P^\top x + c - \varepsilon)$$

where $(P)_{ij} = \frac{w_{ij}}{w_i}$ and \mathcal{S}_0^w is a saturation: $S_0^w \bigwedge_w \dots$



- Shocks ε hit the network by reducing c;
- Nodes may default and not be able to pay their liabilities (direct effect);
- Shocks propagate across the network because of reduced payments (indirect effect).

Clearing Vectors

 \boldsymbol{x} is a set of consistent payments after the shock:

$$x = \mathcal{S}_0^w (P^\top x + c - \varepsilon)$$

where $(P)_{ij} = \frac{w_{ij}}{w_i}$ and S_0^w is a saturation:

The model **The saturated equilibrium model**¹

We study saturated equilibrium models in networks. Precisely, we consider the following fixed point equation

$$x_i = \min\left\{\max\left\{\sum_{j=1}^n x_j P_{ji} + c_i, 0\right\}, w_i\right\}, \quad i = 1, \dots, n$$

or, more compactly,

$$x = S_0^w \left(P^\top x + c \right)$$

where:

•
$$(S_0^w(x))_i = \min \{\max \{x_i, 0\}, w_i\}, \quad i = 1, \dots, n;$$

- $P \in \mathbb{R}^{n \times n}_+$ is a non-negative square matrix and $w \in \mathbb{R}^n_+$ that jointly describe the network;
- the solutions $x \in \mathcal{X}$ are called equilibria of the network (P, w) with exogenous flow c;
- $x \in \mathcal{L}_0^w = \{x \in \mathbb{R}^n : 0 \le x \le w\}$

¹L. Massai, G. Como, and F. Fagnani. "Equilibria and Systemic Risk in Saturated Networks". In: *Mathematics of Operations Research* (2021). URL: https://doi.org/10.1287/moor.2021.1188.

Network games with monotone linear saturated best responses

Consider a set of players $\mathcal{V}=\{1,\ldots,n\}$ playing an action $x_i\in[0,w_i]$ and with quadratic utility

$$u_i(x) = u_i(x_i, x_{-i}) = c_i x_i - \frac{x_i^2}{2} + x_i \sum_j P_{ji} x_j$$

• $P_{ij} \ge 0$ strength of interaction: games of pure strategic complements.

Quadratic utility \implies best response of a player i is always unique and given by

$$B_i(x_{-i}) = \min\left\{\max\left\{\sum_{j=1}^n x_j P_{ji} + c_i, 0\right\}, w_i\right\}.$$

• Nash equilibria are exactly such that $x = S_0^w (P^\top x + c);$

- more in general, our analysis applies to $u_i(x) = \varphi_i\left(x_i c_i + \sum_{j \neq i} P_{ji}x_j\right)$ for a continuous $\varphi_i : \mathbb{R} \mapsto \mathbb{R}$ that is increasing on $(-\infty, 0]$ and decreasing in $[0, +\infty)$;
- these are supermodular games (increase of one player's action encourages the others to do so as well).

Network games with monotone linear saturated best responses

Consider a set of players $\mathcal{V}=\{1,\ldots,n\}$ playing an action $x_i\in[0,w_i]$ and with quadratic utility

$$u_i(x) = u_i(x_i, x_{-i}) = c_i x_i - \frac{x_i^2}{2} + x_i \sum_j P_{ji} x_j$$

• $P_{ij} \ge 0$ strength of interaction: games of pure strategic complements.

Quadratic utility \implies best response of a player *i* is always unique and given by

$$B_i(x_{-i}) = \min\left\{\max\left\{\sum_{j=1}^n x_j P_{ji} + c_i, 0\right\}, w_i\right\}.$$

• Nash equilibria are exactly such that $x = S_0^w (P^\top x + c);$

- more in general, our analysis applies to $u_i(x) = \varphi_i\left(x_i c_i + \sum_{j \neq i} P_{ji}x_j\right)$ for a continuous $\varphi_i : \mathbb{R} \mapsto \mathbb{R}$ that is increasing on $(-\infty, 0]$ and decreasing in $[0, +\infty)$;
- these are supermodular games (increase of one player's action encourages the others to do so as well).

Network games with monotone linear saturated best responses

Consider a set of players $\mathcal{V}=\{1,\ldots,n\}$ playing an action $x_i\in[0,w_i]$ and with quadratic utility

$$u_i(x) = u_i(x_i, x_{-i}) = c_i x_i - \frac{x_i^2}{2} + x_i \sum_j P_{ji} x_j$$

• $P_{ij} \ge 0$ strength of interaction: games of pure strategic complements.

Quadratic utility \implies best response of a player i is always unique and given by

$$B_i(x_{-i}) = \min\left\{\max\left\{\sum_{j=1}^n x_j P_{ji} + c_i, 0\right\}, w_i\right\}.$$

• Nash equilibria are exactly such that $x = S_0^w (P^\top x + c);$

• more in general, our analysis applies to $u_i(x) = \varphi_i\left(x_i - c_i + \sum_{j \neq i} P_{ji}x_j\right)$ for a continuous $\varphi_i : \mathbb{R} \to \mathbb{R}$ that is increasing on $(-\infty, 0]$ and decreasing in $[0, +\infty)$;

• these are supermodular games (increase of one player's action encourages the others to do so as well).

Network games with monotone linear saturated best responses

Consider a set of players $\mathcal{V}=\{1,\ldots,n\}$ playing an action $x_i\in[0,w_i]$ and with quadratic utility

$$u_i(x) = u_i(x_i, x_{-i}) = c_i x_i - \frac{x_i^2}{2} + x_i \sum_j P_{ji} x_j$$

• $P_{ij} \ge 0$ strength of interaction: games of pure strategic complements.

Quadratic utility \implies best response of a player i is always unique and given by

$$B_i(x_{-i}) = \min\left\{\max\left\{\sum_{j=1}^n x_j P_{ji} + c_i, 0\right\}, w_i\right\}.$$

• Nash equilibria are exactly such that $x = S_0^w (P^\top x + c)$;

• more in general, our analysis applies to $u_i(x) = \varphi_i\left(x_i - c_i + \sum_{j \neq i} P_{ji}x_j\right)$ for a continuous $\varphi_i : \mathbb{R} \to \mathbb{R}$ that is increasing on $(-\infty, 0]$ and decreasing in $[0, +\infty)$;

• these are supermodular games (increase of one player's action encourages the others to do so as well).

Network games with monotone linear saturated best responses

Consider a set of players $\mathcal{V}=\{1,\ldots,n\}$ playing an action $x_i\in[0,w_i]$ and with quadratic utility

$$u_i(x) = u_i(x_i, x_{-i}) = c_i x_i - \frac{x_i^2}{2} + x_i \sum_j P_{ji} x_j$$

• $P_{ij} \ge 0$ strength of interaction: games of pure strategic complements.

Quadratic utility \implies best response of a player i is always unique and given by

$$B_i(x_{-i}) = \min\left\{\max\left\{\sum_{j=1}^n x_j P_{ji} + c_i, 0\right\}, w_i\right\}.$$

• Nash equilibria are exactly such that $x = S_0^w(P^\top x + c)$;

• more in general, our analysis applies to $u_i(x) = \varphi_i\left(x_i - c_i + \sum_{j \neq i} P_{ji}x_j\right)$ for a continuous $\varphi_i : \mathbb{R} \mapsto \mathbb{R}$ that is increasing on $(-\infty, 0]$ and decreasing in $[0, +\infty)$;

• these are supermodular games (increase of one player's action encourages the others to do so as well).

Network games with monotone linear saturated best responses

Consider a set of players $\mathcal{V}=\{1,\ldots,n\}$ playing an action $x_i\in[0,w_i]$ and with quadratic utility

$$u_i(x) = u_i(x_i, x_{-i}) = c_i x_i - \frac{x_i^2}{2} + x_i \sum_j P_{ji} x_j$$

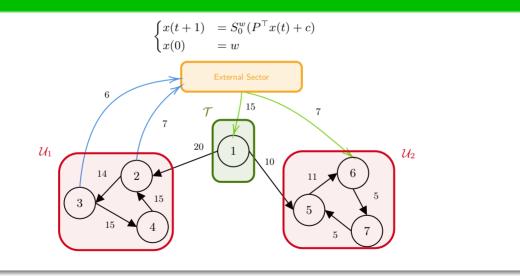
• $P_{ij} \ge 0$ strength of interaction: games of pure strategic complements.

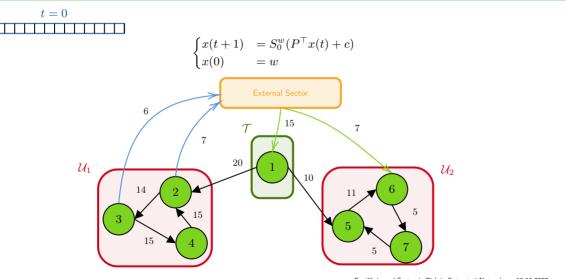
Quadratic utility \implies best response of a player i is always unique and given by

$$B_i(x_{-i}) = \min\left\{\max\left\{\sum_{j=1}^n x_j P_{ji} + c_i, 0\right\}, w_i\right\}.$$

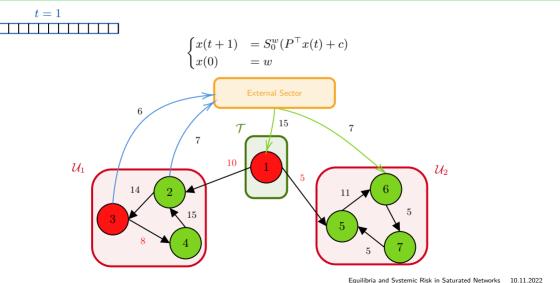
• Nash equilibria are exactly such that $x = S_0^w (P^\top x + c);$

- more in general, our analysis applies to $u_i(x) = \varphi_i\left(x_i c_i + \sum_{j \neq i} P_{ji}x_j\right)$ for a continuous $\varphi_i : \mathbb{R} \mapsto \mathbb{R}$ that is increasing on $(-\infty, 0]$ and decreasing in $[0, +\infty)$;
- these are supermodular games (increase of one player's action encourages the others to do so as well).

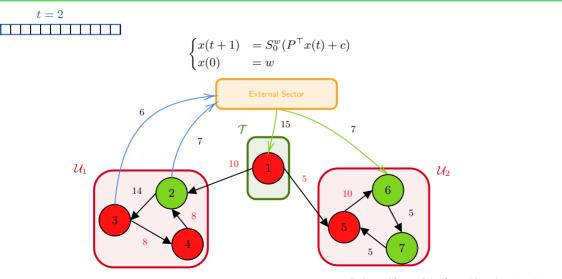


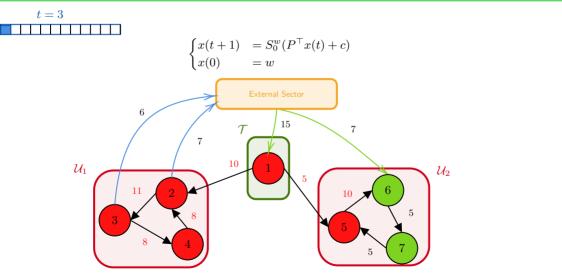


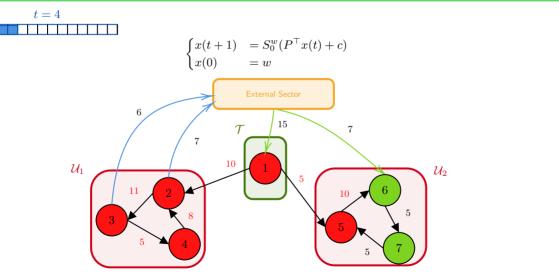
Example



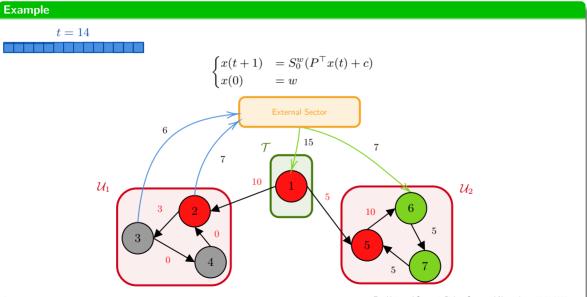
8











Uniqueness of Clearing Vectors Existence and uniqueness of equilibria

• Existence of equilibria follows from Brower fixed point Theorem.

In general however the equilibrium will not be unique:

Example

Consider the network described by $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. 1 It is immediate to check that any $x = \begin{bmatrix} t \\ t \end{bmatrix}$, $t \in [0, 1]$ is an equilibrium.

Uniqueness of Clearing Vectors Existence and uniqueness of equilibria

• Existence of equilibria follows from Brower fixed point Theorem.

In general however the equilibrium will not be unique:

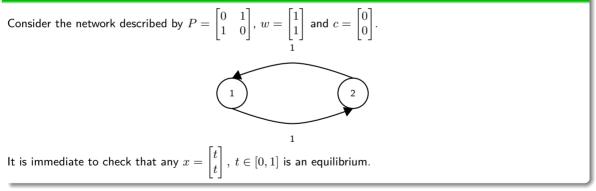
Example

Consider the network described by $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $w = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. 1 It is immediate to check that any $x = \begin{bmatrix} t \\ t \end{bmatrix}$, $t \in [0, 1]$ is an equilibrium.

Uniqueness of Clearing Vectors Existence and uniqueness of equilibria

• Existence of equilibria follows from Brower fixed point Theorem.

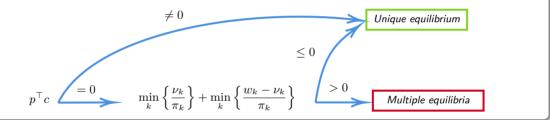
In general however the equilibrium will not be unique:



Uniqueness of Clearing Vectors The irreducible case

Theorem (Uniqueness for the irreducible case (Massai, Como, Fagnani, 2021))

Let (P, w) be a network such that P is irreducible and $\rho(P) = 1$. Let π and p be, respectively, left and right dominant eigenvectors of P. Let ν be any solution of $\nu = P^{\top}\nu + c$. Then it holds:



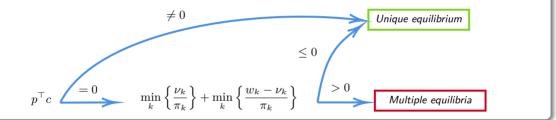
• In case we have multiple equilibria, the set of equilibria ${\cal X}$ is:

$$\mathcal{X} = \left\{ x = \nu + \alpha \pi \ : \ -\min_k \left\{ \frac{\nu_k}{\pi_k} \right\} \le \alpha \le \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\} \right\}$$

Uniqueness of Clearing Vectors The irreducible case

Theorem (Uniqueness for the irreducible case (Massai, Como, Fagnani, 2021))

Let (P, w) be a network such that P is irreducible and $\rho(P) = 1$. Let π and p be, respectively, left and right dominant eigenvectors of P. Let ν be any solution of $\nu = P^{\top}\nu + c$. Then it holds:

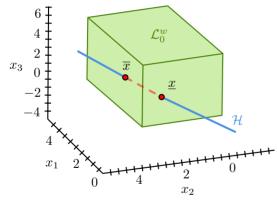


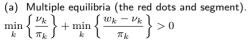
• In case we have multiple equilibria, the set of equilibria ${\cal X}$ is:

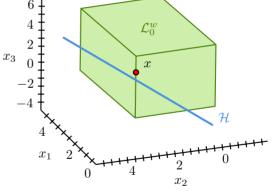
$$\mathcal{X} = \left\{ x = \nu + \alpha \pi \ : \ -\min_k \left\{ \frac{\nu_k}{\pi_k} \right\} \le \alpha \le \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\} \right\}$$

Uniqueness of Clearing Vectors A geometrical interpretation

When $p^{\top}c = 0$, we have multiple equilibria when the line $\mathcal{H} = \{x \in \mathbb{R}^n : x = \nu + \alpha \pi, \alpha \in \mathbb{R}\}$ intersects non trivially the lattice \mathcal{L}_0^w .







(b) Unique equilibrium (the red dot). $\min_{k} \left\{ \frac{\nu_k}{\pi_k} \right\} + \min_{k} \left\{ \frac{w_k - \nu_k}{\pi_k} \right\} \le 0$

Continuity of network equilibria and the lack thereof The dependence of equilibria on the flow

- Uniqueness ultimately depends on exogenous flow c.
- There exists a set \mathcal{M} of critical vectors c^* such that we have multiple solutions, namely: $\mathcal{U} = \{c \in \mathbb{R}^n : |\mathcal{X}(c)| = 1\}, \qquad \mathcal{M} = \mathbb{R}^n \setminus \mathcal{U}$

Theorem (Continuity of network equilibria (Massai, Como, Fagnani, 2021)

For a network (P, w) such that $\rho(P) \leq 1$, let m be number of basic classes of P. Then,

(i) the non-uniqueness set \mathcal{M} has Lebesgue measure 0 and is contained in the closed set consisting of the union of at most m graphs of scalar continuous functions;

(ii) the map $c \mapsto x(c)$ is continuous on the uniqueness set \mathcal{U} ;

(iii) for every exogenous flow c^* in \mathcal{M} ,

$$\liminf_{\substack{c \in \mathcal{U} \\ c \to c^*}} x(c) = \underline{x}(c^*), \quad \limsup_{\substack{c \in \mathcal{U} \\ c \to c^*}} x(c) = \overline{x}(c^*)$$

• For networks such that $\rho(P) = 1$ the equilibrium is generically unique.

• x(c) is piece-wise continuous (and monotone) with jump discontinuities occurring exactly when crossing \mathcal{M} .

Continuity of network equilibria and the lack thereof The dependence of equilibria on the flow

- Uniqueness ultimately depends on exogenous flow c.
- There exists a set \mathcal{M} of critical vectors c^* such that we have multiple solutions, namely: $\mathcal{U} = \{c \in \mathbb{R}^n : |\mathcal{X}(c)| = 1\}, \qquad \mathcal{M} = \mathbb{R}^n \setminus \mathcal{U}$

Theorem (Continuity of network equilibria (Massai, Como, Fagnani, 2021))

For a network (P, w) such that $\rho(P) \leq 1$, let m be number of basic classes of P. Then,

- (i) the non-uniqueness set \mathcal{M} has Lebesgue measure 0 and is contained in the closed set consisting of the union of at most m graphs of scalar continuous functions;
- (ii) the map $c \mapsto x(c)$ is continuous on the uniqueness set \mathcal{U} ;
- (iii) for every exogenous flow c^* in \mathcal{M} ,

$$\liminf_{\substack{c \in \mathcal{U} \\ c \to c^*}} x(c) = \underline{x}\left(c^*\right), \quad \limsup_{\substack{c \in \mathcal{U} \\ c \to c^*}} x(c) = \overline{x}\left(c^*\right)$$

- For networks such that $\rho(P) = 1$ the equilibrium is generically unique.
- x(c) is piece-wise continuous (and monotone) with jump discontinuities occurring exactly when crossing \mathcal{M} .

Continuity of network equilibria and the lack thereof The dependence of equilibria on the flow

- Uniqueness ultimately depends on exogenous flow c.
- There exists a set \mathcal{M} of critical vectors c^* such that we have multiple solutions, namely: $\mathcal{U} = \{c \in \mathbb{R}^n : |\mathcal{X}(c)| = 1\}, \qquad \mathcal{M} = \mathbb{R}^n \setminus \mathcal{U}$

Theorem (Continuity of network equilibria (Massai, Como, Fagnani, 2021))

For a network (P, w) such that $\rho(P) \leq 1$, let m be number of basic classes of P. Then,

- (i) the non-uniqueness set \mathcal{M} has Lebesgue measure 0 and is contained in the closed set consisting of the union of at most m graphs of scalar continuous functions;
- (ii) the map $c \mapsto x(c)$ is continuous on the uniqueness set \mathcal{U} ;
- (iii) for every exogenous flow c^* in \mathcal{M} ,

$$\liminf_{\substack{c \in \mathcal{U} \\ c \to c^*}} x(c) = \underline{x}(c^*), \quad \limsup_{\substack{c \in \mathcal{U} \\ c \to c^*}} x(c) = \overline{x}(c^*)$$

- For networks such that $\rho(P) = 1$ the equilibrium is generically unique.
- x(c) is piece-wise continuous (and monotone) with jump discontinuities occurring exactly when crossing \mathcal{M} .

Jump discontinuity \implies slight change of c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Take an asset c° such that the system is healthy $(x(c^{\circ}) = w)$ and another $c < c^{\circ}$ after a shock;
- Net worth before the shock: $v^{\circ} = P^{\top}w + c^{\circ} w$;
- Net worth after the shock: $v = P^{\top}x(c) + c w$;
- The loss is the aggregated difference between v° and v:

$$l\left(\boldsymbol{c}^{\circ},\boldsymbol{c}\right) := \mathbb{1}^{\top}\left(\boldsymbol{v}^{\circ}-\boldsymbol{v}\right) = \mathbb{1}^{\top}\left(\boldsymbol{P}^{\top}\boldsymbol{w} + \boldsymbol{c}^{\circ} - \boldsymbol{w} - \left(\boldsymbol{P}^{\top}\boldsymbol{x}(\boldsymbol{c}) + \boldsymbol{c} - \boldsymbol{w}\right)\right) = \underbrace{\mathbb{1}^{\top}(\boldsymbol{c}^{\circ}-\boldsymbol{c})}_{\text{direct loss}} + \underbrace{\mathbb{1}^{\top}(\boldsymbol{w}-\boldsymbol{x}(\boldsymbol{c}))}_{\text{shortfall term}}$$

$$\Delta l\left(c^{*}\right):=\limsup_{\substack{c\in U\\c\rightarrow c^{*}}}l\left(c^{\circ},c\right)-\liminf_{\substack{c\in U\\c\rightarrow c^{*}}}l\left(c^{\circ},c\right)=\left\|\bar{x}\left(c^{*}\right)-\underline{x}\left(c^{*}\right)\right\|_{1}.$$

Jump discontinuity \implies slight change of c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Take an asset c° such that the system is healthy ($x(c^{\circ}) = w$) and another $c < c^{\circ}$ after a shock;
- Net worth before the shock: $v^{\circ} = P^{\top}w + c^{\circ} w$;
- Net worth after the shock: $v = P^{\top}x(c) + c w$;
- The loss is the aggregated difference between v° and v:

$$l\left(c^{\circ},c\right) := \mathbb{1}^{\top}\left(v^{\circ}-v\right) = \mathbb{1}^{\top}\left(P^{\top}w+c^{\circ}-w-\left(P^{\top}x(c)+c-w\right)\right) = \underbrace{\mathbb{1}^{\top}(c^{\circ}-c)}_{\text{direct loss}} + \underbrace{\mathbb{1}^{\top}(w-x(c))}_{\text{shortfall term}}$$

$$\Delta l\left(\boldsymbol{c}^{*}\right) := \limsup_{\boldsymbol{c} \in U \atop \boldsymbol{c} \to \boldsymbol{c}^{*}} l\left(\boldsymbol{c}^{\circ}, \boldsymbol{c}\right) - \liminf_{\boldsymbol{c} \in \mathcal{U} \atop \boldsymbol{c} \to \boldsymbol{c}^{*}} l\left(\boldsymbol{c}^{\circ}, \boldsymbol{c}\right) = \left\| \bar{x}\left(\boldsymbol{c}^{*}\right) - \underline{x}\left(\boldsymbol{c}^{*}\right) \right\|_{1}.$$

Jump discontinuity \implies slight change of c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Take an asset c° such that the system is healthy ($x(c^{\circ}) = w$) and another $c < c^{\circ}$ after a shock;
- Net worth before the shock: $v^{\circ} = P^{\top}w + c^{\circ} w$;
- Net worth after the shock: $v = P^{\top}x(c) + c w$;
- The loss is the aggregated difference between v° and v:

$$l\left(c^{\circ},c\right) := \mathbb{1}^{\top}\left(v^{\circ}-v\right) = \mathbb{1}^{\top}\left(P^{\top}w+c^{\circ}-w-\left(P^{\top}x(c)+c-w\right)\right) = \underbrace{\mathbb{1}^{\top}(c^{\circ}-c)}_{\text{direct loss}} + \underbrace{\mathbb{1}^{\top}(w-x(c))}_{\text{shortfall term}}$$

$$\Delta l\left(c^{*}\right):=\limsup_{\substack{c\in U\\c\rightarrow c^{*}}}l\left(c^{\circ},c\right)-\liminf_{\substack{c\in U\\c\rightarrow c^{*}}}l\left(c^{\circ},c\right)=\left\|\bar{x}\left(c^{*}\right)-\underline{x}\left(c^{*}\right)\right\|_{1}.$$

Jump discontinuity \implies slight change of c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Take an asset c° such that the system is healthy ($x(c^{\circ}) = w$) and another $c < c^{\circ}$ after a shock;
- Net worth before the shock: $v^{\circ} = P^{\top}w + c^{\circ} w$;
- Net worth after the shock: $v = P^{\top}x(c) + c w$;
- The loss is the aggregated difference between v° and v:

$$l\left(c^{\circ},c\right) := \mathbb{1}^{\top}\left(v^{\circ}-v\right) = \mathbb{1}^{\top}\left(P^{\top}w+c^{\circ}-w-\left(P^{\top}x(c)+c-w\right)\right) = \underbrace{\mathbb{1}^{\top}(c^{\circ}-c)}_{\text{direct loss}} + \underbrace{\mathbb{1}^{\top}(w-x(c))}_{\text{shortfall term}}$$

$$\Delta l\left(c^{*}\right):=\limsup_{c\in U\atop c^{*} c^{*}}l\left(c^{\circ},c\right)-\liminf_{c\in U\atop c^{*} c^{*}}l\left(c^{\circ},c\right)=\left\|\bar{x}\left(c^{*}\right)-\underline{x}\left(c^{*}\right)\right\|_{1}.$$

Jump discontinuity \implies slight change of c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Take an asset c° such that the system is healthy ($x(c^{\circ}) = w$) and another $c < c^{\circ}$ after a shock;
- Net worth before the shock: $v^{\circ} = P^{\top}w + c^{\circ} w$;
- Net worth after the shock: $v = P^{\top}x(c) + c w$;
- The loss is the aggregated difference between v° and v:

$$l\left(c^{\circ},c\right) := \mathbb{1}^{\top}\left(v^{\circ}-v\right) = \mathbb{1}^{\top}\left(P^{\top}w+c^{\circ}-w-\left(P^{\top}x(c)+c-w\right)\right) = \underbrace{\mathbb{1}^{\top}(c^{\circ}-c)}_{\text{direct loss}} + \underbrace{\mathbb{1}^{\top}(w-x(c))}_{\text{shortfall term}}$$

$$\Delta l\left(c^{*}\right):=\limsup_{\substack{c\in U\\c\rightarrow c^{*}}}l\left(c^{\circ},c\right)-\liminf_{\substack{c\in U\\c\rightarrow c^{*}}}l\left(c^{\circ},c\right)=\left\|\bar{x}\left(c^{*}\right)-\underline{x}\left(c^{*}\right)\right\|_{1}.$$

Jump discontinuity \implies slight change of c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Take an asset c° such that the system is healthy ($x(c^{\circ}) = w$) and another $c < c^{\circ}$ after a shock;
- Net worth before the shock: $v^{\circ} = P^{\top}w + c^{\circ} w$;
- Net worth after the shock: $v = P^{\top}x(c) + c w$;
- The loss is the aggregated difference between v° and v:

$$l\left(c^{\circ},c\right) := \mathbb{1}^{\top}\left(v^{\circ}-v\right) = \mathbb{1}^{\top}\left(P^{\top}w+c^{\circ}-w-\left(P^{\top}x(c)+c-w\right)\right) = \underbrace{\mathbb{1}^{\top}(c^{\circ}-c)}_{\text{direct loss}} + \underbrace{\mathbb{1}^{\top}(w-x(c))}_{\text{shortfall term}}$$

$$\Delta l\left(c^{*}\right) := \limsup_{\substack{c \in U\\c \to c^{*}}} l\left(c^{\circ}, c\right) - \liminf_{\substack{c \in \mathcal{U}\\c \to c^{*}}} l\left(c^{\circ}, c\right) = \left\|\bar{x}\left(c^{*}\right) - \underline{x}\left(c^{*}\right)\right\|_{1}.$$

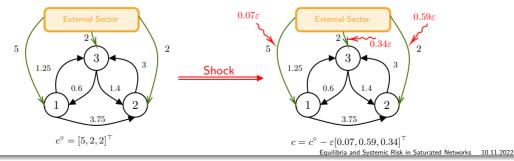
Example

14

• Consider a network with $P = \begin{bmatrix} 0 & 0.75 & 0.25 \\ 0 & 0 & 1 \\ 0.3 & 0.7 & 0 \end{bmatrix}$ and $w = \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$.

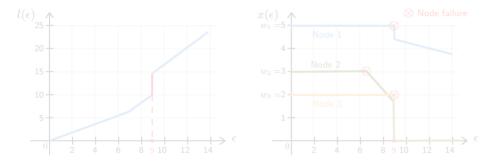
• Consider an initial vector $c^\circ = [5,2,2]^\top$ that we perturb with a shock ε such that:

$$c = c^{\circ} - \varepsilon v, \qquad v = \begin{bmatrix} 0.07\\ 0.59\\ 0.34 \end{bmatrix}, \quad \varepsilon \in [0, 14]$$



Example

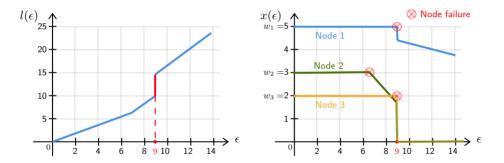
• We expect a jump discontinuity when $\mathbb{1}^{\top}c = 0 \implies \varepsilon = 9 \implies c^* = [4.4, -3.3, -1.1]^{\top}$.



- The size of the jump is $\Delta l(c^*) = \min_i \left\{ \frac{\nu_i}{\pi_i} \right\} + \min_i \left\{ \frac{w_i \nu_i}{\pi_i} \right\} \approx 4.44$
- At c^* the network suffers a dramatic crisis as node 1 and 3 suddenly default.
- Node 3 goes from fully solvent $(x_3 = w_3)$ to completely insolvent $(x_3 = 0)$.

Example

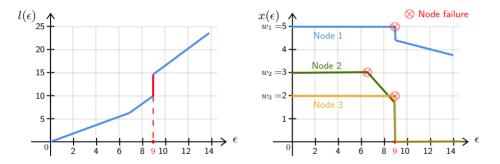
• We expect a jump discontinuity when $\mathbb{1}^{\top}c = 0 \implies \varepsilon = 9 \implies c^* = [4.4, -3.3, -1.1]^{\top}$.



- The size of the jump is $\Delta l(c^*) = \min_i \left\{ \frac{\nu_i}{\pi_i} \right\} + \min_i \left\{ \frac{w_i \nu_i}{\pi_i} \right\} \approx 4.44$
- At c^* the network suffers a dramatic crisis as node 1 and 3 suddenly default.
- Node 3 goes from fully solvent $(x_3 = w_3)$ to completely insolvent $(x_3 = 0)$.

Example

• We expect a jump discontinuity when $\mathbb{1}^{\top}c = 0 \implies \varepsilon = 9 \implies c^* = [4.4, -3.3, -1.1]^{\top}$.

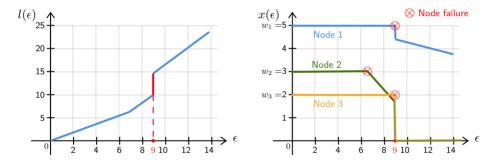


• The size of the jump is $\Delta l(c^*) = \min_i \left\{\frac{\nu_i}{\pi_i}\right\} + \min_i \left\{\frac{w_i - \nu_i}{\pi_i}\right\} \approx 4.44$

- At c^* the network suffers a dramatic crisis as node 1 and 3 suddenly default.
- Node 3 goes from fully solvent $(x_3 = w_3)$ to completely insolvent $(x_3 = 0)$.

Example

• We expect a jump discontinuity when $\mathbb{1}^{\top}c = 0 \implies \varepsilon = 9 \implies c^* = [4.4, -3.3, -1.1]^{\top}$.

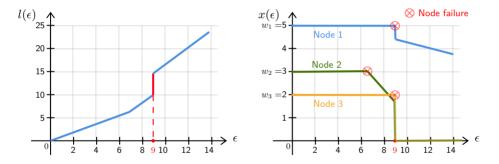


• The size of the jump is $\Delta l\left(c^*\right) = \min_i \left\{\frac{\nu_i}{\pi_i}\right\} + \min_i \left\{\frac{w_i - \nu_i}{\pi_i}\right\} \approx 4.44$

- \bullet At c^{\ast} the network suffers a dramatic crisis as node 1 and 3 suddenly default.
- Node 3 goes from fully solvent $(x_3 = w_3)$ to completely insolvent $(x_3 = 0)$.

Example

• We expect a jump discontinuity when $\mathbb{1}^{\top}c = 0 \implies \varepsilon = 9 \implies c^* = [4.4, -3.3, -1.1]^{\top}$.



- The size of the jump is $\Delta l\left(c^*\right) = \min_i \left\{\frac{\nu_i}{\pi_i}\right\} + \min_i \left\{\frac{w_i \nu_i}{\pi_i}\right\} \approx 4.44$
- \bullet At c^{\ast} the network suffers a dramatic crisis as node 1 and 3 suddenly default.
- Node 3 goes from fully solvent $(x_3 = w_3)$ to completely insolvent $(x_3 = 0)$.

Continuity of network equilibria and the lack thereof Sensitivity of Nash equilibria in constrained quadratic network games

- $P^{(\delta)} = \delta G$ where G is some fixed matrix and $\delta > 0$ describes the strength of interactions among players.
- If we put $\delta^* = \rho(G)^{-1}$, we have that $\rho(\delta G) < 1$ for $\delta < \delta^*$.
- The sensitivity of the unique Nash equilibrium to the variation of c may grow unbounded when δ approaches δ^* if the limit network admits multiple equilibria.

Proposition (Sensitivity of Nash equilibria (Massai, Como, Fagnani, 2021))

Let $P^{(\delta)} = \delta G$ with G irreducible, $\delta \in (0, \delta^*]$ and let $\bar{x}^{(\delta)}(c)$ and $\underline{x}^{(\delta)}(c)$ to be the min. and max. equilibria of $(P^{(\delta)}, w)$ with $c \in \mathbb{R}^n$. Write $x^{(\delta)}$ for the equilibrium when it is unique. Let c^* be such that the (P^{δ^*}, w) has multiple network equilibria. Then,

$$\sup_{\delta<\delta^*c:\|c-c^*\|\leq\epsilon}\left\|x^{(\delta)}(c)-x^{(\delta)}(c^*)\right\|\geq \left\|\bar{x}^{(\delta^*)}(c^*)-\underline{x}^{(\delta^*)}(c^*)\right\|>0,$$

for every monotone norm $\|\cdot\|$ and every $\varepsilon > 0$.

Continuity of network equilibria and the lack thereof Sensitivity of Nash equilibria in constrained quadratic network games

- $P^{(\delta)} = \delta G$ where G is some fixed matrix and $\delta > 0$ describes the strength of interactions among players.
- If we put $\delta^* = \rho(G)^{-1}$, we have that $\rho(\delta G) < 1$ for $\delta < \delta^*$.
- The sensitivity of the unique Nash equilibrium to the variation of c may grow unbounded when δ approaches δ^* if the limit network admits multiple equilibria.

Proposition (Sensitivity of Nash equilibria (Massai, Como, Fagnani, 2021))

Let $P^{(\delta)} = \delta G$ with G irreducible, $\delta \in (0, \delta^*]$ and let $\bar{x}^{(\delta)}(c)$ and $\underline{x}^{(\delta)}(c)$ to be the min. and max. equilibria of $(P^{(\delta)}, w)$ with $c \in \mathbb{R}^n$. Write $x^{(\delta)}$ for the equilibrium when it is unique. Let c^* be such that the (P^{δ^*}, w) has multiple network equilibria. Then,

$$\sup_{\delta<\delta^*c:\|c-c^*\|\leq\epsilon}\left\|x^{(\delta)}(c)-x^{(\delta)}(c^*)\right\|\geq \left\|\bar{x}^{(\delta^*)}(c^*)-\underline{x}^{(\delta^*)}(c^*)\right\|>0,$$

for every monotone norm $\|\cdot\|$ and every $\varepsilon > 0$.

Continuity of network equilibria and the lack thereof Sensitivity of Nash equilibria in constrained quadratic network games

- $P^{(\delta)} = \delta G$ where G is some fixed matrix and $\delta > 0$ describes the strength of interactions among players.
- If we put $\delta^* = \rho(G)^{-1}$, we have that $\rho(\delta G) < 1$ for $\delta < \delta^*$.
- The sensitivity of the unique Nash equilibrium to the variation of c may grow unbounded when δ approaches δ^* if the limit network admits multiple equilibria.

Proposition (Sensitivity of Nash equilibria (Massai, Como, Fagnani, 2021)

Let $P^{(\delta)} = \delta G$ with G irreducible, $\delta \in (0, \delta^*]$ and let $\bar{x}^{(\delta)}(c)$ and $\underline{x}^{(\delta)}(c)$ to be the min. and max. equilibria of $(P^{(\delta)}, w)$ with $c \in \mathbb{R}^n$. Write $x^{(\delta)}$ for the equilibrium when it is unique. Let c^* be such that the (P^{δ^*}, w) has multiple network equilibria. Then,

$$\sup_{\delta<\delta^*c:\|c-c^*\|\leq\epsilon}\left\|x^{(\delta)}(c)-x^{(\delta)}(c^*)\right\|\geq \left\|\bar{x}^{(\delta^*)}(c^*)-\underline{x}^{(\delta^*)}(c^*)\right\|>0,$$

for every monotone norm $\|\cdot\|$ and every $\varepsilon > 0$.

- $P^{(\delta)} = \delta G$ where G is some fixed matrix and $\delta > 0$ describes the strength of interactions among players.
- If we put $\delta^* = \rho(G)^{-1}$, we have that $\rho(\delta G) < 1$ for $\delta < \delta^*$.
- The sensitivity of the unique Nash equilibrium to the variation of c may grow unbounded when δ approaches δ^* if the limit network admits multiple equilibria.

Proposition (Sensitivity of Nash equilibria (Massai, Como, Fagnani, 2021))

Let $P^{(\delta)} = \delta G$ with G irreducible, $\delta \in (0, \delta^*]$ and let $\bar{x}^{(\delta)}(c)$ and $\underline{x}^{(\delta)}(c)$ to be the min. and max. equilibria of $\left(P^{(\delta)}, w\right)$ with $c \in \mathbb{R}^n$. Write $x^{(\delta)}$ for the equilibrium when it is unique. Let c^* be such that the $\left(P^{\delta^*}, w\right)$ has multiple network equilibria. Then,

$$\sup_{\delta < \delta^* c: \|c^{-c^*}\| \le \epsilon} \left\| x^{(\delta)}(c) - x^{(\delta)}(c^*) \right\| \ge \left\| \bar{x}^{(\delta^*)}(c^*) - \underline{x}^{(\delta^*)}(c^*) \right\| > 0,$$

for every monotone norm $\|\cdot\|$ and every $\varepsilon>0.$

- $P^{(\delta)} = \delta G$ where G is some fixed matrix and $\delta > 0$ describes the strength of interactions among players.
- If we put $\delta^* = \rho(G)^{-1}$, we have that $\rho(\delta G) < 1$ for $\delta < \delta^*$.
- The sensitivity of the unique Nash equilibrium to the variation of c may grow unbounded when δ approaches δ^* if the limit network admits multiple equilibria.

Proposition (Sensitivity of Nash equilibria (Massai, Como, Fagnani, 2021))

Let $P^{(\delta)} = \delta G$ with G irreducible, $\delta \in (0, \delta^*]$ and let $\bar{x}^{(\delta)}(c)$ and $\underline{x}^{(\delta)}(c)$ to be the min. and max. equilibria of $\left(P^{(\delta)}, w\right)$ with $c \in \mathbb{R}^n$. Write $x^{(\delta)}$ for the equilibrium when it is unique. Let c^* be such that the $\left(P^{\delta^*}, w\right)$ has multiple network equilibria. Then,

$$\sup_{\delta < \delta^* c: \|c^{-c^*}\| \le \epsilon} \left\| x^{(\delta)}(c) - x^{(\delta)}(c^*) \right\| \ge \left\| \bar{x}^{(\delta^*)}(c^*) - \underline{x}^{(\delta^*)}(c^*) \right\| > 0,$$

for every monotone norm $\|\cdot\|$ and every $\varepsilon > 0$.

- Sufficient and necessary condition for uniqueness of network equilibria;
- structure of solutions with respect to the network's properties;
- discontinuity jumps of equilibria and implications for systemic risk;
- global stability and convergence of equilibria in a dynamical setting.

- Analytical results on particular topologies and random graphs;
- risk-based centrality measures;
- model extensions (fire sales, bankruptcy costs, cross holdings, etc...).

- Sufficient and necessary condition for uniqueness of network equilibria;
- structure of solutions with respect to the network's properties;
- discontinuity jumps of equilibria and implications for systemic risk;
- global stability and convergence of equilibria in a dynamical setting.

- Analytical results on particular topologies and random graphs;
- risk-based centrality measures;
- model extensions (fire sales, bankruptcy costs, cross holdings, etc...).

- Sufficient and necessary condition for uniqueness of network equilibria;
- structure of solutions with respect to the network's properties;
- discontinuity jumps of equilibria and implications for systemic risk;
- global stability and convergence of equilibria in a dynamical setting.

- Analytical results on particular topologies and random graphs;
- risk-based centrality measures;
- model extensions (fire sales, bankruptcy costs, cross holdings, etc...).

- Sufficient and necessary condition for uniqueness of network equilibria;
- structure of solutions with respect to the network's properties;
- discontinuity jumps of equilibria and implications for systemic risk;
- global stability and convergence of equilibria in a dynamical setting.

- Analytical results on particular topologies and random graphs;
- risk-based centrality measures;
- model extensions (fire sales, bankruptcy costs, cross holdings, etc...).

- Sufficient and necessary condition for uniqueness of network equilibria;
- structure of solutions with respect to the network's properties;
- discontinuity jumps of equilibria and implications for systemic risk;
- global stability and convergence of equilibria in a dynamical setting.

- Analytical results on particular topologies and random graphs;
- risk-based centrality measures;
- model extensions (fire sales, bankruptcy costs, cross holdings, etc...).

- Sufficient and necessary condition for uniqueness of network equilibria;
- structure of solutions with respect to the network's properties;
- discontinuity jumps of equilibria and implications for systemic risk;
- global stability and convergence of equilibria in a dynamical setting.

- Analytical results on particular topologies and random graphs;
- risk-based centrality measures;
- model extensions (fire sales, bankruptcy costs, cross holdings, etc...).

- Sufficient and necessary condition for uniqueness of network equilibria;
- structure of solutions with respect to the network's properties;
- discontinuity jumps of equilibria and implications for systemic risk;
- global stability and convergence of equilibria in a dynamical setting.

- Analytical results on particular topologies and random graphs;
- risk-based centrality measures;
- model extensions (fire sales, bankruptcy costs, cross holdings, etc...).

Thank you for your attention!

Results and ongoing research A Fundamental Partition

To every solution $x \in \mathcal{X},$ we attach a node partition: a node $i \in \mathcal{V}$ is called a

The Fundamental Partition

•
$$i \in \mathcal{V}_x^+$$
 surplus node if $c_i + \sum_{k \neq i} P_{ki} x_k > w_i \implies x_i = w_i$;

- $i \in \mathcal{V}_x^0$ exposed node if $0 \le c_i + \sum_{k \ne i} P_{ki} x_k \le w_i \implies x_i = c_i + \sum_{k \ne i} P_{ki} x_k$;
- $i \in \mathcal{V}_x^-$ deficit node if $c_i + \sum_{k \neq i} P_{ki} x_k < 0 \implies x_i = 0.$

Theorem (Invariance of the Fundamental Partition)

The partition $\mathcal{V}_x^-, \mathcal{V}_x^+, \mathcal{V}_x^0$ is invariant over all solutions $x \in \mathcal{X}$.

The unique partition of nodes can be denoted with the triple $\mathcal{V}^+,\mathcal{V}^0,\mathcal{V}^-.$ For every x we have:

$$x = \begin{bmatrix} x_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ x_{\mathcal{V}^-} \end{bmatrix} = \begin{bmatrix} w_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ 0 \end{bmatrix}$$

• What remains to be studied is the structure of the solutions on \mathcal{V}^0 .

• Notice that
$$x_{\mathcal{V}_0} = \mathcal{S}_0^w (P_{\mathcal{V}_0}^{'} x_{\mathcal{V}_0} + c_{\mathcal{V}_0}) = P_{\mathcal{V}_0}^{'} x_{\mathcal{V}_0} + c_{\mathcal{V}_0}$$
; a linear equation!

Results and ongoing research A Fundamental Partition

To every solution $x \in \mathcal{X}$, we attach a node partition: a node $i \in \mathcal{V}$ is called a

The Fundamental Partition

•
$$i \in \mathcal{V}_x^+$$
 surplus node if $c_i + \sum_{k \neq i} P_{ki} x_k > w_i \implies x_i = w_i$;

- $i \in \mathcal{V}_x^0$ exposed node if $0 \le c_i + \sum_{k \ne i} P_{ki} x_k \le w_i \implies x_i = c_i + \sum_{k \ne i} P_{ki} x_k$;
- $i \in \mathcal{V}_x^-$ deficit node if $c_i + \sum_{k \neq i} P_{ki} x_k < 0 \implies x_i = 0.$

Theorem (Invariance of the Fundamental Partition)

The partition $\mathcal{V}_x^-, \mathcal{V}_x^+, \mathcal{V}_x^0$ is invariant over all solutions $x \in \mathcal{X}$.

The unique partition of nodes can be denoted with the triple $\mathcal{V}^+, \mathcal{V}^0, \mathcal{V}^-$. For every x we have:

$$x = \begin{bmatrix} x_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ x_{\mathcal{V}^-} \end{bmatrix} = \begin{bmatrix} w_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ 0 \end{bmatrix}$$

• What remains to be studied is the structure of the solutions on $\mathcal{V}^0.$

• Notice that
$$x_{\mathcal{V}_0} = \mathcal{S}_0^w (P_{\mathcal{V}_0}^{'} x_{\mathcal{V}_0} + c_{\mathcal{V}_0}) = P_{\mathcal{V}_0}^{'} x_{\mathcal{V}_0} + c_{\mathcal{V}_0}$$
; a linear equation!

Results and ongoing research A Fundamental Partition

To every solution $x \in \mathcal{X},$ we attach a node partition: a node $i \in \mathcal{V}$ is called a

The Fundamental Partition

•
$$i \in \mathcal{V}_x^+$$
 surplus node if $c_i + \sum_{k \neq i} P_{ki} x_k > w_i \implies x_i = w_i$;

- $i \in \mathcal{V}_x^0$ exposed node if $0 \le c_i + \sum_{k \ne i} P_{ki} x_k \le w_i \implies x_i = c_i + \sum_{k \ne i} P_{ki} x_k$;
- $i \in \mathcal{V}_x^-$ deficit node if $c_i + \sum_{k \neq i} P_{ki} x_k < 0 \implies x_i = 0.$

Theorem (Invariance of the Fundamental Partition)

The partition $\mathcal{V}_x^-, \mathcal{V}_x^+, \mathcal{V}_x^0$ is invariant over all solutions $x \in \mathcal{X}$.

The unique partition of nodes can be denoted with the triple $\mathcal{V}^+, \mathcal{V}^0, \mathcal{V}^-$. For every x we have:

$$x = \begin{bmatrix} x_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ x_{\mathcal{V}^-} \end{bmatrix} = \begin{bmatrix} w_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ 0 \end{bmatrix}$$

• What remains to be studied is the structure of the solutions on \mathcal{V}^0 .

• Notice that $x_{\mathcal{V}_0} = \mathcal{S}_0^w(P'_{\mathcal{V}_0}x_{\mathcal{V}_0} + c_{\mathcal{V}_0}) = P'_{\mathcal{V}_0}x_{\mathcal{V}_0} + c_{\mathcal{V}_0}$; a linear equation!

Results and ongoing research A Fundamental Partition

To every solution $x \in \mathcal{X}$, we attach a node partition: a node $i \in \mathcal{V}$ is called a

The Fundamental Partition

•
$$i \in \mathcal{V}_x^+$$
 surplus node if $c_i + \sum_{k \neq i} P_{ki} x_k > w_i \implies x_i = w_i$;

- $i \in \mathcal{V}_x^0$ exposed node if $0 \le c_i + \sum_{k \ne i} P_{ki} x_k \le w_i \implies x_i = c_i + \sum_{k \ne i} P_{ki} x_k$;
- $i \in \mathcal{V}_x^-$ deficit node if $c_i + \sum_{k \neq i} P_{ki} x_k < 0 \implies x_i = 0.$

Theorem (Invariance of the Fundamental Partition)

The partition $\mathcal{V}_x^-, \mathcal{V}_x^+, \mathcal{V}_x^0$ is invariant over all solutions $x \in \mathcal{X}$.

The unique partition of nodes can be denoted with the triple $\mathcal{V}^+, \mathcal{V}^0, \mathcal{V}^-$. For every x we have:

$$x = \begin{bmatrix} x_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ x_{\mathcal{V}^-} \end{bmatrix} = \begin{bmatrix} w_{\mathcal{V}^+} \\ x_{\mathcal{V}^0} \\ 0 \end{bmatrix}$$

• What remains to be studied is the structure of the solutions on $\mathcal{V}^0.$

• Notice that $x_{\mathcal{V}_0} = \mathcal{S}_0^w (P'_{\mathcal{V}_0} x_{\mathcal{V}_0} + c_{\mathcal{V}_0}) = P'_{\mathcal{V}_0} x_{\mathcal{V}_0} + c_{\mathcal{V}_0}$; a linear equation!

Equilibria and Systemic Risk in Saturated Networks 10.11.2022

Theorem (Uniqueness for out-connected graphs)

Let P be an out-connected matrix, then the clearing vector is unique.

Proof.

By the invariance of the partition, we just need to check uniqueness for nodes in $\mathcal{V}_{0}.$ We have

 $x_{\mathcal{V}_0} = P_{\mathcal{V}_0}' x_{\mathcal{V}_0} + c_{\mathcal{V}_0} \implies x_{\mathcal{V}_0} = \left(I - P_{\mathcal{V}_0}'\right)^{-1} c_{\mathcal{V}_0} \text{ and hence the solution is unique. Notice that } \left(I - P_{\mathcal{V}_0}'\right) \text{ is invertible since } P_{\mathcal{V}_0} \text{ is an out-connected matrix.}$

• We can partition any graph in a transient part T and trapping sets U. I.e. $\mathcal{V} = T \cup (\cup_k \mathcal{U}_k)$;

• $P_{\mathcal{T}}$ is out-connected \implies the solution $x_{\mathcal{T}}$ is unique.

• What about the solution on U? Notice that $P_{\mathcal{U}}$ is stochastic and irreducible.

Theorem (Uniqueness for out-connected graphs)

Let P be an out-connected matrix, then the clearing vector is unique.

Proof.

By the invariance of the partition, we just need to check uniqueness for nodes in $\mathcal{V}_{0}.$ We have

 $x_{\mathcal{V}_0} = P'_{\mathcal{V}_0} x_{\mathcal{V}_0} + c_{\mathcal{V}_0} \implies x_{\mathcal{V}_0} = \left(I - P'_{\mathcal{V}_0}\right)^{-1} c_{\mathcal{V}_0} \text{ and hence the solution is unique. Notice that } \left(I - P'_{\mathcal{V}_0}\right) \text{ is invertible since } P_{\mathcal{V}_0} \text{ is an out-connected matrix.} \qquad \Box$

• We can partition any graph in a transient part T and trapping sets U. I.e. $\mathcal{V} = T \cup (\cup_k \mathcal{U}_k)$;

• $P_{\mathcal{T}}$ is out-connected \implies the solution $x_{\mathcal{T}}$ is unique.

• What about the solution on \mathcal{U} ? Notice that $P_{\mathcal{U}}$ is stochastic and irreducible.

Theorem (Uniqueness for out-connected graphs)

Let P be an out-connected matrix, then the clearing vector is unique.

Proof.

By the invariance of the partition, we just need to check uniqueness for nodes in \mathcal{V}_0 . We have

 $x_{\mathcal{V}_0} = P'_{\mathcal{V}_0} x_{\mathcal{V}_0} + c_{\mathcal{V}_0} \implies x_{\mathcal{V}_0} = \left(I - P'_{\mathcal{V}_0}\right)^{-1} c_{\mathcal{V}_0} \text{ and hence the solution is unique. Notice that } \left(I - P'_{\mathcal{V}_0}\right) \text{ is invertible since } P_{\mathcal{V}_0} \text{ is an out-connected matrix.} \qquad \Box$

• We can partition any graph in a transient part T and trapping sets U. I.e. $V = T \cup (\cup_k U_k)$;

• $P_{\mathcal{T}}$ is out-connected \implies the solution $x_{\mathcal{T}}$ is unique.

• What about the solution on \mathcal{U} ? Notice that $P_{\mathcal{U}}$ is stochastic and irreducible.

Theorem (Uniqueness for out-connected graphs)

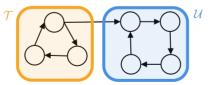
Let P be an out-connected matrix, then the clearing vector is unique.

Proof.

By the invariance of the partition, we just need to check uniqueness for nodes in \mathcal{V}_0 . We have

 $x_{\mathcal{V}_0} = P'_{\mathcal{V}_0} x_{\mathcal{V}_0} + c_{\mathcal{V}_0} \implies x_{\mathcal{V}_0} = \left(I - P'_{\mathcal{V}_0}\right)^{-1} c_{\mathcal{V}_0} \text{ and hence the solution is unique. Notice that } \left(I - P'_{\mathcal{V}_0}\right) \text{ is invertible since } P_{\mathcal{V}_0} \text{ is an out-connected matrix.} \qquad \Box$

- We can partition any graph in a transient part T and trapping sets U. I.e. $V = T \cup (\cup_k U_k)$;
- $P_{\mathcal{T}}$ is out-connected \implies the solution $x_{\mathcal{T}}$ is unique.



• What about the solution on \mathcal{U} ? Notice that $P_{\mathcal{U}}$ is stochastic and irreducible.

Results and ongoing research The Out-connected Case

Theorem (Uniqueness for out-connected graphs)

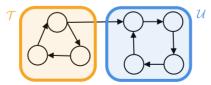
Let P be an out-connected matrix, then the clearing vector is unique.

Proof.

By the invariance of the partition, we just need to check uniqueness for nodes in \mathcal{V}_0 . We have

 $x_{\mathcal{V}_0} = P'_{\mathcal{V}_0} x_{\mathcal{V}_0} + c_{\mathcal{V}_0} \implies x_{\mathcal{V}_0} = \left(I - P'_{\mathcal{V}_0}\right)^{-1} c_{\mathcal{V}_0} \text{ and hence the solution is unique. Notice that } \left(I - P'_{\mathcal{V}_0}\right) \text{ is invertible since } P_{\mathcal{V}_0} \text{ is an out-connected matrix.} \qquad \Box$

- We can partition any graph in a transient part T and trapping sets U. I.e. $V = T \cup (\cup_k U_k)$;
- $P_{\mathcal{T}}$ is out-connected \implies the solution $x_{\mathcal{T}}$ is unique.

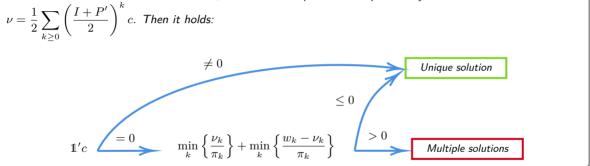


• What about the solution on \mathcal{U} ? Notice that $P_{\mathcal{U}}$ is stochastic and irreducible.

Results and ongoing research The Stochastic Irreducible Case

Theorem (Uniqueness for the stochastic irreducible case)

Let P be an irreducible stochastic matrix; let π be its unique invariant probability measure and



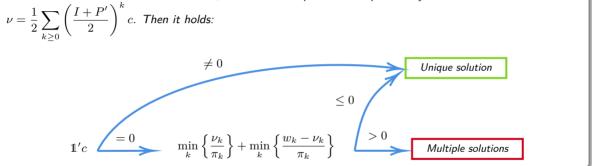
• In case we have multiple solutions, we have that:

$$\mathcal{X} = \left\{ x = \nu + \alpha \pi : -\min_{k} \left\{ \frac{\nu_{k}}{\pi_{k}} \right\} \le \alpha \le \min_{k} \left\{ \frac{w_{k} - \nu_{k}}{\pi_{k}} \right\} \right\}$$

Results and ongoing research The Stochastic Irreducible Case

Theorem (Uniqueness for the stochastic irreducible case)

Let P be an irreducible stochastic matrix; let π be its unique invariant probability measure and

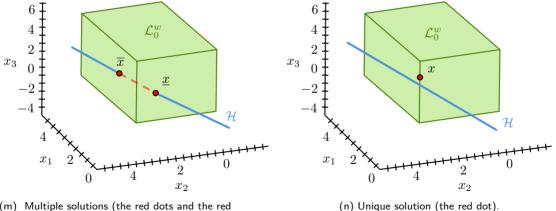


• In case we have multiple solutions, we have that:

$$\mathcal{X} = \left\{ x = \nu + \alpha \pi \ : \ -\min_k \left\{ \frac{\nu_k}{\pi_k} \right\} \le \alpha \le \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\} \right\}$$

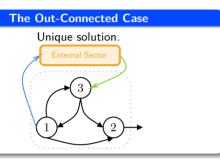
Results and ongoing research **A geometrical Interpretation**

When 1'c = 0, we have multiple solutions when the line $\mathcal{H} = \{x \in \mathbb{R}^n : x = \nu + \alpha \pi\}$ intersects non trivially the lattice \mathcal{L}_0^w . This corresponds to $\min_k \left\{\frac{\nu_k}{\pi_k}\right\} + \min_k \left\{\frac{w_k - \nu_k}{\pi_k}\right\} > 0$



(m) Multiple solutions (the red dots and the red segment).

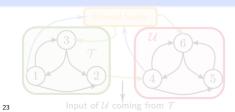
Results and ongoing research The General Case



The Stochastic-Irreducible Case

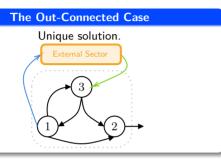
Uniqueness depends on *c*, i.e. on what is coming from and going to the external environment.

The General Case



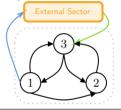
- $x_{\mathcal{T}}$ is unique;
- For every trapping set \mathcal{U} , we use the Theorem;
- To do so, we also need to consider the input coming from T: $h_{\mathcal{U}} := c_{\mathcal{U}} + P_{\mathcal{U}T}x_{\mathcal{T}}$

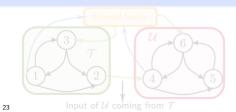
Results and ongoing research The General Case



The Stochastic-Irreducible Case

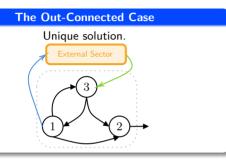
Uniqueness depends on c, i.e. on what is coming from and going to the external environment.





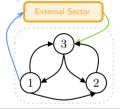
- $x\tau$ is unique;
- For every trapping set \mathcal{U} , we use the Theorem;
- To do so, we also need to consider the input

Results and ongoing research The General Case

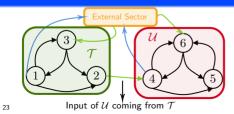


The Stochastic-Irreducible Case

Uniqueness depends on c, i.e. on what is coming from and going to the external environment.



The General Case



• $x_{\mathcal{T}}$ is unique;

- For every trapping set U, we use the Theorem;
- To do so, we also need to consider the input coming from \mathcal{T} : $h_{\mathcal{U}} := c_{\mathcal{U}} + P_{\mathcal{UT}}x_{\mathcal{T}}$

Critical Transitions The Dependence of Clearing Vectors on the Shock

Dependence of \boldsymbol{x} on \boldsymbol{c}

- The uniqueness ultimately depends on the input \setminus output vector c.
- There exists a set of critical vectors c^* such that we have multiple solutions, namely: $\mathcal{M} = \left\{ c \in \mathbb{R}^n : \ \mathbb{1}'c = 0, \ \min_k \left\{ \frac{\nu_k}{\pi_k} \right\} + \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\} > 0 \right\}$

What happens to the solutions when c approaches a critical $c^* \in \mathcal{M}$?

Let $\mathcal{A} = \mathbb{R}^n \setminus \mathcal{M}$ be the set where the solution is unique. Then:

- The map $c \mapsto x(c)$ is continuous on \mathcal{A} .
- One can prove that for every $c^* \in \mathcal{M}$,

$$\liminf_{\substack{c \in \mathcal{A} \\ c \to c^*}} x(c) = \underline{x}(c^*) , \qquad \limsup_{\substack{c \in \mathcal{A} \\ c \to c^*}} x(c) = \overline{x}(c^*) .$$

• This means that the clearing vector undergoes a jump discontinuity at c^* .

Critical Transitions The Dependence of Clearing Vectors on the Shock

Dependence of \boldsymbol{x} on \boldsymbol{c}

- The uniqueness ultimately depends on the input \setminus output vector c.
- There exists a set of critical vectors c^* such that we have multiple solutions, namely: $\mathcal{M} = \left\{ c \in \mathbb{R}^n : \mathbb{1}'c = 0, \min_k \left\{ \frac{\nu_k}{\pi_k} \right\} + \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\} > 0 \right\}$

What happens to the solutions when c approaches a critical $c^* \in \mathcal{M}$?

Let $\mathcal{A} = \mathbb{R}^n \setminus \mathcal{M}$ be the set where the solution is unique. Then:

- The map $c \mapsto x(c)$ is continuous on \mathcal{A} .
- One can prove that for every $c^* \in \mathcal{M}$,

$$\liminf_{\substack{c \in \mathcal{A} \\ c \to c^*}} x(c) = \underline{x}(c^*), \qquad \limsup_{\substack{c \in \mathcal{A} \\ c \to c^*}} x(c) = \overline{x}(c^*).$$

• This means that the clearing vector undergoes a jump discontinuity at c^* .

Jump discontinuity as a financial breakdown

A jump discontinuity means that even a slight change in the asset/shock value c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function • Consider shock ε that lowers the value of the external asset from c to $c - \varepsilon$;

• Loss function is: $l = 1'(\varepsilon + w - x)$

Jump size of the loss function at $c^* \in \mathcal{M}$

$$\Delta l(c^*) = \liminf_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) - \limsup_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) = \mathbb{1}' \left(\bar{x}(c^*) - \underline{x}(c^*) \right) = \min_k \left\{ \frac{\nu_k}{\pi_k} \right\} + \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\}$$

$$\max_{c \in \mathbb{R}^n} ||\bar{x}(c) - \underline{x}(c)||_p^p = \left(\min_k \frac{w_k}{\pi_k}\right)^p ||\pi||^p$$

Jump discontinuity as a financial breakdown

A jump discontinuity means that even a slight change in the asset/shock value c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Consider shock ε that lowers the value of the external asset from c to $c \varepsilon$;
- Loss function is: $l = \mathbb{1}'(\varepsilon + w x)$

Jump size of the loss function at $c^* \in \mathcal{M}$

$$\Delta l(c^*) = \liminf_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) - \limsup_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) = \mathbb{1}' \left(\bar{x}(c^*) - \underline{x}(c^*) \right) = \min_k \left\{ \frac{\nu_k}{\pi_k} \right\} + \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\}$$

$$\max_{c \in \mathbb{R}^n} ||\bar{x}(c) - \underline{x}(c)||_p^p = \left(\min_k \frac{w_k}{\pi_k}\right)^p ||\pi||^p$$

Jump discontinuity as a financial breakdown

A jump discontinuity means that even a slight change in the asset/shock value c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Consider shock ε that lowers the value of the external asset from c to $c \varepsilon$;
- Loss function is: $l = 1'(\varepsilon + w x)$

Jump size of the loss function at $c^* \in \mathcal{M}$

$$\Delta l(c^*) = \liminf_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) - \limsup_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) = \mathbb{1}' \left(\bar{x}(c^*) - \underline{x}(c^*) \right) = \min_k \left\{ \frac{\nu_k}{\pi_k} \right\} + \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\}$$

$$\max_{c \in \mathbb{R}^n} ||\bar{x}(c) - \underline{x}(c)||_p^p = \left(\min_k \frac{w_k}{\pi_k}\right)^p ||\pi||^p$$

Jump discontinuity as a financial breakdown

A jump discontinuity means that even a slight change in the asset/shock value c may lead to a catastrophic aggregated loss and to sudden defaults of several nodes.

Loss function

- Consider shock ε that lowers the value of the external asset from c to $c \varepsilon$;
- Loss function is: $l = 1'(\varepsilon + w x)$

Jump size of the loss function at $c^* \in \mathcal{M}$

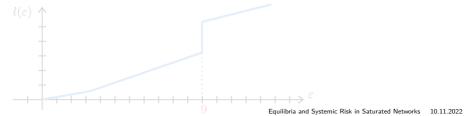
$$\Delta l(c^*) = \liminf_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) - \limsup_{\substack{c \in \mathcal{A} \\ c \to c^*}} l(c) = \mathbb{1}' \left(\bar{x}(c^*) - \underline{x}(c^*) \right) = \min_k \left\{ \frac{\nu_k}{\pi_k} \right\} + \min_k \left\{ \frac{w_k - \nu_k}{\pi_k} \right\}$$

$$\max_{c \in \mathbb{R}^n} ||\bar{x}(c) - \underline{x}(c)||_p^p = \left(\min_k \frac{w_k}{\pi_k}\right)^p ||\pi||^p$$

Example

Consider the network below with $P = \begin{bmatrix} 0 & 0.75 & 0.25 \\ 0 & 0 & 1 \\ 0.3 & 0.7 & 0 \end{bmatrix}$ and $w = \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$.

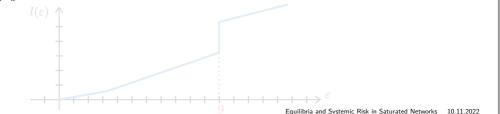
Consider an initial asset c = [5, 2, 2]' and a total shock magnitude $\varepsilon \in [0, 12]$ that hits all nodes uniformly, i.e. $c(\varepsilon) = c - \varepsilon [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]'$. We expect a jump discontinuity when $\mathbb{1}'c(\varepsilon) = 0 \implies \varepsilon = 9$.



Example

Consider the network below with $P = \begin{bmatrix} 0 & 0.75 & 0.25 \\ 0 & 0 & 1 \\ 0.3 & 0.7 & 0 \end{bmatrix}$ and $w = \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$.

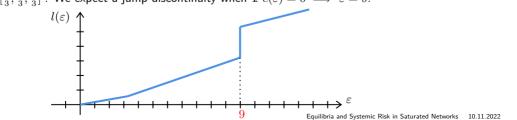
Consider an initial asset c = [5, 2, 2]' and a total shock magnitude $\varepsilon \in [0, 12]$ that hits all nodes uniformly, i.e. $c(\varepsilon) = c - \varepsilon [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]'$. We expect a jump discontinuity when $\mathbb{1}'c(\varepsilon) = 0 \implies \varepsilon = 9$.



Example

Consider the network below with $P = \begin{bmatrix} 0 & 0.75 & 0.25 \\ 0 & 0 & 1 \\ 0.3 & 0.7 & 0 \end{bmatrix}$ and $w = \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$.

Consider an initial asset c = [5, 2, 2]' and a total shock magnitude $\varepsilon \in [0, 12]$ that hits all nodes uniformly, i.e. $c(\varepsilon) = c - \varepsilon [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]'$. We expect a jump discontinuity when $\mathbb{1}'c(\varepsilon) = 0 \implies \varepsilon = 9$.



Results and Ongoing Research Main Results and Future Goals

Main Results

- Sufficient and necessary condition for Uniqueness of clearing vectors;
- Systemic risk measures and existence of critical shocks;
- Structure of solutions with respect to the topological property of the network.

- Optimal policies for risk reduction;
- Analytical results on particular topologies and random graphs;
- Continuous Model.
- Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);

- Sufficient and necessary condition for Uniqueness of clearing vectors;
- Systemic risk measures and existence of critical shocks;
- Structure of solutions with respect to the topological property of the network.

- Optimal policies for risk reduction;
- Analytical results on particular topologies and random graphs;
- Continuous Model.
- Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);

- Sufficient and necessary condition for Uniqueness of clearing vectors;
- Systemic risk measures and existence of critical shocks;
- Structure of solutions with respect to the topological property of the network.

- Optimal policies for risk reduction;
- Analytical results on particular topologies and random graphs;
- Continuous Model.
- Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);

- Sufficient and necessary condition for Uniqueness of clearing vectors;
- Systemic risk measures and existence of critical shocks;
- Structure of solutions with respect to the topological property of the network.

- Optimal policies for risk reduction;
- Analytical results on particular topologies and random graphs;
- Continuous Model.
- Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);

- Sufficient and necessary condition for Uniqueness of clearing vectors;
- Systemic risk measures and existence of critical shocks;
- Structure of solutions with respect to the topological property of the network.

- Optimal policies for risk reduction;
- Analytical results on particular topologies and random graphs;
- Continuous Model.
- Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);

- Sufficient and necessary condition for Uniqueness of clearing vectors;
- Systemic risk measures and existence of critical shocks;
- Structure of solutions with respect to the topological property of the network.

- Optimal policies for risk reduction;
- Analytical results on particular topologies and random graphs;
- Continuous Model.
- Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);

- Sufficient and necessary condition for Uniqueness of clearing vectors;
- Systemic risk measures and existence of critical shocks;
- Structure of solutions with respect to the topological property of the network.

- Optimal policies for risk reduction;
- Analytical results on particular topologies and random graphs;
- Continuous Model.
- Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);

Thank you!