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Introduction
Spatial patterns are widely present in different natural dynamical sys-
tems. Their occurrence has been studied for quite a long time with sev-
eral applications in different fields, from hydrodynamic systems (e.g.
Rayleigh-Bénard convection), plant ecosystems (e.g. dryland and ripar-
ian vegetation), to biochemical and neural systems.
The study of patterns can offer useful information on the underlying pro-
cesses causing possible changes of the system. Deterministic mechanisms
in pattern formation have been widely studied [1] with a number of ap-
plications to environmental processes (see the review by Borgogno et al.
2009 [2]).
Stochastic models have only been developed more recently [3, 4]. They
explain pattern formation as a noise-induced effect in the sense that pat-
terns can emerge as a consequence of the randomness of the system’s
fluctuations.
Here, we propose an overview of the main stochastic processes related
to the presence of a Gaussian white noise. In particular, we focus on the
main components playing a crucial role in noise-induced pattern forma-
tion [5]: (i) a linear local dynamics, which damps the system to zero, (ii)
an additive noise, which avoids the deterministic dynamics to decay, and
(iii) a diffusive spatial coupling term, which provides spatial coherence.
We call patterned a field that exhibits an ordered state with organized
spatial structures. This general definition, including both periodic as well
as multiscale patterns, is often adopted in the environmental sciences,
where the number of different processes can prevent the organization of
the system with a clear dominant wavelength.

Stochastic Modeling: General Framework
The spatio-temporal dynamics of the state variable, φ, can be expressed,
at any point r = (x, y), as

∂φ

∂t
= f(φ) + g(φ)ξ(r, t) +DL[φ] + h(φ)F (t)

• f(φ): local dynamics (in the absence of spatial interactions with
other points of the domain);

• g(φ)ξ: noise component, where ξ is a zero-mean Gaussian white (in
space and time) noise with intensity s;

• DL[φ]: spatial coupling. L represents the Laplacian (∇2) or the
Swift-Hohenberg (∇2 + k20)

2 coupling (k0 is the selected wavenum-
ber). D is the strength of the spatial coupling;

• h(φ)F (t): time-dependent forcing term, which can be in general
modulated by a function, h(φ), of the local state of the system.

Additive Noise
∂φ

∂t
= −φ+D∇2φ+ ξ
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(top) Numerical simulation of the spatial field φ at t = 0, 10, 100, withD = 50, s =
5. (below) Pdf (solid: numerical simulation, dotted: classic mean-field analysis,
dashed: corrected mean-field analysis) and azimuthal-averaged power spectrum
S (solid: numerical simulations, dotted: structure function) of φ at t = 100.

∂φ

∂t
= −φ+D∇2φ+ ξ + µ

(left) Aerial photograph of vegetation pattern in New Mexico (34◦47’N, 108◦21’O)
and (right) numerical simulation at t = 100, D = 80, s = 2, µ = 0.1. Google Earth
imagery c© Google Inc. Used with permission.

Multiplicative Noise
∂φ

∂t
= −φ− φ3 + φξ −D(∇2 + k20)
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(top) Numerical simulations of the spatial field φ at t = 0, 10, 100, D = 15, s = 5,
k0 = 1. (below) Pdf and azimuthal-averaged power spectrum S of φ at t = 100.

Stochastic Resonance
∂φ

∂t
= [−k + α sin(ωt)]φ− φ3 −D(k20 +∇2)2φ+ ξ

Numerical simulations of the spatial field φ with α = k0 = 1, k = 0.1, ω/2π =

0.012, and D = 1. The columns refer to 110, 140, 195 time units, the two rows
correspond to s = 2.5 · 10−2 and s = 2.5, respectively.

Conclusions
Three main components play a fundamental role in the mechanism
of noise-induced pattern formation: (i) a deterministic local dynamics,
which tends to drive the field variable to a uniform steady state, (ii) an ad-
ditive noise able to maintain the dynamics away from the uniform steady
state, and (iii) a spatial coupling term which provides spatial coherence.
For high enough multiplicative noise intensity, the spatial coupling ex-
ploits the initial instability giving rise to ordered structures.
The presence of a temporal periodicity leads to oscillating patterns which
periodically emerge and disappear.
Since noisy fluctuations are always present in real systems and pattern
formation, here described, is completely noise-induced, randomness can
actually promote spatial coherence in different environmental processes.
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