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Game of roads

A beautiful morning commute in the Bay Area

P. Mertikopoulos CNRS / LIG



4/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

Learning in games

▸ Multiple agents, individual objectives

# Select a route from home to work

▸ Payoffs determined by actions of all agents

# Encounter other commuters on the road

▸ Agents receive payoffs, adjust actions, and the process repeats

# Update road choice tomorrow

What does the agents' long-run behavior look like?

P. Mertikopoulos CNRS / LIG
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Learning in games, cont'd

Sequence of events — generic

for each epoch and every player do # continuous / discrete

Choose action # continuous / finite

Receive reward # endogenous / exogenous

Get feedback (maybe) # full info / oracle / payoff-based

end for

Defining elements

▸ Time: continuous or discrete?

▸ Players: continuous or finite?

▸ Actions: continuous or finite?

▸ Reward mechanism: endogenous or endogenous (determined by other players or by “Nature”)?

▸ Feedback: observe other actions / other rewards / only received?

P. Mertikopoulos CNRS / LIG
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Finite games in normal form

Finite games

A finite game in normal form is a collection Γ ≡ Γ(N ,A, u) of the following primitives:

▸ A finite set of playersN = {, . . . ,N}

▸ A finite set of actions (or pure strategies) Ai = {, . . . , A i} per player i ∈N

▸ An ensemble of payoff functions u i ∶A ≡∏i Ai → R, i ∈N

Notation:
▸ Action profile: a = (a , . . . , aN) ∈ A ∶=∏i Ai

▸ Realized payoff of player i :
u i(a) ≡ u i(a , . . . , aN) ≡ u i(a i ; a−i)

▸ Payoff vector of player i :
v i(a) ≡ v i(a , . . . , aN) ∶= (u i(a′i ; a−i))a′i∈Ai

P. Mertikopoulos CNRS / LIG
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Mixed extensions

Mixed extension of a finite game:

▸ Given: finite game Γ ≡ Γ(N ,A, u)

▸ Mixed strategy of player i :
x i = (x i a i )a i∈Ai ∈ ∆(Ai) =∶ Xi

# x i a i = prob. that player i plays a i ∈Ai

▸ Mixed payoff of player i

u i(x) = Ea∼x u i(a) = ∑
a∈A

. . . ∑
aN∈AN

x,a⋯xN ,aN u i(a , . . . , aN)

▸ Mixed payoff vector of player i :

v i(x) ≡ v i(x , . . . , xN) ∶= (u i(a i ; x−i))a i∈Ai

+ vector of expected rewards

+ v i(x) only depends on x−i

▸ Notation: Γ̄ ≡ ∆(Γ)

P. Mertikopoulos CNRS / LIG
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Nash equilibrium

Nash equilibrium (Nash, 1950)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

▸ For player payoffs:

u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi , i ∈N

▸ For pure strategy payoffs:

u i(a
∗
i ; x

∗
−i) ≥ u i(a i ; x∗−i) for all a∗i ∈ supp(x∗i ), a i ∈ Ai , i ∈N

▸ Pure equilibrium: supp(x∗) = singleton # x∗ = a∗ ∈A

▸ Strict equilibrium: “>” instead of “≥” where appropriate # unique best response; necessarily pure

Variational formulation (Stampacchia, 1964)

⟨v(x∗), x − x∗⟩ ≤  for all x ∈ X

P. Mertikopoulos CNRS / LIG
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Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed

X = ∆(A)

.
x∗
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Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed vs. mixed

X = ∆(A)

NC(x∗)

.
x∗

v(x∗)
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Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed vs. mixed vs. pure

X = ∆(A)
NC(x∗)

.
x∗

v(x∗)
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Equilibrium configurations

Figure. Different equilibrium configurations: fully mixed vs. mixed vs. pure vs. strict

X = ∆(A)
NC(x∗)

.
x∗

v(x∗)
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Learning in continuous time

Sequence of events — continuous time

Require: finite game Γ ≡ Γ(N ,A, u)
repeat

At each epoch t ≥  do simultaneously for all players i ∈ N # continuous time

Choose mixed strategy x i(t) ∈ Xi ∶= ∆(Ai) # mixed extension

Observe mixed payoff vector v i(x(t)) # feedback phase

until end

Defining elements

▸ Time: t ≥ 
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: mixed payoff vectors
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Learning with exponential weights

▸ Agents record cumulative payoff of each strategy

ya(t) = ∫
t


va(x(τ)) dτ

Ô⇒ propensity of choosing a strategy

▸ Choice probabilities ; exponentially proportional to propensity scores

xa(t)

2 Littlestone & Warmuth (1994), Auer et al. (1995), Rustichini (1999), Sorin (2009)

▸ Evolution of mixed strategies
ẋa = ⋅ ⋅ ⋅ = xa[va(x) − u(x)]

Replicator dynamics (Taylor & Jonker, 1978)

ẋ i a i = xa i [v i a i (x) − u i(x)] (RD)

P. Mertikopoulos CNRS / LIG
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General case: regularized learning

▸ The logit map Λ(y) = (exp(ya))a∈A/∑a exp(ya) approximates the “leader” (best response map)

y ↦ argmaxx∈X ⟨y, x⟩

where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses
Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}

where h∶X → R is a (strictly) convex regularizer function

Follow the regularized leader (FTRL) in continuous time

ẏ(t) = v(x(t))
x(t) = Q(y(t))

(FTRL-C)

# Focus on entropy/replicator for simplicity

P. Mertikopoulos CNRS / LIG
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Evolution of mixed strategies: Examples

What do the dynamics look like?
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Stationarity versus stability

Stationarity of Nash equilibria

Let x(t) = Q(y(t)) be a trajectory of (FTRL-C). Then:

x() is a Nash equilibrium Ô⇒ x(t) = x() for all t ≥ 

1 The converse does not hold!
2 Are all stationary points created equal?

Definition (Notions of stability)
▸ x∗ is (Lyapunov) stable if, for every neighborhood U of x∗ in X , there exists a neighborhood U ′ of x∗ such that

x() ∈ U ′ Ô⇒ x(t) ∈ U for all t ≥ 

# Trajectories that start close to x∗ remain close for all time

▸ x∗ is attracting if limt→∞ x(t) = x∗ whenever x() is close enough to x∗

# Trajectories that start close to x∗ eventually converge to x∗

▸ x∗ is asymptotically stable if it is stable and attracting

P. Mertikopoulos CNRS / LIG
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A "folk theorem" for learning

Are all equilibria created equal?

Theorem (M & Sandholm, 2016; Flokas et al., 2020)

Let x(t) = Q(y(t)) be a trajectory of (FTRL-C). Then:

1. x∗ is Nash Ô⇒ x∗ is stationary

2. limt→∞ x(t) = x∗ Ô⇒ x∗ is Nash

3. x∗ is stable Ô⇒ x∗ is Nash

4. x∗ is stable and attracting ⇐⇒ x∗ is strict Nash

Some remarks:
▸ Only strict equilibria can be stable and attracting

▸ For replicator dynamics ; folk theorem of evolutionary game theory 2 Hofbauer & Sigmund, 2003

P. Mertikopoulos CNRS / LIG
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Non-convergence in min-max games

The min-max case is quite different (and special):

x∗ is a fully mixed equilibrium Ô⇒ (RD) admits a constant of motion

KL divergence: DKL(x∗ , x) =∑i∑a i
x∗i a i log

x∗i a i
x i a i

Theorem (Hofbauer et al., 2009)
Assume a min-max game admits an interior equilibrium. Then:

▸ Interior trajectories of (RD) do not converge (unless stationary)

▸ Time-averages x̄(t) = t− ∫ t
 x(τ) dτ converge to Nash equilibrium

P. Mertikopoulos CNRS / LIG
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Non-convergence in min-max games

The min-max case is quite different (and special):

x∗ is a fully mixed equilibrium Ô⇒ (RD) admits a constant of motion

KL divergence: DKL(x∗ , x) =∑i∑a i
x∗i a i log

x∗i a i
x i a i

Theorem (Hofbauer et al., 2009)
Assume a min-max game admits an interior equilibrium. Then:

▸ Interior trajectories of (RD) do not converge (unless stationary)

▸ Time-averages x̄(t) = t− ∫ t
 x(τ) dτ converge to Nash equilibrium
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Poincaré recurrence in min-max games

Definition (Poincaré, 1890's)
A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their starting
point infinitely many times

Theorem (M Papadimitriou & Piliouras, 2018)
The dynamics of FTRL are Poincaré recurrent in all min-max games with a fully mixed equilibrium
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Is that all?

In many games, the dynamics are neither recurrent, nor pointwise convergent

P. Mertikopoulos CNRS / LIG



18/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

Is that all?

In many games, the dynamics are neither recurrent, nor pointwise convergent

P. Mertikopoulos CNRS / LIG



18/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

Is that all?

In many games, the dynamics are neither recurrent, nor pointwise convergent
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Universal convergence guarantees

Can we characterize the limiting behavior of the FTRL dynamics?

Limit sets
The limit set of a trajectory X(t) is the set of all its limit points, i.e.,

L(X) ∶=⋂t≥ cl{X(s) ∶ s ≥ t} = {x ∈ X ∶ X(tn)→ x for some sequence tn →∞}

Equivalently, L(X) is the smallest subset of X such that dist(L, X(t))→  as t →∞

P. Mertikopoulos CNRS / LIG
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Universal convergence guarantees

Can we characterize the limiting behavior of the FTRL dynamics?

Limit sets
The limit set of a trajectory X(t) is the set of all its limit points, i.e.,

L(X) ∶=⋂t≥ cl{X(s) ∶ s ≥ t} = {x ∈ X ∶ X(tn)→ x for some sequence tn →∞}

Equivalently, L(X) is the smallest subset of X such that dist(L, X(t))→  as t →∞

Examples
▸ Nash equilibria # Battle of the Sexes, coordination/anti-coordination games, …

▸ Periodic orbits # Matching Pennies, min-max games, …

▸ Heteroclinic cycles # chair game, …

▸ ⋯
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Universal convergence guarantees

Can we characterize the limiting behavior of the FTRL dynamics?

Limit sets
The limit set of a trajectory X(t) is the set of all its limit points, i.e.,

L(X) ∶=⋂t≥ cl{X(s) ∶ s ≥ t} = {x ∈ X ∶ X(tn)→ x for some sequence tn →∞}

Equivalently, L(X) is the smallest subset of X such that dist(L, X(t))→  as t →∞

Theorem (Boone & M, 2022)

The limit setL of any solution trajectory x(t) = Q(y(t)) of (FTRL-C) is characterized by the following properties:
▸ Minimality: L does not contain any proper attractors
▸ Resilience: every deviation x fromL is unilaterally nullified by some element x∗ ofL, i.e.,

u i(x∗) ≥ u i(x i ; x∗−i) for all i ∈N
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Outline

1 Background & Prelims

2 Learning in continuous time

3 Learning in discrete time

4 Meetings
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Learning in discrete time

Sequence of events — discrete time

Require: finite game Γ ≡ Γ(N ,A, u)
repeat

At each epoch n = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection

Observe mixed payoff vector v i(Xn) # feedback phase

until end

Defining elements

▸ Time: n = , , . . .
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: mixed payoff vectors

P. Mertikopoulos CNRS / LIG
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Learning in discrete time

Sequence of events — discrete time

Require: finite game Γ ≡ Γ(N ,A, u)
repeat

At each epoch n = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection

Observe pure payoff vector v i(an) # feedback phase

until end

Defining elements

▸ Time: n = , , . . .
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: pure payoff vectors
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Learning in discrete time

Sequence of events — discrete time

Require: finite game Γ ≡ Γ(N ,A, u)
repeat

At each epoch n = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection

Observe realized payoff u i(an) # feedback phase

until end

Defining elements

▸ Time: n = , , . . .
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: realized payoffs
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The feedback process

Types of feedback

From best to worst (more to less info):

▸ Mixed payoff vectors: v i(Xn) # deterministic vector feedback

▸ Pure payoff vectors: v i(an) # stochastic vector feedback

▸ Bandit / Payoff-based: u i(an) # stochastic scalar feedback

P. Mertikopoulos CNRS / LIG
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The feedback process

Types of feedback

From best to worst (more to less info):

▸ Mixed payoff vectors: v i(Xn) # deterministic vector feedback

▸ Pure payoff vectors: v i(an) # stochastic vector feedback

▸ Bandit / Payoff-based: u i(an) # stochastic scalar feedback

Example (RPS)
▸ Player i : play x i = (/, /, /) ; draw R
▸ Player −i : play x i = (/, /, /) ; draw P

Full feedback (mixed payoff vectors)

v i(x i ; x−i)   

P. Mertikopoulos CNRS / LIG
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The feedback process

Types of feedback

From best to worst (more to less info):

▸ Mixed payoff vectors: v i(Xn) # deterministic vector feedback

▸ Pure payoff vectors: v i(an) # stochastic vector feedback

▸ Bandit / Payoff-based: u i(an) # stochastic scalar feedback

Example (RPS)
▸ Player i : play x i = (/, /, /) ; draw R
▸ Player −i : play x i = (/, /, /) ; draw P

Realization-based feedback (pure payoff vectors)

v i(R ;P) −  
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The feedback process

Types of feedback

From best to worst (more to less info):

▸ Mixed payoff vectors: v i(Xn) # deterministic vector feedback

▸ Pure payoff vectors: v i(an) # stochastic vector feedback

▸ Bandit / Payoff-based: u i(an) # stochastic scalar feedback

Example (RPS)
▸ Player i : play x i = (/, /, /) ; draw R
▸ Player −i : play x i = (/, /, /) ; draw P

Bandit feedback (payoff-based)

u i(R ;P) − 7 7
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The feedback process

Types of feedback

From best to worst (more to less info):

▸ Mixed payoff vectors: v i(Xn) # deterministic vector feedback

▸ Pure payoff vectors: v i(an) # stochastic vector feedback

▸ Bandit / Payoff-based: u i(an) # stochastic scalar feedback

Features:

▸ Vector (mixed / pure payoff vecs) vs. Scalar (bandit)
▸ Deterministic (mixed payoff vecs) vs. Stochastic (pure payoff vecs, bandit)

+ Randomness defined relative to history of playFn ∶= F(X , . . . , Xn)
+ Other feedback models also possible (noisy / delayed observations,…)
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From payoffs to payoff vectors

How to estimate the payoff u i(a i ; a−i ,n) of an unplayed action a i ≠ a i ,n?

Definition (Importance weighted estimators)

The importance weighted estimator of a vector v ∈ RA relative to a mixed strategy x ∈ ∆(A) is defined as

v̂a =
1a

xa
va =
⎧⎪⎪⎨⎪⎪⎩

va/xa if a is drawn

 otherwise
(IWE)

Statistical properties of (IWE)

▸ Unbiased:
Ex[v̂a] = va

▸ Second moment:

Ex[v̂a] =
va
xa

P. Mertikopoulos CNRS / LIG
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The oracle model

Definition (Black-box oracle)

A stochastic first-order oracle of v(Xn) is a random (or deterministic) vector of the form

v̂n = v(Xn) +Un + bn (SFO)

where Un is zero-mean and bn = E[v̂n ∣Fn] − v(Xn) is the bias of v̂n .

Examples
▸ Mixed payoff vectors: v̂ i ,n = v i(Xn) # noise Un = ; bias bn = 

▸ Pure payoff vectors: v̂ i ,n = v i(an) # noise Un =O(); bias bn = 

▸ Payoff-based: v̂ i ,n =
u i(an)

P(a i ,n = a i)
ea i ,n # noise Un =O(/minai x i a i ,n); bias bn = 
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The oracle model

Definition (Black-box oracle)

A stochastic first-order oracle of v(Xn) is a random (or deterministic) vector of the form

v̂n = v(Xn) +Un + bn (SFO)

where Un is zero-mean and bn = E[v̂n ∣Fn] − v(Xn) is the bias of v̂n .

Examples
▸ Mixed payoff vectors: v̂ i ,n = v i(Xn) # noise Un = ; bias bn = 

▸ Pure payoff vectors: v̂ i ,n = v i(an) # noise Un =O(); bias bn = 

▸ Payoff-based: v̂ i ,n =
u i(an)

P(a i ,n = a i)
ea i ,n # noise Un =O(/minai x i a i ,n); bias bn = 
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Exponential weights redux

Algorithm Exponential weights in discrete time (EXPWEıGHT)

Require: finite game Γ ≡ Γ(N ,A, u); stochastic first-order oracle v̂

Initialize: Yi ∈ RAi , i = , . . . ,N

for all n = , , . . . all players i ∈ N do simultaneously

set X i ,n ∝ exp(Yi ,n) # mixed strategy

play a i ,n ∼ X i ,n # choose action

get v̂ i ,n ∈ RAi # receive feedback

set Yi ,n+ ← Yi ,n + γn v̂ i ,n # update scores

end for

Basic idea:

▸ Score actions by aggregating payoff vector estimates provided by oracle
▸ Choose actions with probability exponentially proportional to their scores
▸ Rinse / repeat
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Example 1: ExpWeight with mixed payoff vector observations

If players observe mixed payoff vectors:
v̂ i ,n = v i(X i ,n ; X−i ,n)

Oracle features:

▸ Deterministic: no randomness!
▸ Bias: Bn = 
▸ Variance: σn = 
▸ Second moment: Mn = O()

+ Also known as MULTıPLıCATıVE WEıGHTS UPDATE 2 Arora et al. (2012)
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Example 2: ExpWeight with pure payoff vector observations

If players observe pure payoff vectors:
v̂ i ,n = v i(a i ,n ; a−i ,n)

Oracle features:

▸ Stochastic: random action selection
▸ Bias: Bn = 
▸ Variance: σn = O()
▸ Second moment: Mn = O()

+ Also known as HEDGE 2 Auer et al. (1995), Auer et al. (2002)
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Example 3: ExpWeight with bandit feedback

If players observe realized payoffs:

v̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n

Oracle features:

▸ Stochastic: random action selection
▸ Bias: Bn = 
▸ Variance: σn = O(/X i a i ,n)
▸ Second moment: Mn = O(/X i a i ,n)

+ Also known as EXP3 2 Auer et al. (1995), Auer et al. (2002)
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Example 4: ExpWeight with bandit feedback

If players observe realized payoffs:

v̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n

Oracle features:

▸ Stochastic: random action selection
▸ Explicit exploration: draw a i ,n ∼ X i ,n with prob.  − δn , otherwise uniformly
▸ Bias: Bn = O(δn)
▸ Variance: σn = O(/δn)
▸ Second moment: Mn = O(/δn)

+ Also known as EXP3 WıTH EXPLıCıT EXPLORATıON 2 Shalev-Shwartz (2011), Lattimore & Szepesvári (2020)
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Example 5: Optimistic ExpWeight

If players are optimistic:¹ 2 Rakhlin & Sridharan (2013)

v̂ i ,n = v i(X i ,n+/ ; X−i ,n+/)

Oracle features:

▸ Deterministic: no randomness
▸ Bias: Bn = v(Xn+/) − v(Xn) = O(γn)
▸ Variance: σn = 
▸ Second moment: Mn = O()

¹Feedback obtained via the sequence

Yn+/ = Yn + γnvn(Xn−/) X i ,n+/ ∝ exp(Yi ,n+/) Yn+ = Yn + γnv(Xn+/)

P. Mertikopoulos CNRS / LIG



30/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

Follow the regularized leader

Follow the regularized leader

Yi ,n+ = Yi ,n + γn v̂ i ,n
X i ,n+ = Q i(Yi ,n+) ≡ argmax

x i∈Xi

{⟨Yi ,n+ , x i⟩ − h i(x i)} (FTRL)

2 Shalev-Shwartz & Singer (2006), Nesterov (2009)

▸ Generalized version of “follow the regularized leader”

▸ γn >  is the method’s step-size # To be specialized later

▸ v̂ i ,n is an stochastic first-order oracle (SFO) model for v i(Xn) # To be specialized later

▸ Every player’s regularizer h i ∶Xi → R is continuous on Xi , differentiable on riXi , and strongly convex on Xi

h i(x′i) ≥ h i(x i) + ⟨∇h i(x i), x′i − x i⟩ + (K i/)∥x′i − x i∥
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Evolution of mixed strategies: Examples

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Congestion Game

Figure. EXPWEıGHT with constant step-size
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Evolution of mixed strategies: Examples

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Battle of the Sexes

Figure. EXPWEıGHT with constant step-size
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Evolution of mixed strategies: Examples

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Matching Pennies

Figure. EXPWEıGHT with constant step-size
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Evolution of mixed strategies: Examples

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Prisoner's Dilemma

Figure. EXPWEıGHT with constant step-size
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Evolution of mixed strategies: Examples

What does the sequence of play look like?

Figure. EXPWEıGHT with constant step-size
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Evolution of mixed strategies: Examples

What does the sequence of play look like?

Figure. EXPWEıGHT with constant step-size
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Notions of stability

Definition (Stochastic stability)

x∗ ∈ X is stochastically stable under Xn if, for every confidence level δ >  and every neighborhood U of x∗ , there
exists a neighborhood U of x∗ such that

P(Xn ∈ U for all n = , , . . . ∣ X ∈ U) ≥  − δ

# Intuition: with high probability, if Xn starts near x∗ , it remains nearby

Definition (Stochastic asymptotic stability)
▸ x∗ ∈ X is attracting if, for every confidence level δ > , there exists a neighborhood U of x∗ such that

P(Xn → x∗ as n →∞ ∣ X ∈ U) ≥  − δ

▸ x∗ ∈ X is stochastically asymptotically stable if it is stochastically stable and attracting.

# Intuition: with high probability, if Xn starts near x∗ then, it remains nearby and eventually converges to x∗
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The long-run behavior of regularized learning

Theorem
2 Assume: All players run (FTRL) with step-size γn and oracle parameters bn (bias) andUn (noise) such that:

(A1) γn = γ/np for some p ∈ (, ] 3 ok for all models

(A2) bn = O(/nb) for some b >  3 ok for all models
(A3) E[∥Un∥q] = O(/nr) for some q > , r < / 3 ok for all models

+ Then: the sequence Xn generated by (FTRL) enjoys the following properties

(P1) If Xn converges, its limit is a Nash equilibrium 2 M& Zhou (2019)

(P2) If x∗ is stochastically stable, it is a Nash equilibrium 2 Giannou et al. (2021)

(P3) x∗ is stochastically asymptotically stable if and only if it is a strict Nash equilibrium 2 Giannou et al. (2021)

(P4) If p > / and G is a congestion game, then Xn converges to a Nash equilibrium (a.s.) 2 Héliou et al. (2017)
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Rate of convergence

Theorem (Giannou et al., 2021)
2 Assume: All players run EXPWEıGHT with step-size γn and oracle parameters bn andUn as before

+ Then: if x∗ is a strict Nash equilibrium and Xn converges to x∗ , we have

∥Xn − x∗∥ ≤ ∑
a∉supp(x∗)

exp(A− B
n

∑
k=

γk)

where A, B >  are positive constants.
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Universal convergence guarantees

Can we characterize the limiting behavior of (FTRL)?

Limit sets
The limit set of a sequence Xn , n = , , . . . , is the set of all its limit points, i.e.,

L(X) ∶=⋂∞n= cl{Xk ∶ k ≥ n} = {x ∈ X ∶ Xnk → x for some sequence nk →∞}

Equivalently, L(X) is the smallest subset of X such that dist(L, Xn)→  as n →∞

Theorem (Boone & M, 2022)
2 Assume: All players run EXPWEıGHT with step-size γn and oracle parameters bn andUn as before.

+ Then: With probability , the limit setL of (FTRL) is characterized by the following properties:
▸ Minimality: L does not contain any proper attractors
▸ Resilience: every deviation x fromL is unilaterally nullified by some element x∗ ofL, i.e.,

u i(x∗) ≥ u i(x i ; x∗−i) for all i ∈N
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L(X) ∶=⋂∞n= cl{Xk ∶ k ≥ n} = {x ∈ X ∶ Xnk → x for some sequence nk →∞}

Equivalently, L(X) is the smallest subset of X such that dist(L, Xn)→  as n →∞

Theorem (Boone & M, 2022)
2 Assume: All players run EXPWEıGHT with step-size γn and oracle parameters bn andUn as before.

+ Then: With probability , the limit setL of (FTRL) is characterized by the following properties:
▸ Minimality: L does not contain any proper attractors
▸ Resilience: every deviation x fromL is unilaterally nullified by some element x∗ ofL, i.e.,

u i(x∗) ≥ u i(x i ; x∗−i) for all i ∈N

P. Mertikopoulos CNRS / LIG
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Overview

I. Learning in continuous time
▸ Nash equilibrium Ô⇒ stationarity
▸ Lyapunov stability Ô⇒ equilibrium
▸ Asymptotic stability ⇐⇒ strict equilibrium
▸ Min-max games Ô⇒ Poincaré recurrence
▸ Limit sets ⇐⇒ minimally resilient

II. Learning in discrete time

7 Depends on feedback, step-size, … # stochastic ≠ deterministic

7 Nash equilibrium /Ô⇒ stationarity

3 Lyapunov stability Ô⇒ equilibrium

3 Asymptotic stability ⇐⇒ strict equilibrium # mixed equilibria are unstable

7 Min-max games /Ô⇒ Poincaré recurrence # convergence to the boundary

3 Limit sets Ô⇒ minimally resilient # converse does not hold

Open issues
▸ Adaptive step-size / learning rate? # challenging analysis

▸ Robustness to delays / corruptions / …
▸ Learning in continuous games?

P. Mertikopoulos CNRS / LIG



37/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

References I

[1] Arora, S., Hazan, E., and Kale, S. The multiplicative weights update method: A meta-algorithm and applications. Theory of Computing, 8(1):
121–164, 2012.

[2] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.

[3] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):
48–77, 2002.

[4] Boone, V. and Mertikopoulos, P. From equilibrium to resilience: Universal guarantees for the long-run behavior of learning in games, 2022.

[5] Flokas, L., Vlatakis-Gkaragkounis, E. V., Lianeas, T., Mertikopoulos, P., and Piliouras, G. No-regret learning and mixed Nash equilibria: They do not
mix. In NeurIPS ’20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.

[6] Giannou, A., Vlatakis-Gkaragkounis, E. V., and Mertikopoulos, P. Survival of the strictest: Stable and unstable equilibria under regularized
learning with partial information. In COLT ’21: Proceedings of the 34th Annual Conference on Learning Theory, 2021.

[7] Giannou, A., Vlatakis-Gkaragkounis, E. V., and Mertikopoulos, P. The convergence rate of regularized learning in games: From bandits and
uncertainty to optimism and beyond. In NeurIPS ’21: Proceedings of the 35th International Conference on Neural Information Processing Systems,
2021.

[8] Héliou, A., Cohen, J., and Mertikopoulos, P. Learning with bandit feedback in potential games. In NIPS ’17: Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017.

[9] Hofbauer, J. and Sigmund, K. Evolutionary game dynamics. Bulletin of the American Mathematical Society, 40(4):479–519, July 2003.

[10] Hofbauer, J., Sorin, S., and Viossat, Y. Time average replicator and best reply dynamics. Mathematics of Operations Research, 34(2):263–269, May
2009.

P. Mertikopoulos CNRS / LIG



38/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

References II

[11] Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cambridge University Press, Cambridge, UK, 2020.

[12] Littlestone, N. and Warmuth, M. K. The weighted majority algorithm. Information and Computation, 108(2):212–261, 1994.

[13] Mertikopoulos, P. and Zhou, Z. Learning in games with continuous action sets and unknown payoff functions. Mathematical Programming, 173
(1-2):465–507, January 2019.

[14] Mertikopoulos, P., Papadimitriou, C. H., and Piliouras, G. Cycles in adversarial regularized learning. In SODA ’18: Proceedings of the 29th annual
ACM-SIAM Symposium on Discrete Algorithms, 2018.

[15] Nash, J. F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA, 36:48–49, 1950.

[16] Nesterov, Y. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221–259, 2009.

[17] Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In NIPS ’13: Proceedings of the 27th International
Conference on Neural Information Processing Systems, 2013.

[18] Rustichini, A. Optimal properties of stimulus-response learning models. Games and Economic Behavior, 29(1-2):244–273, 1999.

[19] Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107–194, 2011.

[20] Shalev-Shwartz, S. and Singer, Y. Convex repeated games and Fenchel duality. In NIPS’ 06: Proceedings of the 19th Annual Conference on Neural
Information Processing Systems, pp. 1265–1272. MIT Press, 2006.

[21] Sorin, S. Exponential weight algorithm in continuous time. Mathematical Programming, 116(1):513–528, 2009.

[22] Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences, 1964.

[23] Taylor, P. D. and Jonker, L. B. Evolutionary stable strategies and game dynamics. Mathematical Biosciences, 40(1-2):145–156, 1978.

P. Mertikopoulos CNRS / LIG



38/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

Outline

1 Background & Prelims

2 Learning in continuous time

3 Learning in discrete time

4 Meetings

P. Mertikopoulos CNRS / LIG



39/40

Background & Prelims Learning in continuous time Learning in discrete time Overview References Meetings

Alpine Game Theory Symposium

# If you like mountains and/or games; https://agts-2023.weebly.com
P. Mertikopoulos CNRS / LIG
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Games, Learning, and Networks

# In the tropics; https://ims.nus.edu.sg/events/games-learning-and-networks/
P. Mertikopoulos CNRS / LIG

https://ims.nus.edu.sg/events/games-learning-and-networks/
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