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% Learning in games

> Multiple agents, individual objectives

# Select a route from home to work

> Payoffs determined by actions of all agents

# Encounter other commuters on the road

> Agents receive payoffs, adjust actions, and the process repeats

# Update road choice tomorrow




% Learning in games

> Multiple agents, individual objectives

# Select a route from home to work

> Payoffs determined by actions of all agents

# Encounter other commuters on the road

> Agents receive payoffs, adjust actions, and the process repeats

# Update road choice tomorrow

What does the agents' long-run behavior look like?
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% Learning in games, cont'd

Sequence of events — generic

for each epoch and every player do # continuous / discrete
Choose action # continuous / finite
Receive reward # endogenous / exogenous
Get feedback (maybe) #full info / oracle / payoff-based
end for

Defining elements
» Time: continuous or discrete?
*> Players: continuous or finite?
> Actions: continuous or finite?
> Reward mechanism: endogenous or endogenous (determined by other players or by “Nature”)?

*> Feedback: observe other actions / other rewards / only received?
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% Learning in games, cont'd

Sequence of events — generic

for each epoch and every player do # continuous / discrete
Choose action # continuous / finite
Receive reward # endogenous / exogenous
Get feedback (maybe) #full info / oracle / payoff-based
end for

Defining elements
» Time: continuous or discrete?
> Players: ¢Otid@05 O finite
> Actions: GMiNUUOUE/@/ finite
> Reward mechanism: endogenous 07 Xogén@1s (determined by other players of/B4/ NAtUE])

*> Feedback: observe other actions / other rewards / only received?
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% Finite games in normal form

Finite games

A finite game in normal form is a collection T = T(N, A, u) of the following primitives:
> Afinite set of players N = {1,..., N}
> Afinite set of actions (or pure strategies) A; = {1,...,A;} per player i € N
» An ensemble of payoff functions u;: A= T]; Ai > R,i e N

Notation:
> Action profile: a = (ai,...,an) € A:=T]; A;
> Realized payoff of player i:
ui(a) =ui(ar,...,an) = ui(ai;a-;)
> Payoff vector of player i:
vi(a) = vi(ar,...,an) = (ui(a};a-1) e,

P. Mertikopoulos CNRS/LIG
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% Mixed extensions

Mixed extension of a finite game:

> Given: finite game T = T(N, A, u)

> Misxed strategy of player i:
Xi = (Xia; )ajen; € A(A;) = X;

# xia, = prob. that player i plays a; € A;
> Mixed payoff of player i
ui(x) =Eauyui(a) = Z Z Xlay"XN,ay Ui(d1,...,aN)

ajeA; aneAy
> Mixed payoff vector of player i:
vi(x) =vi(xn, .. xn) = (wi(@i5X-i) )ajen,

= vector of expected rewards

v y;(x) only depends on x_;

» Notation: T' = A(T)

P Mertikopoulos
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Nash equilibrium (Nash, 1950)

“No player has an incentive to deviate from their chosen strategy if other players don’t”
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Nash equilibrium (Nash, 1950)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> For player payoffs:

wi(x]3x5) > ui(xisxl;) forallx; e X ie N

> For pure strategy payoffs:

u;(aisx;) > ui(a;x’;) forallaj esupp(x;), aie Ai,ie N

P. Mertikopoulos CNRS/LIG



Background & Prelims
00000080

Nash equilibrium (Nash, 1950)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> For player payoffs:
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> For pure strategy payoffs:
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Nash equilibrium (Nash, 1950)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> For player payoffs:

ui(x5x5) > ui(xisxl;) forallx; e Xjie N

> For pure strategy payoffs:
Vigr (x7) 2 viq, (x¥)  foralla} esupp(x]),ai e Ai,ie N

» Pure equilibrium: supp(x™) = singleton #x*=a*eA

> Strict equilibrium: “>” instead of “>” where appropriate # unique best response; necessarily pure
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Nash equilibrium (Nash, 1950)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> For player payoffs:
ui(x5x5) > ui(xix’;) forallx; e Xie N

> For pure strategy payoffs:
Vigr (x7) 2 viq, (x¥)  foralla} esupp(x]),ai e Ai,ie N

» Pure equilibrium: supp(x™) = singleton #x*=a*eA

> Strict equilibrium: “>” instead of “>” where appropriate # unique best response; necessarily pure

Variational formulation (Stampacchia, 1964)

(v(x*),x—x*)<0 forallxeX

P. Mertikopoulos CNRS/LIG
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% Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed

X = ACA)
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% Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed vs. mixed

NC(x") v(x™)

X = ACA)
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% Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed vs. mixed vs. pure

NC(x*) v(x")
X = A(A)
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% Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed vs. mixed vs. pure vs. strict

NC(x™)
X =A(A)

v(x™)
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@ Learning in continuous time




% Learning in continuous time

Sequence of events — continuous time

Require: finite game T = (N, A, u)

repeat
At each epoch t > 0 do simultaneously for all players i €¢ N # continuous time
Choose mixed strategy x; (t) € X; := A(A;) # mixed extension
Observe mixed payoff vector v; (x(t)) #feedback phase
until end

Defining elements
> Time: £>0
> Players: finite
»> Actions: finite
> Mixing: yes

»> Feedback: mixed payoff vectors

P. Mertikopoulos CNRS/LIG
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% Learning with exponential weights

> Agents record cumulative payoff of each strategy

yat) = [ vata()) d

= propensity of choosing a strategy
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% Learning with exponential weights

> Agents record cumulative payoff of each strategy

yat) = [ vata()) d

= propensity of choosing a strategy

» Choice probabilities ~ exponentially proportional to propensity scores

xa(t) o< exp(ya(t))

o¢ Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)
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% Learning with exponential weights

> Agents record cumulative payoff of each strategy

yat) = [ vata()) d

= propensity of choosing a strategy

» Choice probabilities ~ exponentially proportional to propensity scores

exp(pa(t))
() = e (1)

o¢ Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)
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% Learning with exponential weights

> Agents record cumulative payoff of each strategy

yat) = [ vata()) d

= propensity of choosing a strategy

» Choice probabilities ~ exponentially proportional to propensity scores

exp(pa(t))
() = e (1)

o¢ Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)

> Evolution of mixed strategies
Xo = oo = xa[va(x) —u(x)]
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% Learning with exponential weights

> Agents record cumulative payoff of each strategy

t
ya(0) = [ va(x()) dr
= propensity of choosing a strategy

» Choice probabilities ~ exponentially proportional to propensity scores
a(t
xat) = exp(ya(1))
Larexp(yar (1))

o¢ Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)

> Evolution of mixed strategies

%o = oo = xa[va(x) - u(x)]

Replicator dynamics (Taylor & Jonker, 1978)

J‘Cia,- = Xa; [Via,-(x) - u,(x)] (RD)

P. Mertikopoulos CNRS/LIG
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% General case: regularized learning

»> The logit map A(y) = (exp(yu))agA/ > . exp(ya) approximates the “leader” (best response map)

y > argmax__ .y, x)
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% General case: regularized learning

»> The logit map A(y) = (exp(yu))agA/ > . exp(ya) approximates the “leader” (best response map)

y = argmax, . {(y, x) — h(x)}

where h(x) = ¥, 4 Xa log x, is the (negative) entropy of x € X

P. Mertikopoulos CNRS/LIG



Learning in continuous time

000®0000000

General case: regularized learning

»> The logit map A(y) = (exp(yu))agA/ > . exp(ya) approximates the “leader” (best response map)

y = argmax, . {(y, x) — h(x)}

where h(x) = ¥, 4 Xa log x, is the (negative) entropy of x € X

*> Regularized best responses

Q(y) = argmax, 5 {(y,x) - h(x)}

where h: X — Ris a (strictly) convex regularizer function
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% General case: regularized learning

»> The logit map A(y) = (exp(ya))agA/ > . exp(ya) approximates the “leader” (best response map)

y = argmax, . {(y, x) — h(x)}

where h(x) = ¥, 4 Xa log x, is the (negative) entropy of x € X

*> Regularized best responses
Q(y) = argmax, 5 {(y,x) - h(x)}

where h: X — Ris a (strictly) convex regularizer function

Follow the regularized leader (FTRL) in continuous time

y(8) =v(x(t))

%(t) = Qy(D)) (FIREO
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% General case: regularized learning

»> The logit map A(y) = (exp(ya))agA/ > . exp(ya) approximates the “leader” (best response map)

y = argmax, . {(y, x) — h(x)}

where h(x) = ¥, 4 Xa log x, is the (negative) entropy of x € X

*> Regularized best responses
Q(y) = argmax, 5 {(y,x) - h(x)}

where h: X — Ris a (strictly) convex regularizer function

Follow the regularized leader (FTRL) in continuous time

y(8) =v(x(t))

%(t) = Qy(D)) (FIREO

# Focus on entropy/replicator for simplicity
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% Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dynamics in a Congestion Game

‘ ‘ ‘ 0,0

P. Mertikopoulos CNRS/LIG



Learning in continuous time

00008000000

% Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dynamics in the Battle of the Sexes

P. Mertikopoulos CNRS/LIG



Learning in continuous time

00008000000

% Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dynamics in Matching Pennies
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% Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dynamics in the Prisoner's Dilemma
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% Evolution of mixed strategies: Examples

What do the dynamics look like?

N
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% Evolution of mixed strategies: Examples

What do the dynamics look like?
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@ Evolution of mixed strategies: Examples

What do the dynamics look like?
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Learning in continuous
[eJe]e]e] Jolele]eleTe]

% Evolution of mixed strategies: Examples

What do the dynamics look like?
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% Stationarity versus stability

Stationarity of Nash equilibria
Let x(#) = Q(y(t)) be a trajectory of (FTRL-C). Then:

x(0) is a Nash equilibrium = x(t) = x(0) forall t > 0

A The converse does not hold!

A Are all stationary points created equal?
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@ Stationarity versus stability

Stationarity of Nash equilibria
Let x(#) = Q(y(t)) be a trajectory of (FTRL-C). Then:

x(0) is a Nash equilibrium = x(t) = x(0) forall t > 0

A The converse does not hold!

A Are all stationary points created equal?

Definition (Notions of stability)

» x* is (Lyapunov) stable if, for every neighborhood U of x* in X', there exists a neighborhood U" of x* such that

x(0) el = x(t)elU forallt>0
# Trajectories that start close to x* remain close for all time

> x” is attracting if lim;~.. x(#) = x™ whenever x(0) is close enough to x*

# Trajectories that start close to x* eventually converge to x*

> x* is asymptotically stable if it is stable and attracting

P. Mertikopoulos CNRS /LIG
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% A "folk theorem" for learning

Are all equilibria created equal?

Theorem (M & Sandholm, 2016; Flokas et al., 2020)
Let x(t) = Q(y(t)) be a trajectory of (FTRL-C). Then:

1. x* isNash == x* is stationary

2. limi~eo x(t) = x* = x” is Nash

3. x" isstable == x™ is Nash

4. x* s stable and attracting <=> x” is strict Nash

Some remarks:

»> Only strict equilibria can be stable and attracting

*> For replicator dynamics ~ folk theorem of evolutionary game theory = Hofbauer & Sigmund, 2003

P. Mertikopoulos CNRS/LIG



Learning in continuous time

00000008000

% Non-convergence in min-max games

The min-max case is quite different (and special):
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% Non-convergence in min-max games

The min-max case is quite different (and special):

x” is a fully mixed equilibrium == (RD) admits a constant of motion

*

xh
KL divergence: Dxr(x",x) =) > xi, log —

Xia;

i
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% Non-convergence in min-max games

The min-max case is quite different (and special):

x” is a fully mixed equilibrium == (RD) admits a constant of motion

*

Xig,
KL divergence: Dxr(x",x) =) > xi, log —

Xia;

i

Theorem (Hofbauer et al., 2009)

Assume a min-max game admits an interior equilibrium. Then:
> Interior trajectories of (RD) do not converge (unless stationary)

> Time-averages (t) = t™' /' x() dt converge to Nash equilibrium

P. Mertikopoulos
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% Poincaré recurrence in min-max games

Definition (Poincaré, 1890's)

A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their starting
point infinitely many times

P Mertikopoulos
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% Poincaré recurrence in min-max games

Definition (Poincaré, 1890's)

A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their starting
point infinitely many times

Theorem (M Papadimitriou & Piliouras, 2018)

The dynamics of FTRL are Poincaré recurrent in all min-max games with a fully mixed equilibrium

P Mertikopoulos
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% Is that all?
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% Is that all?

In many games, the dynamics are neither recurrent, nor pointwise convergent
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@ Universal convergence guarantees

Can we characterize the limiting behavior of the FTRL dynamics?

The limit set of a trajectory X(¢t) is the set of all its limit points, i.e.,

L(X) =)o HX(s) 52t} = {x € X: X(t,) - x for some sequence t, - oo}

Equivalently, £(X) is the smallest subset of X such that dist(£, X(¢)) - 0 as t - oo
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@ Universal convergence guarantees

Can we characterize the limiting behavior of the FTRL dynamics?

The limit set of a trajectory X(¢t) is the set of all its limit points, i.e.,

L(X) =)o HX(s) 52t} = {x € X: X(t,) - x for some sequence t, - oo}

Equivalently, £(X) is the smallest subset of X such that dist(£, X(¢)) - 0as t - oo

> Nash equilibria # Battle of the Sexes, coordination/anti-coordination games, ...
> Periodic orbits # Matching Pennies, min-max games, ...
> Heteroclinic cycles # chair game, ...
>

P. Mertikopoulos CNRS/LIG
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@ Universal convergence guarantees

Can we characterize the limiting behavior of the FTRL dynamics?

The limit set of a trajectory X(¢t) is the set of all its limit points, i.e.,
L(X) =)o HX(s) 52t} = {x € X: X(t,) - x for some sequence t, - oo}

Equivalently, £(X) is the smallest subset of X such that dist(£, X(¢)) - 0 as t - oo

Theorem (Boone & M, 2022)

The limit set £ of any solution trajectory x(t) = Q(y(t)) of (FTRL-C) is characterized by the following properties:
> Minimality: £ does not contain any proper attractors

> Resilience: every deviation x from L is unilaterally nullified by some element x* of L, i.e,

ui(x™) > ui(xi;x%;) forallie N

P. Mertikopoulos CNRS /LIG



Learning in discrete time

90000000000 000000

Outline

© Learning in discrete time




% Learning in discrete time

Sequence of events — discrete time

Require: finite game I = T(N, A, u)

repeat
Ateach epoch n =1,2,... do simultaneously for all players i ¢ N’ # discrete time
Choose mixed strategy Xi , € X; := A(A;) # mixed extension
Choose action a; , ~ X; » # random action selection
Observe mixed payoff vector v; (X, ) # feedback phase
until end

Defining elements
> Time:n=1,2,...
> Players: finite
*> Actions: finite
> Mixing: yes

> Feedback: mixed payoff vectors

P. Mertikopoulos




% Learning in discrete time

Sequence of events — discrete time

Require: finite game I = T(N, A, u)

repeat
Ateach epoch n =1,2,... do simultaneously for all players i ¢ N’ # discrete time
Choose mixed strategy Xi , € X; := A(A;) # mixed extension
Choose action a; , ~ X; » # random action selection
Observe pure payoff vector vi (an) # feedback phase
until end

Defining elements
> Time:n=1,2,...
*> Players: finite
*> Actions: finite
> Mixing: yes

> Feedback: pure payoff vectors
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% Learning in discrete time

Sequence of events — discrete time

Require: finite game I = T(N, A, u)

repeat
Ateach epoch n =1,2,... do simultaneously for all players i ¢ N’ # discrete time
Choose mixed strategy Xi , € X; := A(A;) # mixed extension
Choose action a; , ~ X; » # random action selection
Observe realized payoff u;(a,) # feedback phase
until end

Defining elements
> Time:n=1,2,...
> Players: finite
*> Actions: finite
> Mixing: yes
> Feedback: realized payoffs

P. Mertikopoulos CNRS/LIG
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% The feedback process

Types of feedback
From best to worst (more to less info):
> Mixed paijfVéCtOl’S: Vi (Xn ) # deterministic vector feedback

> Pure payoﬂ'vectors: Vi (an ) # stochastic vector feedback

> Bandit / Payoﬁ—based: Uu; ( a,,) # stochastic scalar feedback

P. Mertikopoulos
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% The feedback process

Types of feedback
From best to worst (more to less info):
> Mixed paijfVGCtOl’S: Vi (Xn ) # deterministic vector feedback

> Pure payoffvectors: Vi (an ) # stochastic vector feedback

> Bandit / Payoﬁ—based: Uu; ( a,,) # stochastic scalar feedback

Example (RPS)
> Playeri:  playx; = (1/2,1/3,1/6) ~» drawR

SCIssors
Py @ > Player —i: play x; = (1/3,1/3,1/3) ~ drawP

@ . ,g‘i Full feedback (mixed payoff vectors)

@ Vi(xi;x—i) @ @ @

Y
o
o°
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% The feedback process

Types of feedback
From best to worst (more to less info):
> Mixed paijfVGCtOl’S: Vi (Xn ) # deterministic vector feedback

> Pure payoffvectors: Vi (an ) # stochastic vector feedback

> Bandit / Payoﬁ—based: Uu; ( a,,) # stochastic scalar feedback

Example (RPS)
> Playeri:  playx; = (1/2,1/3,1/6) ~» drawR

SCIssors
Py @ > Player —i: play x; = (1/3,1/3,1/3) ~ drawP

@ y Qéé& Realization-based feedback (pure payoff vectors)

D o @ ® O

Y
o
o°
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% The feedback process

Types of feedback
From best to worst (more to less info):
> Mixed paijfVGCtOl’S: Vi (Xn ) # deterministic vector feedback

> Pure payoffvectors: Vi (an ) # stochastic vector feedback

> Bandit / Payoﬁ—based: Uu; ( a,,) # stochastic scalar feedback

Example (RPS)
> Playeri:  playx; = (1/2,1/3,1/6) ~» drawR

SCIssors
Py @ > Player —i: play x; = (1/3,1/3,1/3) ~ drawP

@ . ,g‘i Bandit feedback (payoff-based)

D o @ @ @

Y
o
o°
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% The feedback process

Types of feedback
From best to worst (more to less info):
> Mixed paijfVéCtOl’S: Vi (Xn ) # deterministic vector feedback

> Pure payoﬂ'vectors: Vi (an ) # stochastic vector feedback

> Bandit / Payoﬁ—based: Uu; ( a,,) # stochastic scalar feedback

Features:

> Vector (mixed / pure payoff vecs) vs. Scalar (bandit)

» Deterministic (mixed payoffvecs)  vs. Stochastic (pure payoff vecs, bandit)

w Randomness defined relative to history of play F,, := F (X, ..., X,)

15 Other feedback models also possible (noisy / delayed observations....)

P. Mertikopoulos CNRS/LIG
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% From payoffs to payoff vectors

How to estimate the payoff u;(a;; a—;,») of an unplayed action a; + a; ,?
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The importance weighted estimator of a vector v € R* relative to a mixed strategy x € A(A) is defined as

1 Va/Xa if a is drawn
Vo= 2y, = / (IWE)
Xa 0 otherwise

P. Mertikopoulos
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@ From payoffs to payoff vectors

How to estimate the payoff u;(a;; a-;,» ) of an unplayed action a; # a; ,?

Definition (Importance weighted estimators)

The importance weighted estimator of a vector v € R* relative to a mixed strategy x € A(A) is defined as

1 Va/Xa if a is drawn
Vo= 2y, = / (IWE)
Xa 0 otherwise

Statistical properties of (IWE)

» Unbiased:

> Second moment:

P. Mertikopoulos CNRS /LIG



Learning in discrete time
0O000@000000000000

Definition (Black-box oracle)

A stochastic first-order oracle of v(X,) is a random (or deterministic) vector of the form

V= v(Xy) + Uy + by, (SFO)

where U, is zero-mean and b, = E[,, | F ] — v(X,) is the bias of ¥,,.

P. Mertikopoulos CNRS/LIG
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Definition (Black-box oracle)

A stochastic first-order oracle of v(X,) is a random (or deterministic) vector of the form
1’>n = V(Xn) + Un + bn (SFO)

where U, is zero-mean and b, = E[¥, | F] — v(X,) is the bias of 7,.

> Mixed payoff vectors: i, = vi(X,) # noise U, = 0; bias b, = 0

> Pure payoff vectors: Vi =vi(an) # noise U,, = O(1); bias b, = 0
. ui(a

> Payoff-based: Vin l( n) #noise U, = O(1/ ming, x,'ai,,,); bias b, = 0

= ————— €y,
B ]P(ai,n _ ai) Ai,n

P. Mertikopoulos CNRS/LIG



% Exponential weights redux

Algorithm Exponential weights in discrete time (ExPWEIGHT)

Require: finite game I' = T(N, A, u); stochastic first-order oracle #

Initialize: Y; e R4/, i=1,...,N

foralln =1,2,... all players i € A do simultaneously

set Xi ., o< exp(Yi,n) # mixed strategy

playai , ~ Xin # choose action

getv; , € RA # receive feedback

setYi i1 < Yin+yubin # update scores
end for

Basic idea:

> Score actions by aggregating payoff vector estimates provided by oracle
> Choose actions with probability exponentially proportional to their scores

> Rinse/repeat

P. Mertikopoulos
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% Example 1: ExpWeight with mixed payoff vector observations

If players observe mixed payoff vectors:
17i,n = Vi(Xi,n;X—i,n)

Oracle features:

> Deterministic: no randomness!
» Bias: B, =0

> Variance: 0, = 0

» Second moment: M, = O(1)

5 Also known as MuttipLicaTiVE WEIGHTS UPDATE = Aroraetal.(2012)

P Mertikopoulos
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% Example 2: ExpWeight with pure payoff vector observations

If players observe pure payoff vectors:

f/i,n = Vi(ﬂi,n; a—i,n)

Oracle features:
> Stochastic: random action selection
» Bias: B, =0
» Variance: g, = O(1)
» Second moment: M, = O(1)

5 Also known as HEDGE

P Mertikopoulos

o Aueretal. (1995), Auer et al. (2002)
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% Example 3: ExpWeight with bandit feedback

If players observe realized payoffs:
6o ui(ai,n§a—i,n) e
P(ﬂ,‘,n = a,-) tiun

Oracle features:

> Stochastic: random action selection
» Bias: B, =0

> Variance: 6, = O(1/Xia;n)

» Second moment: M, = O(1/Xia; n)

= Also known as EXP3 = Auer et al. (1995), Auer et al. (2002)

P Mertikopoulos
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% Example 4: ExpWeight with bandit feedback

If players observe realized payoffs:

A ui(ai,n§a—i,n)
- P(ﬂ,‘,n = a,-) Cain
Oracle features:

> Stochastic: random action selection

> Explicit exploration: draw a;,, ~ X;, , with prob. 1 — §,, otherwise uniformly
» Bias: B, = O(8,)

» Variance: 0, = O(1/52)

» Second moment: M,, = O(1/32)

1= Also known as EXP3 with ExpLiciT ExPLORATION =6 Shalev-Shwartz (2011), Lattimore & Szepesvari (2020)

P Mertikopoulos
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% Example 5: Optimistic ExpWeight

If players are optimistic:' o Rakhlin & Sridharan (2013)

Vin = Vi (Xi,n+1/2; X—i,n+1/2)

Oracle features:
» Deterministic: no randomness
» Bias: B, = v(X,1172) = v(Xn) = O(yn)
» Variance: 0, = 0
> Second moment: M,, = O(1)

"Feedback obtained via the sequence

Yop2=Yn + VnVn(Xn—l/z) Xint172 o< exp(Yin41/2) Y1 = Yu + ynv(Xpi2)

P Mertikopoulos
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% Follow the regularized leader

Follow the regularized leader

Yi,n+1 = Yi,n arF yn{/i,n

Xi,n+1 = Qi(Yi,nH) = al‘gmaX{<Yi,n+1,xi) - hi(xi)}

x;€X;

(FTRL)

*¢ Shalev-Shwartz & Singer (2006), Nesterov (2009)

> Generalized version of “follow the regularized leader”
> y, > 0is the method’s step-size #To be specialized later
> 7, . is an stochastic first-order oracle (SFO) model for v; (X, ) # To be specialized later

> Every player’s regularizer h;: X; — R is continuous on A, differentiable on ri X}, and strongly convex on X’;

hi(x7) > hi(xi) + (VR (xi), 5] = xi) + (Ki[2)|x] = x:]°

P. Mertikopoulos
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% Evolution of mixed strategies: Examples

What does the sequence of play look like?

08 E\
krl}

o Y{

‘}
j o<z‘\§\<

Congestion Game

x

\
/

0.0 02 04 0.6 0.8 1.0

Figure. ExPWEIGHT with constant step-size
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% Evolution of mixed strategies: Examples

What does the sequence of play look like?

Battle of the Sexes
1.0
-~ £§
0.8
\ oL
0.6 \

X
IR
=
| e

Figure. ExPWEIGHT with constant step-size
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% Evolution of mixed strategies: Examples

What does the sequence of play look like?

Matching Pennies

=
=

.8 1.0

N

0.0 02 04 0.

Figure. ExPWEIGHT with constant step-size

P Mertikopoulos
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% Evolution of mixed strategies: Examples

What does the sequence of play look like?

Prisoner's Dil

Figure. ExPWEIGHT with constant step-size

P. Mertikopoulos CNRS/LIG
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@ Evolution of mixed strategies: Examples

What does the sequence of play look like?

L0 o

Figure. ExPWEIGHT with constant step-size
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% Evolution of mixed strategies: Examples

What does the sequence of play look like?

0.5

0.0 \\ \0'7000
\ 0.5

¢
1'01.0

Figure. ExPWEIGHT with constant step-size
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Definition (Stochastic stability)

x* € X is stochastically stable under X, if, for every confidence level § > 0 and every neighborhood U of x*, there
exists a neighborhood U of x* such that

P(X,eUforalln=1,2,... | Xi elh) 21-6

# Intuition: with high probability, if X,, starts near x*, it remains nearby

P. Mertikopoulos
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Definition (Stochastic stability)

x* € X is stochastically stable under X, if, for every confidence level § > 0 and every neighborhood U of x*, there
exists a neighborhood U of x™ such that

P(X,eUforalln=1,2,... | Xi elh) 21-6

# Intuition: with high probability, if X,, starts near x*, it remains nearby

Definition (Stochastic asymptotic stability)

> x*eXis attracting if, for every confidence level § > 0, there exists a neighborhood L4 of x* such that
P(X, > x"asn—oo|Xielhh)>21-6

» x* € X is stochastically asymptotically stable if it is stochastically stable and attracting.

# Intuition: with high probability, if X,, starts near x™ then, it remains nearby and eventually converges to x*

P. Mertikopoulos CNRS /LIG
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% The long-run behavior of regularized learning

A Assume: All players run (FTRL) with step-size y, and oracle parameters b,, (bias) and U, (noise) such that:
(A1) yu = y/nP forsome p € (0,1] v ok for all models
(A2) bn = O1/n?) forsome b > 0 v ok for all models
(A3) E[||Un|1] = O(1/n") forsome q > 2,7 <1/2 v ok for all models
v

P. Mertikopoulos
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% The long-run behavior of regularized learning

A Assume: All players run (FTRL) with step-size y, and oracle parameters b,, (bias) and U, (noise) such that:

(A1) yu = y/nP forsome p € (0,1] v ok for all models
(A2) bn = O1/n?) forsome b > 0 v ok for all models
(A3) E[||Un|1] = O(1/n") forsome q > 2,7 <1/2 v ok for all models

15 Then: the sequence X, generated by (FTRL) enjoys the following properties

(PT) If X, converges, its limit is a Nash equilibrium =0 M & Zhou (2019)
(P2) If x* is stochastically stable, it is a Nash equilibrium = Giannou et al. (2021)
(P3) x* is stochastically asymptotically stable if and only if it is a strict Nash equilibrium =0 Giannou et al. (2021)
(P4) If p > 1/2and G is a congestion game, then X,, converges to a Nash equilibrium (as.) = Héliou et al. (2017)
b

P. Mertikopoulos CNRS /LIG
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Theorem (Giannou et al., 2021)

A Assume: All players run ExPWEIGHT with step-size y, and oracle parameters b, and U, as before

= Then: if x* is a strict Nash equilibrium and X, converges to x*, we have

X =x"hs > exp(A—BZyk)

a¢supp(x*) k=1

where A, B > 0 are positive constants.

P. Mertikopoulos



Learning in discrete time

0000000000000 000e

@ Universal convergence guarantees

Can we characterize the limiting behavior of (FTRL)?

The limit set of a sequence X,, n = 1,2,...,is the set of all its limit points, i.e,,

L(X) =", d{Xx:k>n}={xeX:X, — xforsome sequence ny — oo}

n=1

Equivalently, £(X) is the smallest subset of X such that dist(£, X,) > 0asn — oo

P. Mertikopoulos CNRS/LIG
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% Universal convergence guarantees

Can we characterize the limiting behavior of (FTRL)?

The limit set of a sequence X,, n = 1,2,...,is the set of all its limit points, i.e,,

L(X) =", d{Xx:k>n}={xeX:X, — xforsome sequence ny — oo}

n=1

Equivalently, £(X) is the smallest subset of X such that dist(£, X,) > 0asn — oo

Theorem (Boone & M, 2022)
A Assume: All players run ExPWEIGHT with step-size y,, and oracle parameters b, and U, as before.
1= Then: With probability 1, the limit set £ of (FTRL) is characterized by the following properties:

> Minimality: £ does not contain any proper attractors

> Resilience: every deviation x from L is unilaterally nullified by some element x* of L, i.e,

ui(x™) > ui(xi3x%;) forallie N

P. Mertikopoulos CNRS /LIG



Overview

I. Learning in continuous time

> Nash equilibrium == stationarity
> Lyapunov stability == equilibrium
> Asymptotic stability <= strict equilibrium

> Min-max games == Poincaré recurrence

> Limit sets <= minimally resilient

II. Learning in discrete time

X Depends on feedback, step-size, ...

X Nash equilibrium =/ stationarity

v Lyapunov stability == equilibrium

v Asymptotic stability <= strict equilibrium
X Min-max games =/ Poincaré recurrence

v Limit sets == minimally resilient
Open issues

> Adaptive step-size / learning rate?
> Robustness to delays / corruptions / ...

> Learning in continuous games?

P Mertikopoulos

# stochastic # deterministic

# mixed equilibria are unstable
# convergence to the boundary

# converse does not hold

# challenging analysis
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