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Finite normal-form games

▶ Some properties hold for all finite games.
▶ The mixed extension of every finite game admits a Nash equilibrium.

▶ Some properties hold generically for finite games.
▶ Generically, finite games have a finite and odd number of Nash

equilibria.
▶ Some properties are neither generically true nor generically false.
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pure Nash equilibria (PNE)

▶ Why are we interested in pure Nash equilibria?
▶ Pure equilibria have a stronger epistemic foundation than mixed

equilibria.

▶ Neither presence nor absence of pure equilibria is a generic property.
▶ How serious is the problem of lack of pure equilibria?
▶ One way to address the issue is to consider games with random

payoffs.



PNE

▶ Why are we interested in pure Nash equilibria?
▶ Pure equilibria have a stronger epistemic foundation than mixed

equilibria.
▶ Neither presence nor absence of pure equilibria is a generic property.

▶ How serious is the problem of lack of pure equilibria?
▶ One way to address the issue is to consider games with random

payoffs.



PNE

▶ Why are we interested in pure Nash equilibria?
▶ Pure equilibria have a stronger epistemic foundation than mixed

equilibria.
▶ Neither presence nor absence of pure equilibria is a generic property.
▶ How serious is the problem of lack of pure equilibria?
▶ One way to address the issue is to consider games with random

payoffs.



Random games

▶ If we fix the set of players [n] and the strategy set [K ]i for each
player i , a normal-form game is a point in RH with

H = |[n]|
∏
i∈[n]

|[K ]i |.

▶ A random game can be seen as a random vector with values in RH .
▶ This idea has been around, in one form or another for at least 65

years (Goldman(1957)).



How to pick a game at random?

▶ Most of the literature fixes the set of players and the set of
strategies for each player and assumes that the payoffs are i.i.d. from
a continuous distribution.

▶ Exact results are cumbersome.
▶ Asymptotic results are easier to describe.
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Asymptotic results

▶ Arratia, Goldstein, Gordon (1989) proved that, if the payoffs are
i.i.d. from a continuous distribution, when the number of players is
large, the random number of PNE has a distribution that is
approximately Poisson(1).

▶ Powers (1990) proved a similar result when the payoffs are i.i.d. from
a continuous distribution and the number of strategies for at least
two players is large.

▶ In both cases the technique that was used to prove the result was
the Chen-Stein method.
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Robustness

▶ How robust are these results?

▶ Not much.
▶ Rinott and Scarsini (2000) proved that if payoff profiles are i.i.d. but

dependence is allowed within the same payoff profile, then
asymptotically in either the number of players or the number of
strategies:
▶ When there is negative dependence, the number of pure Nash

equilibrium goes to zero,
▶ When there is independence, the number of pure Nash equilibria is

Poisson(1),
▶ When there is positive dependence, the number of pure Nash

equilibria diverges and a CLT holds.
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Robustness, continued

▶ Other form of robustness have been studied.
▶ Daskalakis et al. (2011) have looked at graphical games with

random payoffs and at the role of the graph on the number of pure
Nash equilibria.

▶ Here we test robustness in different directions.
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Robustness, continued

▶ Amiet et al. (2021) considered games with N players and 2
strategies for each player where the random payoffs are i.i.d. but
their distribution may have atoms.

▶ They proved that the behavior of the number of pure Nash equilibria
depends on one single parameter α: the probability of ties in the
payoffs.

▶ Whenever α > 0, the number of pure Nash equilibria diverges.
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Figure 1: Number of PNE for 2 ≤ N ≤ 15, α = 0.5, with 100 trials per N.
Diamond markers represent average number per value of N, and the curve
(1.5)N is included for comparison.
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Figure 2: CLT result for N = 15, α = 0.9, with 500 trials.



best-response dynamics (BRD)

▶ Amiet et al. (2021) studied also the behavior of best-response
dynamics in this class of random games.

▶ They showed interesting phase-transition phenomena.
▶ They used percolation techniques to prove their results.



The model

▶ We consider two-person normal-form games.
▶ For i ∈ {A,B}, player i ’s action set is [K i ],
▶ U i : [KA]× [KB] → R is player i ’s payoff function.
▶ The game is defined by the payoff bimatrix

U := (UA,UB).

▶ For i ∈ {A,B},

U i := (U i (a, b))a∈[KA],b∈[KB].



pure Nash equilibria

▶ A pure Nash equilibrium of the game is a pair (a∗, b∗) of actions
such that, for all a ∈ [KA], b ∈ [KB]

UA(a∗, b∗) ≥ UA(a, b∗) and UB(a∗, b∗) ≥ UB(a∗, b).



Potential games

▶ A game is a potential game if there exists a potential function
Ψ: [KA]× [KB] → R such that for all a, a′ ∈ [KA], for all
b, b′ ∈ [KB],

UA(a, b)− UA(a′, b) = Ψ(a, b)−Ψ(a′, b),

UB(a, b)− UB(a, b′) = Ψ(a, b)−Ψ(a, b′).

▶ Potential games admit pure Nash equilibria.
▶ Every potential game is strategically equivalent to a common

interest game, for instance to the game where UA = UB = Ψ.



Best-response dynamics
▶ (a0, b0) is a starting strategy profile.
▶ For each t ≥ 0 BRD(t) is a process on [KA]× [KB] such that

BRD(0) = (a0, b0)

and, if BRD(t) = (a′, b′), then, for t even,

BRD(t + 1) = (a′′, b′),

where a′ ̸= a′′ ∈ argmaxa∈[KA] U
A(a, b′), if such an action a′′ exists,

otherwise

BRD(t + 1) = BRD(t);

for t odd,

BRD(t + 1) = (a′, b′′),

where b′ ̸= b′′ ∈ argmaxb∈[KB] U
B(a′, b), if such an action b′′ exists,

otherwise

BRD(t + 1) = BRD(t).



Best-response dynamics, continued

▶ If for some t̂,

BRD(t̂) = BRD(t̂ + 1) = BRD(t̂ + 2) = (a∗, b∗),

then BRD(t) = (a∗, b∗) for all t ≥ t̂ and (a∗, b∗) is a PNE of the
game.

▶ The algorithm stops when it visits an action profile for the second
time.

▶ If this profile is the same as the one visited at the previous time,
then a PNE has been reached.



Traps

Definition
A trap is a finite set T of action profiles such that
(a) |T | ≥ 2,
(b) if BRD(t) ∈ T , then BRD(t + 1) ∈ T ;
(c) for every (a, b) ∈ T , there exists t such that BRD(t + k|T |) = (a, b),

for every k ∈ N.



Traps and pure Nash equilibria

▶ For every trap T we have |T | ≥ 4 and |T | even.
▶ For every game (UA,UB) and every initial profile (a, b), the BRD

eventually visits a PNE or a trap in finite time, say τ .
▶ Even if the game admits PNE, there is no guarantee that a BRD

reaches one of them; it could cycle over a trap.
▶ If the game is a potential game, then a BRD always reaches a PNE.



Interpolating i.i.d. and potential random games

▶ Each entry in U has a continuous distribution function F .
▶ Without loss of generality, take F uniform distribution on [0, 1].
▶ Start with (UA,UB), where all the entries are i.i.d. with distribution

F .
▶ Then, for each action profile (a, b), with probability p replace

UB(a, b) with UA(a, b).
▶ For every pair (a, b),

▶ with probability 1 − p, the random payoffs UA(a, b) and UB(a, b) are
independent,

▶ with probability p, we have UA(a, b) = UB(a, b).



Interpolation, continued

▶ The larger p, the closer the game is to a potential game.
▶ The smaller p, the closer the game is to a random game with i.i.d.

payoffs.
▶ The game whose payoff bimatrix is obtained as above will be

denoted by U(p).
▶ The analysis of this class of games is quite complicated for fixed

KA,KB.
▶ We take an asymptotic approach, letting the number of actions

grow.
▶ We consider a sequence (Uk)k∈N of payoff bimatrices, where the

numbers of actions in game Uk are KA
k ,K

B
k , and these two integer

sequences are increasing in k and diverge to ∞.
▶ We allow the number of actions of the two players to diverge at

different speeds.



Number of pure Nash equilibria

Theorem
If W is the number of PNE in the game U(p), then

E[W ] = p
KAKB

KA + KB − 1
+ (1 − p).



Asymptotics

Corollary
If KB

k = αkK
A
k , with αk → α, then

Wk

KA
k

P−→ α

α+ 1
p.

In particular, if KA
k = KB

k = Kk , then

Wk

Kk

P−→ p

2
.



More generally

▶

hk = ω(gk) if lim
k→∞

hk
gk

= ∞,

Theorem
If pk = ω(1/

√
Kk), then

KA
k + KB

k

pkKA
k K

B
k

Wk
P−→ 1.



BRD in potential games

▶ NEk is the (random) set of PNE in the game Uk(pk).

Theorem
If pk = 1 and τNE

k := min{t : BRDk(t) ∈ NEk} is the first time the
process BRDk(t) visits a PNE, then

P
(
τNE
k > t

)
=

t∏
j=0

(1 − qj,k),



continued
▶

qt,k := P
(
τNE
k = t | τNE

k ≥ t
)

for all t ∈ {0, . . . , 2Kk − 2}.

▶

q0,k =
1

KA
k + KB

k − 1
,

q1,k =
KA
k − 1

KA
k + KB

k − 2
,

and, for t ≥ 2,

qt,k =
rk(t − 1)
rk(t)

,

where

rk(t) :=

⌈
t + 1

2

⌉
KA
k +

⌊
t + 1

2

⌋
KB
k −

⌊
t + 1

2

⌋⌈
t + 1

2

⌉
, for t ≥ 1.



Mean and variance

Theorem
If pk = 1 and KA

k = KB
k , for every k ∈ N, then

lim
k→∞

E
[
τNE
k

]
= e−1

lim
k→∞

Var
[
τNE
k

]
≈ 0.767.



General case

▶ Amiet et al. (2021) showed that, when p = 0 and KA
k = KB

k , with
high probability the BRD does not converge to the set NEk .

▶ A tiny bit of correlation in the players payoffs, namely pk > 0, is
enough to dramatically change this phenomenon.

Theorem
Fix a sequence pk . If

lim
k→∞

log(pk)

log(KA
k ∧ KB

k )
= 0,

then

lim
k→∞

P
(
τNE
k < ∞

)
= 1.

▶ If pk is not too close to zero, an equilibrium will be found in time
that is of order p−O(1)

k .



Fixed p

▶ If pk = p > 0, for all k ∈ N, then a sufficiently large but constant
time is enough to find an equilibrium with high probability.

Corollary
Let pk = p ∈ (0, 1), for all k ∈ N, and KA

k ∧ KB
k → ∞. Then, for all

ε > 0, there exists some T = T (ε) such that

lim
k→∞

P
(
τNE
k < T

)
> 1 − ε.



Take-home

▶ We proposed a parametric class of probability measures on a space
of finite normal-form games that interpolates between the extreme
cases of i.i.d. payoffs and random potential games.

▶ We showed that the behavior of the i.i.d. case is different from all
the other cases both in terms of number of pure Nash equilibria and
of best-response dynamics.



Open problems

▶ Up to now the literature has analyzed the cases of many players and
two actions or two players and many actions.

▶ The two cases required different tools.
▶ It would be nice to find the proper tools to analyze the general case

of many players and many actions.
▶ The real challenge is to develop a general paradigm to choose a

suitable probability measure on a space of games.



Thank you!
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