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Spatial patterns

@ Patterns are widely present in natural dynamical systems:
= hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant
ecosystems (e.g. dryland and riparian vegetation), biochemical
and neural systems, etc;

@ Useful information on the processes causing changes of the sys-
tem. For example, vegetation patterns have been related to:

e the nature of the interactions among plant individuals (Lefever & Leje-
une 1997, Barbier et al. 2007);

e the landscape’s susceptibility to desertification (von Hardenberg et al.
2001, D’Odorico et al. 2005).

@ Deterministic models have been studied for quite a long time (Tur-
ing 1952, Cross & Hohenberg 1993) with a number of applications to en-
vironmental processes (Borgogno et al. 2009, von Hardenberg et al. 2010,
Manor & Shnerb 2008, Couteron & Lejeune 2001, Rietkerk & Van de Koppel 2008,
Kefi et al. 2007, Lefever et al. 2009).
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Noise-induced pattern formation

Stochastic models have only been developed more recently (Garcia
& Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of
noisy fluctuations.

= An increase of the noise can produce a more regular be-
haviour (counterintuitivel).

Models of noise-induced pattern formation mainly involve multi-
plicative noise (Van den Broeck et al. 1994, Garcia & Ojalvo 1996, Sieber et
al. 2007) along with a high-order diffusion term (Garcia & Ojalvo 1993);

Additive noise has often been investigated in non-linear models
(Zaikin & Schimansky-Geier 1998, Dutta et al. 2005), and with the concur-
rent action of a multiplicative noise (Landa et al. 1998, Zaikin et al. 1999);

Since these models use complicated non-linear terms for the local
dynamics and the multiplicative noise terms, their process-based
interpretation is often not straightforward.
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Stochastic mechanisms

@ Overview of the main stochastic processes related to the pres-
ence of a Gaussian white noise. In particular, we focus on the
fundamental components able to induce spatial coherence:

e alinear local dynamics, which damps the system to zero;
@ an additive noise, which avoids the deterministic dynamics to decay;
e a diffusive spatial coupling term, which provides spatial coherence.

@ Gaussian white (in time and space) noise:
e Valid assumption for the unavoidable randomness of real systems;
e Simplification of analytical and numerical calculations;
o Rich literature (unlike Gaussian colored or dichotomous noise).

@ We call patterned a field that exhibits an ordered state with or-
ganized spatial structures. This definition is often adopted in the
environmental sciences, where the concomitance of many pro-
cesses can prevent the organization of the system with a clear
dominant wavelength.
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Stochastic modeling: general framework

Temporal evolution of the state variable ¢ at any point r = (x, y):
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@ f(¢): local dynamics (in the absence of spatial interactions with

other points of the domain) = local rate of increase/decrease
(vegetation mortality rate);

f(¢) + 9(0)E(r, t) + DLIG] + h(9)F(1)

@ g(¢)¢: noise component, £ zero-mean Gaussian white noise with
correlation (&(x, H)¢(x’, ') = so(x — x")é(t — t') and intensity s =
environmental disturbances (fires, rain, etc);

@ DL[¢]: spatial coupling. Laplacian (V?) or the Swift-Hohenberg
(V2 + k&) coupling (ko: selected wavenumber), D is the strength
of the spatial coupling = diffusion mechanisms (vegetation spatial
interactions);

@ h(¢)F(t): time-dependent forcing term, which can be modulated
by a function, h(¢), of the local state of the system = seasonal
phenomena (phreatic aquifer).
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@ —¢: linear decreasing term = Deterministic local dynamics;
@ DV?2¢: linear Laplacian (diffusive) operator = Spatial interactions;
@ ¢: white Gaussian zero-mean noise = Random fluctuations;

@ Noise-induced pattern formation = the deterministic dynamics
(& = 0) do not exhibit patterns;

@ Additive noise does not play the role of a precursor of a phase
transition in a deterministic system close to a bifurcation point,
since there is no bifurcation in the deterministic dynamics;

@ Analytical tools:

e Mean-field analysis (MFA): analytical expression of the pdf at steady
state. Classic MFA and a corrected version;

e Structure function (SF): prognostic tool able to assess the presence
of a selected wavelength in the spatial field;

Scarsoglio, Laio, Ridolfi, D’Odorico, submitted Phys. Rev. Lett. 2010.
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Simple stochastic model

% =—¢+DVPp+¢
@ —¢: linear decreasing term = Deterministic local dynamics;
@ DV?2¢: linear Laplacian (diffusive) operator = Spatial interactions;
@ ¢: white Gaussian zero-mean noise = Random fluctuations;

@ Noise-induced pattern formation = the deterministic dynamics
(& = 0) do not exhibit patterns;

@ Additive noise does not play the role of a precursor of a phase
transition in a deterministic system close to a bifurcation point,
since there is no bifurcation in the deterministic dynamics;

@ Numerical simulations:

e Heun’s predictor corrector scheme, 2D square lattice with 128x128
sites;

e periodic BCs, ICs given by uniformly distributed random numbers
between [-0.01, 0.01].

Scarsoglio, Laio, Ridolfi, D’Odorico, submitted Phys. Rev. Lett. 2010.
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Results

Steady and multiscale patterns

(top) Numerical simulation of ¢ at t = 0,10, 100, D = 50, s = 5. (below) Pdf (solid:
numerical simulation, dotted: classic MFA, dashed: corrected MFA) and azimuthal-
averaged power spectrum S (solid: numerical simulation, dotted: SF) of ¢ at t = 100.
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(top) Numerical simulation of ¢ at t = 100, s = 1, D = 1,10, 100 (left to right). (below)
Pdf of ¢ (solid: numerical simulation, dotted: classic MFA, dashed: corrected MFA).



Additive noise
(o1 }

Results

Comparison with vegetation pattern

o0 2
=6+ DVt £+



Additive noise
(o1 }

Results

Comparison with vegetation pattern

o0 2
=6+ DVt £+

@ —¢: local linear decreasing dynamics of the existing vegetation;



Additive noise
(o1 }

Results

Comparison with vegetation pattern

o0 2
=6+ DVt £+

@ —¢: local linear decreasing dynamics of the existing vegetation;
@ DV?2¢: vegetation’s ability to develop spatial interactions;



Additive noise
(o1 }

Results

Comparison with vegetation pattern

o0 2
=6+ DVt £+

@ —¢: local linear decreasing dynamics of the existing vegetation;
@ DV?2¢: vegetation’s ability to develop spatial interactions;
@ ¢+ p: random rain water availability;



Additive noise
(o1 }

Results

Comparison with vegetation pattern
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@ —¢: local linear decreasing dynamics of the existing vegetation;
@ DV?2¢: vegetation’s ability to develop spatial interactions;
@ ¢+ p: random rain water availability;

(left) Aerial photograph of vegetation pattern in New Mexico (34°47’N, 108°21’0) and
(right) numerical simulation at t = 100,a= -1, D =80, s =2, . = 0.1.
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High-order diffusion term: Swift-Hohenberg spatial coupling

Steady and periodic patterns

(left) Numerical simulation of ¢ at t = 100, s =1, D = 10, kg = 1. (right) Azimuthal-
averaged power spectrum S (solid: numerical simulation, dotted: SF).



Multiplicative noise
°

Stochastic model

Short-term instability and spatial coupling

oo

5t = [(0) + g(9)(r. 1) + DLI]



Multiplicative noise
°

Stochastic model

Short-term instability and spatial coupling

9 _

ot

@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(#)¢(r, t) + DL[Y]



Multiplicative noise
°

Stochastic model

Short-term instability and spatial coupling

9 _

ot

@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(#)¢(r, t) + DL[Y]

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;



Multiplicative noise
°

Stochastic model

Short-term instability and spatial coupling

% = f(¢) + g()&(r, 1) + DL[4]

@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;

e The spatial coupling exploits this initial instability, giving rise to the
pattern and stabilizing it.



Multiplicative noise
°

Stochastic model

Short-term instability and spatial coupling

9 _

ot

@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(#)¢(r, t) + DL[Y]

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;

e The spatial coupling exploits this initial instability, giving rise to the
pattern and stabilizing it.

@ For s < s, the system remains blocked in the disordered phase
and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;



Multiplicative noise
°

Stochastic model

Short-term instability and spatial coupling

9 _

ot

@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(#)¢(r, t) + DL[Y]

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;

e The spatial coupling exploits this initial instability, giving rise to the
pattern and stabilizing it.

@ For s < s, the system remains blocked in the disordered phase
and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;

@ For s > s, the spatial term can take advantage from the noise-
induced short-term instability and prevents the decay to zero. The
spatial coupling traps the system in a new ordered state.



Multiplicative noise
°

Stochastic model

Short-term instability and spatial coupling
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@ For s < s, the system remains blocked in the disordered phase
and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;

@ For s > s, the spatial term can take advantage from the noise-
induced short-term instability and prevents the decay to zero. The
spatial coupling traps the system in a new ordered state.



Multiplicative noise
°

Swift-Hohenberg spatial coupling

Steady and periodic patterns

0
00 =0~ ¢+ o6 - D(V* + Ko



Multiplicative noise
°

Swift-Hohenberg spatial coupling

Steady and periodic patterns
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(top) Numerical simulation of the spatial field ¢ at t = 0,10, 100, with D = 15, s = 5,
kg = 1. (below) Pdf and azimuthal-averaged power spectrum S at t = 100.

)
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Transient and multiscale patterns

S =~ — & + ¢ + DVZ¢

L
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(top) Numerical simulation of the spatial field ¢ at t = 0,10, 40, with D = 20, s = 4.
(below) Pdf and azimuthal-averaged power spectrum S at t = 40.
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Non-linear dynamics
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s
Numerical simulation of ¢. (left) Swift-Hohenberg spatial coupling at t = 100, D = 15,
s =5, kp = 1, and (right) Laplacian spatial coupling at t = 200, D = 20, s = 4.
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Non-linear dynamics

0o

a1 = —¢(1+ %) + (14 %)+ DL[9]

)

Numerical simulation of ¢. (left) Swift-Hohenberg spatial coupling at t = 100, D = 15,
s =5, kp = 1, and (right) Laplacian spatial coupling at t = 200, D = 20, s = 4.

Non-linearities do not change the pattern scenario, provided that the
interplay between short-term instability and spatial coupling remains
the same.
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% = [~k + asin(t)]¢ — 6> — DG + V)% + ¢

s =0.025

s=25

Numerical simulation of ¢ with « = kg =1, k = 0.1, w/27r = 0.012,and D = 1.
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Conclusions

@ Three main components play a fundamental role in the mecha-
nism of noise-induced pattern formation:

@ A deterministic local dynamics, which tends to drive the field vari-
able to a uniform steady state (this component is not able to explain
pattern formation);

@ An additive noise able to maintain the dynamics away from the uni-
form steady state;

o A spatial coupling term which provides spatial coherence.

@ For high enough multiplicative noise intensity, the spatial coupling
exploits the initial instability giving rise to ordered structures;

@ The presence of a temporal periodicity promotes oscillating pat-
terns which periodically emerge and disappeatr;

@ Since noisy fluctuations are always present in real systems and
pattern formation, here described, is completely noise-induced,
randomness can actually promote spatial coherence in different
environmental processes.
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