

LIMITS AND LIMITATIONS OF LEARNING IN GAMES

Panayotis Mertikopoulos

French National Center for Scientific Research (CNRS)

Laboratoire d'Informatique de Grenoble (LIG)

(Politecnico di Torino | November 11, 2022)

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITS	About				

V. Boone

C. Papadimitriou

W. H. Sandholm

M. Vlatakis

- Boone & M, From equilibrium to resilience: Universal guarantees for the long-run behavior of learning in games, working paper, 2022
- Giannou, Vlatakis & M, Survival of the strictest: Stable and unstable equilibria under regularized learning with partial information, COLT 2021
- Giannou, Vlatakis & M, The convergence rate of regularized learning in games: From bandits and uncertainty to optimism and beyond, NeurIPS 2021
- M, Papadimitriou & Piliouras, Cycles in adversarial regularized learning, SODA 2018
- M & Sandholm, Learning in games via reinforcement and regularization, Mathematics of Operations Research, vol. 41, no. 4, pp. 1297-1324, Nov. 2016.

Backgro ●000	und & Prelims 00000	Learning in continuous time	Learning in discrete time	Overview O	References	Meetings 0000
CITS	Outline					
	 Backgrour 	nd & Prelims				
	Dackgroun					
1	 Learning in 	n continuous time				
	B Learning in	a discrete time				

4 Meetings

Background & Prelims ○●○○○○○○○

Learning in continuous tin

Learning in discrete time

Overview

eferences

Meetings 0000

Game of roads

A beautiful morning commute in the Bay Area

	ound & Prelims 00000	Learning in continuous time	Learning in discrete time		Meetings 0000
cnrs	Learning in ga	imes			

- Multiple agents, individual objectives
- Payoffs determined by actions of all agents
- Agents receive payoffs, adjust actions, and the process repeats

Select a route from home to work

Encounter other commuters on the road

Update road choice tomorrow

	ound & Prelims	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITS	Learning in gam	es			

- Multiple agents, individual objectives
- Payoffs determined by actions of all agents
- Agents receive payoffs, adjust actions, and the process repeats

Select a route from home to work

Encounter other commuters on the road

Update road choice tomorrow

What does the agents' long-run behavior look like?

	ound & Prelims	Learning in continuous time	Learning in discrete time		Meetings 0000
cnrs	Learning in	games, cont'd			
		· · · ·			
	Sequence of events – generic				
	for each <mark>epo</mark>	och and every player do		# continuous / disc	rete
	Choose	action		# continuous / fi	nite
	Receive	reward		# endogenous / exoger	ious
	Get feed	back (maybe)		# full info / oracle / payoff-ba	ised
	end for				

Defining elements

- Time: continuous or discrete?
- Players: continuous or finite?
- Actions: continuous or finite?
- Reward mechanism: endogenous or endogenous (determined by other players or by "Nature")?
- Feedback: observe other actions / other rewards / only received?

С

	ound & Prelims	Learning in continuous time	Learning in discrete time	Overview O	References	Meetings 0000	
CITS	Learning in games, cont'd						
	Sequence o	f events – generic					
		och and every player do			# continuous / d	discrete	
	Choose	action			# continuou	s/finite	
	Receive	reward			# endogenous / exo	ogenous	
	Get <mark>fee</mark>	<mark>dback</mark> (maybe)			# full info / oracle / payof	ff-based	
	end for						

Defining elements

- Time: continuous or discrete?
- Players: chhtihthous ht finite
- Actions: k/d//ki/ub/us/df/finite
- Reward mechanism: endogenous /dt/dt/dg/dd/du/s (determined by other players dt/bd///Natute?)
- ▶ Feedback: observe other actions / other rewards / only received?

	ound & Prelims	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Finite gam	es in normal form			

Finite games

A finite game in normal form is a collection $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ of the following primitives:

- A finite set of *players* $\mathcal{N} = \{1, \dots, N\}$
- A finite set of *actions* (or *pure strategies*) $A_i = \{1, ..., A_i\}$ per player $i \in \mathcal{N}$
- An ensemble of **payoff functions** $u_i: \mathcal{A} \equiv \prod_i \mathcal{A}_i \to \mathbb{R}, i \in \mathcal{N}$

Notation:

- Action profile: $a = (a_1, \ldots, a_N) \in \mathcal{A} := \prod_i \mathcal{A}_i$
- **Realized payoff** of player *i*:

$$u_i(a) \equiv u_i(a_1,\ldots,a_N) \equiv u_i(a_i;a_{-i})$$

Payoff vector of player i:

$$v_i(a) \equiv v_i(a_1,\ldots,a_N) \coloneqq (u_i(a'_i;a_{-i}))_{a'_i \in \mathcal{A}_i}$$

	ound & Prelims DO●OO	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITS	Mixed extensio	ns			

Mixed extension of a finite game:

- Given: finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$
- *Mixed strategy* of player *i*:

$$x_i = (x_{ia_i})_{a_i \in \mathcal{A}_i} \in \Delta(\mathcal{A}_i) \eqqcolon \mathcal{X}_i$$

 $\# x_{ia_i} = \text{prob. that player } i \text{ plays } a_i \in \mathcal{A}_i$

Mixed payoff of player i

$$u_i(x) = \mathbb{E}_{a \sim x} u_i(a) = \sum_{a_1 \in \mathcal{A}_1} \dots \sum_{a_N \in \mathcal{A}_N} x_{1,a_1} \cdots x_{N,a_N} u_i(a_1, \dots, a_N)$$

• *Mixed payoff vector* of player *i*:

$$v_i(x) \equiv v_i(x_1,\ldots,x_N) \coloneqq (u_i(a_i;x_{-i}))_{a_i \in \mathcal{A}_i}$$

vector of *expected* rewards $v_i(x)$ only depends on x_{-i}

• Notation: $\overline{\Gamma} \equiv \Delta(\Gamma)$

	ound & Prelims 000●0	Learning in continuous time	Learning in discrete time		Meetings 0000
CNTS	Nash equilibriun	n			

"No player has an incentive to deviate from their chosen strategy if other players don't"

	und & Prelims 000●0	Learning in continuous time	Learning in discrete time		Meetings 0000
Chrs	Nash equilibri	um			

"No player has an incentive to deviate from their chosen strategy if other players don't"

For player payoffs:

 $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for all $x_i \in \mathcal{X}_i, i \in \mathcal{N}$

For pure strategy payoffs:

 $u_i(a_i^*; x_{-i}^*) \ge u_i(a_i; x_{-i}^*)$ for all $a_i^* \in \operatorname{supp}(x_i^*), a_i \in \mathcal{A}_i, i \in \mathcal{N}$

	und & Prelims 000●0	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITS	Nash equilibriun	n			

"No player has an incentive to deviate from their chosen strategy if other players don't"

For player payoffs:

 $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for all $x_i \in \mathcal{X}_i, i \in \mathcal{N}$

For pure strategy payoffs:

 $v_{ia_i^*}(x^*) \ge v_{ia_i}(x^*)$ for all $a_i^* \in \operatorname{supp}(x_i^*), a_i \in \mathcal{A}_i, i \in \mathcal{N}$

	und & Prelims 000●0	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Nash equilib	orium			

"No player has an incentive to deviate from their chosen strategy if other players don't"

For player payoffs:

 $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for all $x_i \in \mathcal{X}_i, i \in \mathcal{N}$

For pure strategy payoffs:

 $v_{ia_i^*}(x^*) \ge v_{ia_i}(x^*)$ for all $a_i^* \in \operatorname{supp}(x_i^*), a_i \in \mathcal{A}_i, i \in \mathcal{N}$

• **Pure equilibrium:** $supp(x^*) = singleton$

 $\#x^* = a^* \in \mathcal{A}$

▶ Strict equilibrium: ">" instead of "≥" where appropriate

unique best response; necessarily pure

	ound & Prelims 000●0	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CNTS	Nash equilibrium	1			

"No player has an incentive to deviate from their chosen strategy if other players don't"

For player payoffs:

 $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for all $x_i \in \mathcal{X}_i, i \in \mathcal{N}$

For pure strategy payoffs:

 $v_{ia_i^*}(x^*) \ge v_{ia_i}(x^*)$ for all $a_i^* \in \operatorname{supp}(x_i^*), a_i \in \mathcal{A}_i, i \in \mathcal{N}$

- **Pure equilibrium:** $supp(x^*) = singleton$
- ▶ Strict equilibrium: ">" instead of "≥" where appropriate

unique best response; necessarily pure

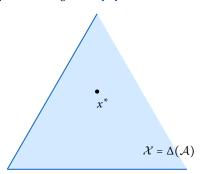
 $\#x^* = a^* \in A$

Variational formulation (Stampacchia, 1964)

 $\langle v(x^*), x - x^* \rangle \leq 0 \quad \text{for all } x \in \mathcal{X}$

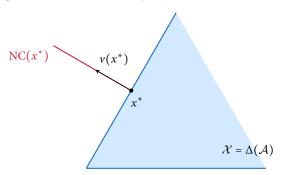
	ound & Prelims	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Equilibrium	configurations			

Figure. Different equilibrium configurations: fully mixed



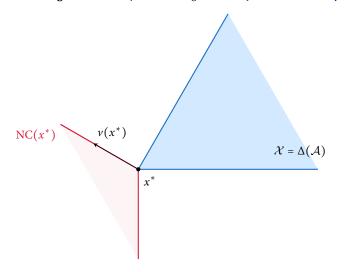
	und & Prelims 0000●	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
cnrs	Equilibrium co	nfigurations			

Figure. Different equilibrium configurations: fully mixed vs. mixed



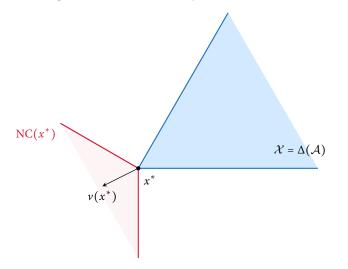
	ound & Prelims ⊃0000	Learning in continuous time	Learning in discrete time 000000000000000000		Meetings 0000
CITS	Equilibrium conf	îgurations			
	Equilibrium conf	igurations			

Figure. Different equilibrium configurations: fully mixed vs. mixed vs. pure



	und & Prelims 0000●	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Equilibrium conj	figurations			

Figure. Different equilibrium configurations: fully mixed vs. mixed vs. pure vs. strict



Background & Prelims 00000000		Learning in continuous time ●0000000000	Learning in discrete time	Overview O	References	Meetings 0000
Chrs	Outline					
	Background & P	Prelims				

3 Learning in discrete time

4 Meetings

ground & Prelims 000000	Learning in continuous time ○●○○○○○○○○○	Learning in discrete time			M O
Learning in continuous time					
	Sequence of events – continuous time				
Sequence of events – continuous time					
Require: fin	ite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$				
repeat					
At eac	h epoch $t \ge 0$ do simultaneousl	y for all players $i \in \mathcal{N}$		# continuou	s time
Choose mixed strategy $x_i(t) \in \mathcal{X}_i := \Delta(0)$ Observe mixed payoff vector $v_i(x(t))$		(\mathcal{A}_i)		# mixed exte	ension
				#feedback p	
until end					

Defining elements

- ▶ **Time:** *t* ≥ 0
- Players: finite
- Actions: finite
- Mixing: yes
- Feedback: mixed payoff vectors

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Learning with	exponential weights			

$$y_a(t) = \int_0^t v_a(x(\tau)) d\tau$$

→ *propensity* of choosing a strategy

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Learning wit	th exponential weights			

$$y_a(t) = \int_0^t v_a(x(\tau)) d\tau$$

→ *propensity* of choosing a strategy

► Choice probabilities ~> exponentially proportional to propensity scores

 $x_a(t) \propto \exp(y_a(t))$

◆ Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)

	ound & Prelims 20000	Learning in continuous time 00●00000000	Learning in discrete time		Meetings 0000
CITS	Learning with e	xponential weights			

$$y_a(t) = \int_0^t v_a(x(\tau)) d\tau$$

→ *propensity* of choosing a strategy

► Choice probabilities ~> exponentially proportional to propensity scores

$$x_a(t) = \frac{\exp(y_a(t))}{\sum_{a'} \exp(y_{a'}(t))}$$

◆ Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)

	ound & Prelims 00000	Learning in continuous time 00●00000000	Learning in discrete time		Meetings 0000
Chrs	Learning with e	xponential weights			

$$y_a(t) = \int_0^t v_a(x(\tau)) d\tau$$

→ *propensity* of choosing a strategy

▶ Choice probabilities → exponentially proportional to propensity scores

$$x_a(t) = \frac{\exp(y_a(t))}{\sum_{a'} \exp(y_{a'}(t))}$$

Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)

Evolution of mixed strategies

$$\dot{x}_a = \cdots = x_a [v_a(x) - u(x)]$$

	ound & Prelims 00000	Learning in continuous time 00●00000000	Learning in discrete time		Meetings 0000
Chrs	Learning with e	xponential weights			

$$y_a(t) = \int_0^t v_a(x(\tau)) d\tau$$

→ **propensity** of choosing a strategy

▶ Choice probabilities → exponentially proportional to propensity scores

$$x_a(t) = \frac{\exp(y_a(t))}{\sum_{a'} \exp(y_{a'}(t))}$$

Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)

Evolution of mixed strategies

$$\dot{x}_a = \cdots = x_a [v_a(x) - u(x)]$$

Replicator dynamics (Taylor & Jonker, 1978)

$$\dot{x}_{ia_i} = x_{a_i} [v_{ia_i}(x) - u_i(x)]$$

(RD)

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time		Meetings 0000
C	General case: reg	gularized learning			

• The logit map $\Lambda(y) = (\exp(y_a))_{a \in A} / \sum_a \exp(y_a)$ approximates the "*leader*" (best response map)

 $y \mapsto \arg \max_{x \in \mathcal{X}} \langle y, x \rangle$

	ound & Prelims 00000	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	General case: reg	gularized learning			

• The logit map $\Lambda(y) = (\exp(y_a))_{a \in A} / \sum_a \exp(y_a)$ approximates the "*leader*" (best response map)

 $y \mapsto \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$

where $h(x) = \sum_{a \in \mathcal{A}} x_a \log x_a$ is the (negative) entropy of $x \in \mathcal{X}$

Background & Prelims 00000000		Learning in continuous time	Learning in discrete time		Meetings 0000
cnrs					

• The logit map $\Lambda(y) = (\exp(y_a))_{a \in \mathcal{A}} / \sum_a \exp(y_a)$ approximates the "*leader*" (best response map)

 $y \mapsto \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$

where $h(x) = \sum_{a \in A} x_a \log x_a$ is the (negative) entropy of $x \in \mathcal{X}$

Regularized best responses

$$Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$$

where $h: \mathcal{X} \to \mathbb{R}$ is a (strictly) convex **regularizer function**

Background & Prelims 00000000		Learning in continuous time	Learning in discrete time		Meetings 0000
Chrs	General case:	regularized learning			

• The logit map $\Lambda(y) = (\exp(y_a))_{a \in \mathcal{A}} / \sum_a \exp(y_a)$ approximates the "*leader*" (best response map)

 $y \mapsto \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$

where $h(x) = \sum_{a \in A} x_a \log x_a$ is the (negative) entropy of $x \in \mathcal{X}$

Regularized best responses

$$Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$$

where $h: \mathcal{X} \to \mathbb{R}$ is a (strictly) convex regularizer function

Follow the regularized leader (FTRL) in continuous time				
	= v(x(t)) (FTRL-C) = Q(y(t))			

Background & Prelims 00000000		Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	General case: re	egularized learning			

• The logit map $\Lambda(y) = (\exp(y_a))_{a \in \mathcal{A}} / \sum_a \exp(y_a)$ approximates the "*leader*" (best response map)

 $y \mapsto \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$

where $h(x) = \sum_{a \in \mathcal{A}} x_a \log x_a$ is the (negative) entropy of $x \in \mathcal{X}$

Regularized best responses

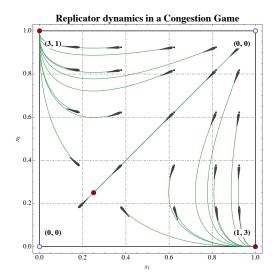
$$Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$$

where $h: \mathcal{X} \to \mathbb{R}$ is a (strictly) convex regularizer function

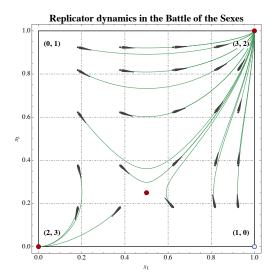
Follow the regularized leader (FTRL) in continuous time				
$\dot{y}(t) = v(x(t))$ $x(t) = Q(y(t))$	(FTRL-C)			

Focus on entropy/replicator for simplicity

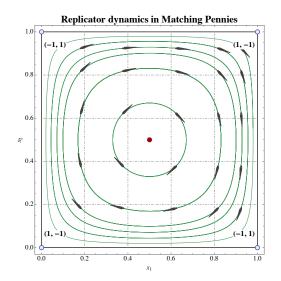
Evolution of mixed strategies: Examples



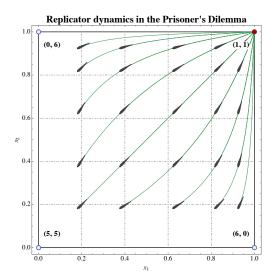
Evolution of mixed strategies: Examples



Evolution of mixed strategies: Examples

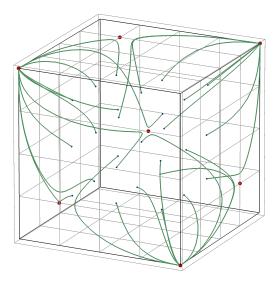


Evolution of mixed strategies: Examples



Learning in continuous time Chrs

Evolution of mixed strategies: Examples

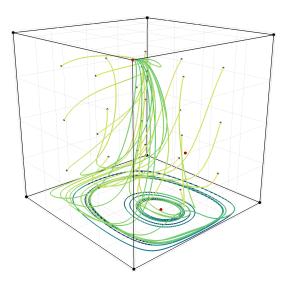


Learning in continuous time CITS

Evolution of mixed strategies: Examples

What do the dynamics look like?

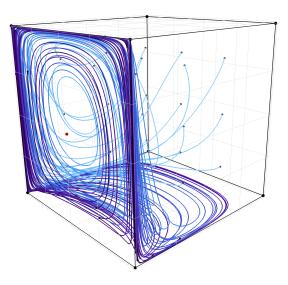
P. Mertikopoulos



Learning in continuous time CINIS

Evolution of mixed strategies: Examples

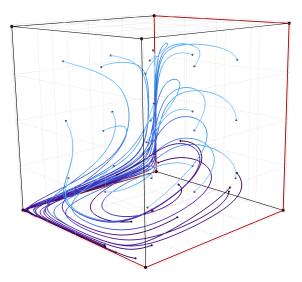
What do the dynamics look like?



Learning in continuous time CINIS

Evolution of mixed strategies: Examples

What do the dynamics look like?



	ound & Prelims	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Stationarity ver	sus stability			

Stationarity of Nash equilibria

Let x(t) = Q(y(t)) be a trajectory of (FTRL-C). Then:

x(0) is a Nash equilibrium $\implies x(t) = x(0)$ for all $t \ge 0$

▲ The converse does not hold!

▲ Are all stationary points created equal?

	ound & Prelims 20000	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Stationarity ver	sus stability			

Stationarity of Nash equilibria

Let x(t) = Q(y(t)) be a trajectory of (FTRL-C). Then:

x(0) is a Nash equilibrium $\implies x(t) = x(0)$ for all $t \ge 0$

▲ The converse does not hold!

▲ Are all stationary points created equal?

Definition (Notions of stability)

• x^* is (Lyapunov) stable if, for every neighborhood \mathcal{U} of x^* in \mathcal{X} , there exists a neighborhood \mathcal{U}' of x^* such that

$$x(0) \in \mathcal{U}' \implies x(t) \in \mathcal{U} \quad \text{for all } t \ge 0$$

Trajectories that start close to x^* remain close for all time

▶ x^* is attracting if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to x^*

Trajectories that start close to x^* eventually converge to x^*

x* is asymptotically stable if it is stable and attracting

	ound & Prelims DOOOO	Learning in continuous time 000000●0000	Learning in discrete time 000000000000000000		Meetings 0000
CITS	A "folk theorem'	for learning			

Are all equilibria created equal?

Theorem (M & Sandholm, 2016; Flokas et al., 2020)

Let x(t) = Q(y(t)) be a trajectory of (FTRL-C). Then:

- 1. x^* is Nash $\implies x^*$ is stationary
- 2. $\lim_{t\to\infty} x(t) = x^* \implies x^*$ is Nash
- 3. x^* is stable $\implies x^*$ is Nash
- 4. x^* is stable and attracting $\iff x^*$ is strict Nash

Some remarks:

- Only strict equilibria can be stable and attracting
- ► For replicator dynamics ~> folk theorem of evolutionary game theory

Hofbauer & Sigmund, 2003

	und & Prelims 00000	Learning in continuous time 000000000000	Learning in discrete time		Meetings 0000
CITS	Non-convergence	e in min-max games			

The min-max case is quite different (and special):

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time		Meetings 0000
Chrs	Non-convergence	e in min-max games			

The min-max case is quite different (and special):

 x^* is a fully mixed equilibrium \implies (RD) admits a **constant of motion KL divergence:** $D_{\text{KL}}(x^*, x) = \sum_i \sum_{a_i} x^*_{ia_i} \log \frac{x^*_{ia_i}}{x_{ia_i}}$

	ound & Prelims 20000	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Non-convergence	e in min-max games			

The min-max case is quite different (and special):

 x^* is a fully mixed equilibrium \implies (RD) admits a constant of motion

KL divergence: $D_{\text{KL}}(x^*, x) = \sum_i \sum_{a_i} x_{ia_i}^* \log \frac{x_{ia_i}^*}{x_{ia_i}}$

Theorem (Hofbauer et al., 2009)

Assume a min-max game admits an interior equilibrium. Then:

- Interior trajectories of (RD) do not converge (unless stationary)
- Time-averages $\bar{x}(t) = t^{-1} \int_0^t x(\tau) d\tau$ converge to Nash equilibrium

ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time		Meetings 0000

Poincaré recurrence in min-max games

Definition (Poincaré, 1890's)

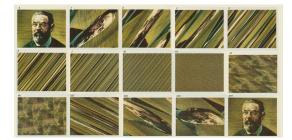
A dynamical system is **Poincaré recurrent** if almost all solution trajectories return *arbitrarily close* to their starting point *infinitely many times*

ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time		Meetings 0000

Poincaré recurrence in min-max games

Definition (Poincaré, 1890's)

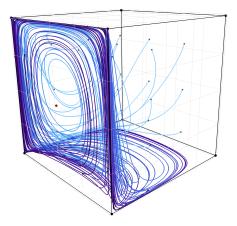
A dynamical system is **Poincaré recurrent** if almost all solution trajectories return *arbitrarily close* to their starting point *infinitely many times*



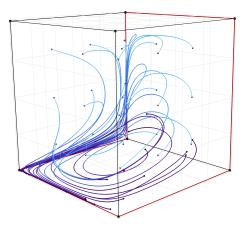
Theorem (M Papadimitriou & Piliouras, 2018)

The dynamics of FTRL are Poincaré recurrent in all min-max games with a fully mixed equilibrium

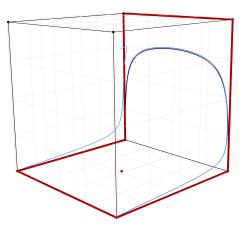
Background & Prelims 00000000	Learning in continuous time ○○○○○○○○●○	Learning in discrete time		Meetings 0000



Background & Prelims 00000000	Learning in continuous time 000000000€0	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
COTC				



	ound & Prelims 00000	Learning in continuous time 0000000000000	Learning in discrete time		Meetings 0000
CITS	Is that all?				



In many games, the dynamics are neither recurrent, nor pointwise convergent

	und & Prelims 00000	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Universal conver	gence guarantees			

Can we characterize the limiting behavior of the FTRL dynamics?

Limit sets

The *limit set* of a trajectory X(t) is the set of all its limit points, i.e.,

 $\mathcal{L}(X) \coloneqq \bigcap_{t \ge 0} \operatorname{cl}\{X(s) : s \ge t\} = \{x \in \mathcal{X} : X(t_n) \to x \text{ for some sequence } t_n \to \infty\}$

Equivalently, $\mathcal{L}(X)$ is the smallest subset of \mathcal{X} such that $dist(\mathcal{L}, X(t)) \to 0$ as $t \to \infty$

Can we characterize the limiting behavior of the FTRL dynamics?

Limit sets

The *limit set* of a trajectory X(t) is the set of all its limit points, i.e.,

 $\mathcal{L}(X) \coloneqq \bigcap_{t \ge 0} \operatorname{cl}\{X(s) : s \ge t\} = \{x \in \mathcal{X} : X(t_n) \to x \text{ for some sequence } t_n \to \infty\}$

Equivalently, $\mathcal{L}(X)$ is the smallest subset of \mathcal{X} such that $dist(\mathcal{L}, X(t)) \to 0$ as $t \to \infty$

Examples

- Nash equilibria
- Periodic orbits
- Heteroclinic cycles

▶ ...

Battle of the Sexes, coordination/anti-coordination games, ...

Matching Pennies, min-max games, ...

chair game, ...

Can we characterize the limiting behavior of the FTRL dynamics?

Limit sets

The *limit set* of a trajectory X(t) is the set of all its limit points, i.e.,

 $\mathcal{L}(X) \coloneqq \bigcap_{t \ge 0} \operatorname{cl}\{X(s) : s \ge t\} = \{x \in \mathcal{X} : X(t_n) \to x \text{ for some sequence } t_n \to \infty\}$

Equivalently, $\mathcal{L}(X)$ is the smallest subset of \mathcal{X} such that $dist(\mathcal{L}, X(t)) \to 0$ as $t \to \infty$

Theorem (Boone & M, 2022)

The limit set \mathcal{L} of any solution trajectory x(t) = Q(y(t)) of (FTRL-C) is characterized by the following properties:

- ▶ Minimality: *L* does not contain any proper attractors
- **Resilience:** every deviation x from \mathcal{L} is unilaterally nullified by some element x^* of \mathcal{L} , i.e.,

 $u_i(x^*) \ge u_i(x_i; x_{-i}^*)$ for all $i \in \mathcal{N}$

Backgro 0000	ound & Prelims 00000	Learning in continuous time	Learning in discrete time ●000000000000000000000000000000000000	Overview O	References	Meetings 0000
CITS	Outline					
	Background	& Prelims				
	 Learning in c 	ontinuous time				
	 Learning in d 	iccroto time				
		Isciete ume				
	4 Meetings					

P. Mertikopoulos

ckground & Prelims 0000000	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000	Overview O	References	M C				
Learning in	Learning in discrete time								
Sequence o	f events – discrete time								
Require: fini	te game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$								
repeat									
At each	n epoch <i>n</i> = 1, 2, do simulta	neously for all players $i \in \mathcal{N}$		# discrete ti	me				
Choose	e mixed strategy $X_{i,n} \in \mathcal{X}_i := \Delta($	(\mathcal{A}_i)		# mixed extens	ion				
Choose <i>action</i> $a_{i,n} \sim X_{i,n}$				# random action selection					
Observ	e mixed payoff vector $v_i(X_n)$			#feedback ph	ase				
until end									

Defining elements

- ► **Time:** *n* = 1, 2, . . .
- Players: finite
- Actions: finite
- Mixing: yes
- Feedback: mixed payoff vectors

ckground & Prelims D000000	Learning in continuous time	Learning in discrete time ○●○○○○○○○○○○○○○○○○○	Overview O	References	N C				
Learning in	Learning in discrete time								
Sequence o	f events – discrete time				_				
Require: finit	e game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$								
repeat									
At each	epoch <i>n</i> = 1, 2, do simulta	neously for all players $i \in \mathcal{N}$		# discrete ti	me				
Choose	mixed strategy $X_{i,n} \in \mathcal{X}_i := \Delta($	(\mathcal{A}_i)		# mixed extens	ion				
Choose <i>action</i> $a_{i,n} \sim X_{i,n}$			# random action select	tion selection					
Observ	e pure payoff vector $v_i(a_n)$			#feedback ph	ase				
until end									

Defining elements

- ► **Time:** *n* = 1, 2, . . .
- Players: finite
- Actions: finite
- Mixing: yes
- ► Feedback: pure payoff vectors

ground & Prelims 000000	Learning in continuous time	Learning in discrete time ○●○○○○○○○○○○○○○○○○○		
Learning in	discrete time			
Sequence of	events – discrete time			
Require: finite	e game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$			
repeat				
At each	epoch <i>n</i> = 1, 2, do simulta	neously for all players $i \in \mathcal{N}$	# discrete	time
Choose	mixed strategy $X_{i,n} \in \mathcal{X}_i := \Delta($	(\mathcal{A}_i)	# mixed extens	
Choose	action $a_{i,n} \sim X_{i,n}$		# random action sele	ction
Observe	realized payoff $u_i(a_n)$		#feedback	ohase
until end				

Defining elements

- ► **Time:** *n* = 1, 2, . . .
- Players: finite
- Actions: finite
- Mixing: yes
- Feedback: realized payoffs

	ound & Prelims Learning in OOOOOO OOOOOO	continuous time	Learning in discrete time ○○●○○○○○○○○○○○○○○○			Meetings 0000
Chrs	The feedback process					
	Types of feedback					
	From best to worst (more	to less info):				
	Mixed payoff vectors:	$v_i(X_n)$:	# deterministic vector fee	dback
	Pure payoff vectors:	$v_i(a_n)$			# stochastic vector fee	dback
	Bandit / Payoff-based	$u_i(a_n)$			# stochastic scalar fee	dback

	ound & Prelims Learning in	continuous time)00000	Learning in discrete time ○○●○○○○○○○○○○○○○○○○○	Overview O	References	Meetings 0000
CITS	The feedback process					
	Types of feedback					
	From best to worst (more	to less info):				
	Mixed payoff vectors:	$v_i(X_n)$		#	# deterministic vector fee	edback
	Pure payoff vectors:	$v_i(a_n)$			# stochastic vector fee	edback
	Bandit / Payoff-based	$u_i(a_n)$			# stochastic scalar fee	edback

Example (RPS)

Player i:	play $x_i = (1/2, 1/3, 1/6)$	\sim	draw R
▶ Player – <i>i</i> :	play $x_i = (1/3, 1/3, 1/3)$	\sim	draw P

Full feedback (mixed payoff vectors)

0

$$v_i(x_i; x_{-i})$$

0

	ound & Prelims Learning in c	ontinuous time 00000	Learning in discrete time 00●0000000000000000000000000000000000	Overview O	References	Meetings 0000
Cnrs	The feedback process					
	Types of feedback					
	From best to worst (more	to less info):				
	Mixed payoff vectors:	$v_i(X_n)$			# deterministic vector feedba	ack
	Pure payoff vectors:	$v_i(a_n)$			# stochastic vector feedba	ack
	Bandit / Payoff-based	$u_i(a_n)$			# stochastic scalar feedba	ack

Example (RPS)

Player i:	play $x_i = (1/2, 1/3, 1/6)$	\sim	draw R
▶ Player – <i>i</i> :	play $x_i = (1/3, 1/3, 1/3)$	\sim	draw P

Realization-based feedback (pure payoff vectors)

0

 $v_i(\mathbf{R};\mathbf{P})$

		i continuous time 000000	Learning in discrete time 00●0000000000000000000000000000000000	Overview O	References	Meetings 0000
Cnrs	The feedback process					
	Types of feedback					
	From best to worst (more	e to less info):				
	Mixed payoff vectors	$: v_i(X_n)$			# deterministic vector feed	back
	Pure payoff vectors:	$v_i(a_n)$			# stochastic vector feed	back
	Bandit / Payoff-base	d: $u_i(a_n)$			# stochastic scalar feed	back

Example (RPS)

Player i:	play $x_i = (1/2, 1/3, 1/6)$	\sim	draw R
▶ Player – <i>i</i> :	play $x_i = (1/3, 1/3, 1/3)$	\sim	draw P

Bandit feedback (payoff-based)

 $u_i(\mathbf{R};\mathbf{P})$

		n continuous time	Learning in discrete time	Overview O	References	Meetings 0000
cnrs	The feedback process					
	Types of feedback					
	From best to worst (mor	e to less info):				
	Mixed payoff vectors	$\nu_i(X_n)$		1	# deterministic vector fe	edback
	Pure payoff vectors:	$v_i(a_n)$			# stochastic vector fe	edback
	Bandit / Payoff-base	ed: $u_i(a_n)$			# stochastic scalar fe	edback

Features:

- Vector (mixed / pure payoff vecs) vs.
- Deterministic (mixed payoff vecs)
- vs. **Stochastic** (pure payoff vecs, bandit)

Scalar (bandit)

- Randomness defined relative to history of play $\mathcal{F}_n := \mathcal{F}(X_1, \ldots, X_n)$
- Other feedback models also possible (noisy / delayed observations,...)

ound & Prelims 00000	Learning in continuous time	Learning in discrete time		Meetings 0000
From payoffs to	payoff vectors			

How to estimate the payoff $u_i(a_i; a_{-i,n})$ of an unplayed action $a_i \neq a_{i,n}$?

	ound & Prelims DOOOO	Learning in continuous time	Learning in d	iscrete time 00000000000		Meetings 0000
Chrs	From payoffs to	payoff vectors				

How to estimate the payoff $u_i(a_i; a_{-i,n})$ of an unplayed action $a_i \neq a_{i,n}$?

Definition (Importance weighted estimators)

The *importance weighted estimator* of a vector $v \in \mathbb{R}^{\mathcal{A}}$ relative to a mixed strategy $x \in \Delta(\mathcal{A})$ is defined as

$$\hat{v}_{a} = \frac{\mathbb{1}_{a}}{x_{a}} v_{a} = \begin{cases} v_{a}/x_{a} & \text{if } a \text{ is drawn} \\ 0 & \text{otherwise} \end{cases}$$
(IWE)

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time 000●000000000000000000000000000000000		Meetings 0000
Chrs	From payoffs to	payoff vectors			

How to estimate the payoff $u_i(a_i; a_{-i,n})$ of an unplayed action $a_i \neq a_{i,n}$?

Definition (Importance weighted estimators)

The *importance weighted estimator* of a vector $v \in \mathbb{R}^{\mathcal{A}}$ relative to a mixed strategy $x \in \Delta(\mathcal{A})$ is defined as

$$\hat{\nu}_{a} = \frac{\mathbb{1}_{a}}{x_{a}} \nu_{a} = \begin{cases} \nu_{a}/x_{a} & \text{if } a \text{ is drawn} \\ 0 & \text{otherwise} \end{cases}$$
(IWE)

Statistical properties of (IWE)

Unbiased:

$$\mathbb{E}_x[\hat{v}_a] = v_a$$

Second moment:

$$\mathbb{E}_x[\hat{v}_a^2] = \frac{v_a^2}{x_a}$$

	ound & Prelims	Learning in continuous time 00000000000	Learning in discrete time		Meetings 0000
CITS	The oracle mode	1			

Definition (Black-box oracle)

A stochastic first-order oracle of $v(X_n)$ is a random (or deterministic) vector of the form

 $\hat{v}_n = v(X_n) + U_n + b_n$

(SFO)

where U_n is **zero-mean** and $b_n = \mathbb{E}[\hat{v}_n | \mathcal{F}_n] - v(X_n)$ is the **bias** of \hat{v}_n .

	ound & Prelims	Learning in continuous time	Learning in discrete time 0000€00000000000000000000000000000000		Meetings 0000
CITS	The oracle mode	1			

Definition (Black-box oracle)

A stochastic first-order oracle of $v(X_n)$ is a random (or deterministic) vector of the form

 $\hat{\nu}_n = \nu(X_n) + U_n + b_n$

(SFO)

where U_n is **zero-mean** and $b_n = \mathbb{E}[\hat{v}_n | \mathcal{F}_n] - v(X_n)$ is the **bias** of \hat{v}_n .

Examples

Mixed payoff vectors:	$\hat{\nu}_{i,n} = \nu_i(X_n)$	# noise $U_n = 0$; bias $b_n = 0$
Pure payoff vectors:	$\hat{v}_{i,n} = v_i(a_n)$	# noise $U_n=\mathcal{O}(1);$ bias $b_n=0$
Payoff-based:	$\hat{v}_{i,n} = \frac{u_i(a_n)}{\mathbb{P}(a_{i,n} = a_i)} e_{a_{i,n}}$	# noise $U_n = \mathcal{O}(1/\min_{a_i} x_{ia_i,n});$ bias $b_n = 0$

	und & Prelims	Learning in continuous time	Learning in discrete time			Meeting 0000
nrs	Exponentia	l weights redux				
	Algorithm Exponential weights in discrete time (ЕхрWEIGHT)					
	Require: finite	e game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$; stocha	stic first-order oracle \hat{v}			
	Initialize: $Y_i \in \mathbb{R}^{\mathcal{A}_i}, i = 1, \dots, N$					
	for all $n = 1$, 2, \ldots all players $i \in \mathcal{N}$ do sim	ultaneously			
	set $X_{i,n}$	$\propto \exp(Y_{i,n})$			# mixed stra	tegy
	play $a_{i,i}$	$n \sim X_{i,n}$			# choose ac	tion
	get $\hat{v}_{i,n} \in \mathbb{R}^{\mathcal{A}_i}$				# receive feed	back
	set $Y_{i,n}$.	$+1 \leftarrow Y_{i,n} + \gamma_n \hat{v}_{i,n}$			# update sc	ores
	end for					

Basic idea:

- Score actions by aggregating payoff vector estimates provided by oracle
- Choose actions with probability exponentially proportional to their scores
- Rinse / repeat

 Background & Prelims
 Learning in continuous time
 Learning in discrete time
 Overview
 References
 Meetings

 00000000
 000000000000
 0
 0
 0
 0
 0
 0

 Example 1: ExpWeight with mixed payoff vector observations

If players observe **mixed payoff vectors**:

 $\hat{v}_{i,n} = v_i \big(X_{i,n}; X_{-i,n} \big)$

Oracle features:

- Deterministic: no randomness!
- **Bias:** $B_n = 0$
- Variance: $\sigma_n = 0$
- Second moment: $M_n = \mathcal{O}(1)$

Research Also known as MULTIPLICATIVE WEIGHTS UPDATE

➡ Arora et al. (2012)

	ound & Prelims DOOOO	Learning in continuous tim		earning in discrete time 000000000000000000000000000000000000		Meetings 0000
cnrs	Example 2: Exp	Weight with pu	ıre payoff vec	ctor observations		

If players observe *pure payoff vectors*:

 $\hat{v}_{i,n} = v_i(a_{i,n}; a_{-i,n})$

Oracle features:

- Stochastic: random action selection
- **Bias:** $B_n = 0$
- Variance: $\sigma_n = \mathcal{O}(1)$
- Second moment: $M_n = \mathcal{O}(1)$

Red Also known as **Hedge**

◆ Auer et al. (1995), Auer et al. (2002)

	ound & Prelims 20000	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITY	r 1.5 r	M · L · · · L · · · ·			

Example 3: ExpWeight with bandit feedback

If players observe realized payoffs:

$$\hat{v}_{i,n} = \frac{u_i(a_{i,n}; a_{-i,n})}{\mathbb{P}(a_{i,n} = a_i)} e_{a_{i,n}}$$

Oracle features:

- Stochastic: random action selection
- **Bias:** $B_n = 0$
- Variance: $\sigma_n = \mathcal{O}(1/X_{ia_i,n})$
- Second moment: $M_n = \mathcal{O}(1/X_{ia_i,n})$

Realise known as EXP3

◆ Auer et al. (1995), Auer et al. (2002)

	ound & Prelims 00000	Learning in continuous time	Learning in discrete time	Overview O	References	Meetings 0000
Chrs	Francis A. F	·····W/-:-b4 ···:4b b -·· d:4 6-	a dha a dh			

Example 4: ExpWeight with bandit feedback

If players observe realized payoffs:

$$\hat{\mathcal{V}}_{i,n} = \frac{u_i(a_{i,n}; a_{-i,n})}{\mathbb{P}(a_{i,n} = a_i)} e_{a_{i,n}}$$

Oracle features:

- Stochastic: random action selection
- **Explicit exploration:** draw $a_{i,n} \sim X_{i,n}$ with prob. $1 \delta_n$, otherwise uniformly
- **Bias:** $B_n = \mathcal{O}(\delta_n)$
- Variance: $\sigma_n = \mathcal{O}(1/\delta_n^2)$
- Second moment: $M_n = \mathcal{O}(1/\delta_n^2)$

Realise known as EXP3 with Exploration

Shalev-Shwartz (2011), Lattimore & Szepesvári (2020)

	ound & Prelims 00000	Learning in continuous time	Learning in discrete time 0000000000●000000		Meetings 0000
CITS	Example 5: Optimistic ExpWeight				
	If players are optir	nistic:1		➡ Rakhlin & Sridharan (2013))
			$\hat{v}_{i,n} = v_i(X_{i,n+1/2}; X_{-i,n+1/2})$		

Oracle features:

- Deterministic: no randomness
- Bias: $B_n = v(X_{n+1/2}) v(X_n) = \mathcal{O}(\gamma_n)$
- Variance: $\sigma_n = 0$
- Second moment: $M_n = \mathcal{O}(1)$

¹Feedback obtained via the sequence

$$Y_{n+1/2} = Y_n + \gamma_n \nu_n (X_{n-1/2}) \qquad X_{i,n+1/2} \propto \exp(Y_{i,n+1/2}) \qquad Y_{n+1} = Y_n + \gamma_n \nu (X_{n+1/2})$$

Follow the regularized leader

$$Y_{i,n+1} = Y_{i,n} + \gamma_n \hat{v}_{i,n}$$

$$X_{i,n+1} = Q_i(Y_{i,n+1}) \equiv \underset{x_i \in \mathcal{X}_i}{\operatorname{arg\,max}} \{ (Y_{i,n+1}, x_i) - h_i(x_i) \}$$
(FTRL)

Shalev-Shwartz & Singer (2006), Nesterov (2009)

- Generalized version of "follow the regularized leader"
- $\gamma_n > 0$ is the method's **step-size**
- $\hat{v}_{i,n}$ is an stochastic first-order oracle (SFO) model for $v_i(X_n)$
- Every player's regularizer $h_i: \mathcal{X}_i \to \mathbb{R}$ is continuous on \mathcal{X}_i , differentiable on ri \mathcal{X}_i , and strongly convex on \mathcal{X}_i

$$h_i(x'_i) \ge h_i(x_i) + \langle \nabla h_i(x_i), x'_i - x_i \rangle + (K_i/2) ||x'_i - x_i||^2$$

To be specialized later

To be specialized later

ound & Prelims	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
E. J. C.	С			

What does the sequence of play look like?

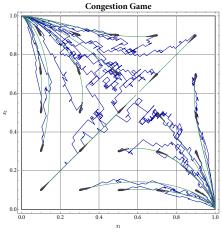


Figure. ExpWeight with constant step-size

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time		Meetings 0000
Corrs	F 1 (1)	с			

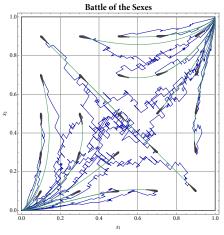
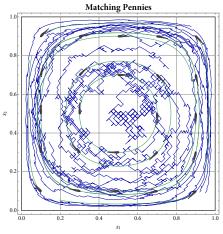


Figure. ExpWeight with constant step-size

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITS	Evolution of mix	ed strategies: Examples			



	ound & Prelims 00000	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
Corrs	F I (1)				

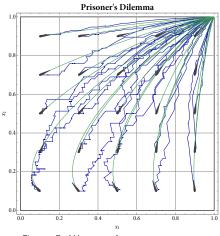


Figure. ExpWeight with constant step-size

	ound & Prelims 00000	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
Cors					

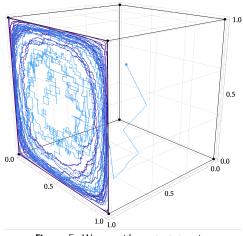


Figure. ExpWeight with constant step-size

	ound & Prelims	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITS	Evolution of mix	ed strategies: Fxamples			

What does the sequence of play look like?

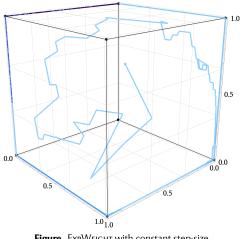


Figure. ExpWEIGHT with constant step-size

Background & Prelims 00000000		Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Notions of stabil	lity			

Definition (Stochastic stability)

 $x^* \in \mathcal{X}$ is **stochastically stable** under X_n if, for every confidence level $\delta > 0$ and every neighborhood \mathcal{U} of x^* , there exists a neighborhood \mathcal{U}_1 of x^* such that

 $\mathbb{P}(X_n \in \mathcal{U} \text{ for all } n = 1, 2, \dots \mid X_1 \in \mathcal{U}_1) \ge 1 - \delta$

Intuition: with high probability, if X_n starts near x^* , it remains nearby

	ound & Prelims 00000	Learning in continuous time	Learning in discrete time		Meetings 0000
CITS	Notions of stabi	lity			

Definition (Stochastic stability)

 $x^* \in \mathcal{X}$ is **stochastically stable** under X_n if, for every confidence level $\delta > 0$ and every neighborhood \mathcal{U} of x^* , there exists a neighborhood \mathcal{U}_1 of x^* such that

 $\mathbb{P}(X_n \in \mathcal{U} \text{ for all } n = 1, 2, \dots | X_1 \in \mathcal{U}_1) \ge 1 - \delta$

Intuition: with high probability, if X_n starts near x^* , it remains nearby

Definition (Stochastic asymptotic stability)

• $x^* \in \mathcal{X}$ is *attracting* if, for every confidence level $\delta > 0$, there exists a neighborhood \mathcal{U}_1 of x^* such that

$$\mathbb{P}(X_n \to x^* \text{ as } n \to \infty \mid X_1 \in \mathcal{U}_1) \ge 1 - \delta$$

• $x^* \in \mathcal{X}$ is stochastically asymptotically stable if it is stochastically stable and attracting.

Intuition: with high probability, if X_n starts near x^* then, it remains nearby and eventually converges to x^*

Background & 0000000	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000

The long-run behavior of regularized learning

Theorem

Assume: All players run (FTRL) with step-size γ_n and oracle parameters b_n (bias) and U_n (noise) such that:

(A1) $\gamma_n = \gamma/n^p$ for some $p \in (0, 1]$

(A2) $b_n = \mathcal{O}(1/n^b)$ for some b > 0

(A3) $\mathbb{E}[||U_n||^q] = \mathcal{O}(1/n^r)$ for some q > 2, r < 1/2

 \checkmark ok for all models

✓ ok for all models

 \checkmark ok for all models

	ound & Pre				in continu 20000			Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
cors		,								

cnrs

The long-run behavior of regularized learning

Theorem

- Assume: All players run (FTRL) with step-size γ_n and oracle parameters b_n (bias) and U_n (noise) such that:
- (A1) $\gamma_n = \gamma/n^p$ for some $p \in (0,1]$ \checkmark ok for all models(A2) $b_n = \mathcal{O}(1/n^b)$ for some b > 0 \checkmark ok for all models(A3) $\mathbb{E}[\|U_n\|^q] = \mathcal{O}(1/n^r)$ for some q > 2, r < 1/2 \checkmark ok for all models

Then: the sequence X_n generated by (FTRL) enjoys the following properties

- (P1) If X_n converges, its limit is a Nash equilibrium
- (P2) If x^* is stochastically stable, it is a Nash equilibrium
- (P3) x^* is stochastically asymptotically stable if and only if it is a strict Nash equilibrium
- (P4) If p > 1/2 and G is a congestion game, then X_n converges to a Nash equilibrium (a.s.)

P. Mertikopoulos

➡ M & Zhou (2019)

➡ Giannou et al. (2021)

➡ Giannou et al. (2021)

➡ Héliou et al. (2017)

Background & Prelims 00000000		Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000		Meetings 0000
CITS	Rate of converge	ence			

Theorem (Giannou et al., 2021)

Assume: All players run ExpWEIGHT with step-size γ_n and oracle parameters b_n and U_n as before

Then: if x^* is a strict Nash equilibrium and X_n converges to x^* , we have

$$||X_n - x^*||_1 \le \sum_{a \notin \text{supp}(x^*)} \exp\left(A - B \sum_{k=1}^n \gamma_k\right)$$

where A, B > 0 are positive constants.

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time 0000000000000000000		Meetings 0000
CITS	Universal convergence guarantees				
	Can we characterize the limiting behavior of (FTRL)?				

Limit sets

The *limit set* of a sequence X_n , n = 1, 2, ..., is the set of all its limit points, i.e.,

 $\mathcal{L}(X) \coloneqq \bigcap_{n=1}^{\infty} \mathrm{cl}\{X_k : k \ge n\} = \{x \in \mathcal{X} : X_{n_k} \to x \text{ for some sequence } n_k \to \infty\}$

Equivalently, $\mathcal{L}(X)$ is the smallest subset of \mathcal{X} such that $dist(\mathcal{L}, X_n) \to 0$ as $n \to \infty$

	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time ○○○○○○○○○○○○○○○○○		Meetings 0000
Chrs	Universal conver	gence guarantees			
	Can we characteri	ze the limiting behavio			

Limit sets

The *limit set* of a sequence X_n , n = 1, 2, ..., is the set of all its limit points, i.e.,

 $\mathcal{L}(X) \coloneqq \bigcap_{n=1}^{\infty} \operatorname{cl}\{X_k : k \ge n\} = \{x \in \mathcal{X} : X_{n_k} \to x \text{ for some sequence } n_k \to \infty\}$

Equivalently, $\mathcal{L}(X)$ is the smallest subset of \mathcal{X} such that $dist(\mathcal{L}, X_n) \to 0$ as $n \to \infty$

Theorem (Boone & M, 2022)

Assume: All players run ExpWEIGHT with step-size y_n and oracle parameters b_n and U_n as before.

Then: With probability 1, the limit set \mathcal{L} of (FTRL) is characterized by the following properties:

- Minimality: \mathcal{L} does not contain any proper attractors
- **Resilience:** every deviation x from \mathcal{L} is unilaterally nullified by some element x^* of \mathcal{L} , i.e.,

 $u_i(x^*) \ge u_i(x_i; x_{-i}^*)$ for all $i \in \mathcal{N}$

Backgro 0000	und & Prelims 10000	Learning in continuous time	Learning in discrete time	Overview •	References	Meetings 0000
CITS	Overview					
	I. Learning in	continuous time				
	Nash equ	uilibrium \implies stationarity				
	Lyapunov	v stability ⇒ equilibrium				
	Asympto	tic stability ⇔ strict equilibriu	m			
	Min-max	games ⇒ Poincaré recurrence	e			
	Limit sets	$s \iff$ minimally resilient				
	II. Learning ii	n discrete time				
	🗶 Depends	s on feedback, step-size,			# stochastic ≠ determir	nistic
	🗶 Nash equ	uilibrium \Rightarrow stationarity				
	🗸 Lyapunov	v stability \implies equilibrium				
	🗸 Asympto	tic stability ⇔ strict equilibriu	m	:	# mixed equilibria are unst	able
	🗡 Min-max	games ≠ Poincaré recurrence	e	#	<pre>‡ convergence to the boun</pre>	dary
	✓ Limit sets	$s \implies$ minimally resilient			# converse does not	hold
	Open issues					
	 Adaptive 	step-size / learning rate?			# challenging ana	alysis
	 Robustne 	ess to delays / corruptions /				

Learning in continuous games?

Background & Prelims 00000000 References

References I

- Arora, S., Hazan, E., and Kale, S. The multiplicative weights update method: A meta-algorithm and applications. *Theory of Computing*, 8(1): 121-164, 2012.
- [2] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.
- [3] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1): 48-77, 2002.
- [4] Boone, V. and Mertikopoulos, P. From equilibrium to resilience: Universal guarantees for the long-run behavior of learning in games, 2022.
- [5] Flokas, L., Vlatakis-Gkaragkounis, E. V., Lianeas, T., Mertikopoulos, P., and Piliouras, G. No-regret learning and mixed Nash equilibria: They do not mix. In NeurIPS '20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.
- [6] Giannou, A., Vlatakis-Gkaragkounis, E. V., and Mertikopoulos, P. Survival of the strictest: Stable and unstable equilibria under regularized learning with partial information. In COLT '21: Proceedings of the 34th Annual Conference on Learning Theory, 2021.
- [7] Giannou, A., Vlatakis-Gkaragkounis, E. V., and Mertikopoulos, P. The convergence rate of regularized learning in games: From bandits and uncertainty to optimism and beyond. In NeurIPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021.
- [8] Héliou, A., Cohen, J., and Mertikopoulos, P. Learning with bandit feedback in potential games. In NIPS '17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.
- [9] Hofbauer, J. and Sigmund, K. Evolutionary game dynamics. Bulletin of the American Mathematical Society, 40(4):479-519, July 2003.
- [10] Hofbauer, J., Sorin, S., and Viossat, Y. Time average replicator and best reply dynamics. Mathematics of Operations Research, 34(2):263-269, May 2009.

ound & Prelims 00000	Learning in continuous time	Learning in discrete time	References	Meetings 0000

- CITS References II
 - [11] Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cambridge University Press, Cambridge, UK, 2020.
 - [12] Littlestone, N. and Warmuth, M. K. The weighted majority algorithm. Information and Computation, 108(2):212-261, 1994.
 - [13] Mertikopoulos, P. and Zhou, Z. Learning in games with continuous action sets and unknown payoff functions. Mathematical Programming, 173 (1-2):465–507, January 2019.
 - [14] Mertikopoulos, P., Papadimitriou, C. H., and Piliouras, G. Cycles in adversarial regularized learning. In SODA '18: Proceedings of the 29th annual ACM-SIAM Symposium on Discrete Algorithms, 2018.
 - [15] Nash, J. F. Equilibrium points in *n*-person games. Proceedings of the National Academy of Sciences of the USA, 36:48-49, 1950.
 - [16] Nesterov, Y. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
 - [17] Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In NIPS '13: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013.
 - [18] Rustichini, A. Optimal properties of stimulus-response learning models. Games and Economic Behavior, 29(1-2):244-273, 1999.
 - [19] Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.
 - [20] Shalev-Shwartz, S. and Singer, Y. Convex repeated games and Fenchel duality. In NIPS' 06: Proceedings of the 19th Annual Conference on Neural Information Processing Systems, pp. 1265–1272. MIT Press, 2006.
 - [21] Sorin, S. Exponential weight algorithm in continuous time. Mathematical Programming, 116(1):513-528, 2009.
 - [22] Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 1964.
 - [23] Taylor, P. D. and Jonker, L. B. Evolutionary stable strategies and game dynamics. Mathematical Biosciences, 40(1-2):145-156, 1978.

Backgro 0000	ound & Prelims DOOOO	Learning in continuous time	Learning in discrete time 000000000000000000000000000000000000	Overview O	References	Meetings ●000
CITS	Outline					
	Background &					
	 Learning in cor 	ntinuous time				
	3 Learning in dise	crete time				

4 Meetings

P. Mertikopoulos

Background & Prelims 00000000

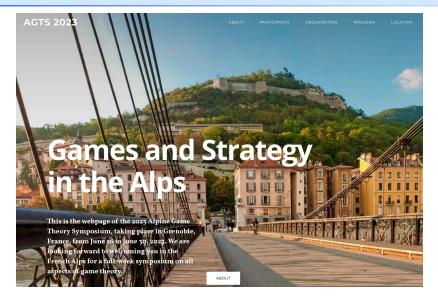
earning in discrete time

Overview

eferences

Meetings 0000

Alpine Game Theory Symposium



If you like mountains and/or games \sim https://agts-2023.weebly.com

Background & Prelims 00000000		Learning in continuous tim		ning in discrete time				Meetings ○○●○
cnrs	Games, Lear	ning, and Networl	ks					
	NUS National Universion of Singapore	by Institute for Mathematical Sciences						
	Home Abo	ut IMS ~ Events ~	Visitors' Schemes 🗸	Publications ~	Resources ~	Visitor Information $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Locate Us	Call for Proposals

Games, Learning, and Networks

(03 Apr 2023-21 Apr 2023)

Organizing Committee

Co-chairs

- Georgios Piliouras (Singapore University of Technology and Design)
- Marco Scarsini (Libera Università Internazionale degli Studi Sociali Guido Carli)

In the tropics \rightarrow https://ims.nus.edu.sg/events/games-learning-and-networks/

Backgi 000	round & Prelims 100000	Learning in continuous time	Learning in discrete time		Meetings 000●