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Linear stability analysis of the 2D bluff-body wake

Stability analysis
Hydrodynamics stability is important in different fields (aerodynam-
ics, oceanography, environmental sciences, etc);

To understand the reasons for the breakdown of laminar flow;
To predict the transition to turbulence.

Modal theory
Flow asymptotically stable or unstable;
Discrete spectrum (not complete for unbounded flows);
Convective and absolute instability.

Initial-value problem
Temporal evolution of arbitrary disturbances;
Importance of the transient growth (e. g. by-pass transition);
Aim to understand the cause of any possible instability in terms of
the underlying physics.
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The two-dimensional bluff-body wake

Flow behind a circular cylinder:

⇒ Steady, incompressible and viscous;
Approximation of 2D asymptotic Navier-Stokes expansions (Belan
& Tordella, Phys. Fluids, 2003), 20 ≤ Re ≤ 100.
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The two-dimensional bluff-body wake
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The first Rcr as a possible measure of the entrainment length

Velocity Flow Rate Defect and Entrainment

Defect of the volumetric flow rate D:

D(x) =

∫ +∞

−∞
(1− U(x , y))dy

Entrainment E takes into account the variation of the defect of the
volumetric flow rate in the streamwise direction:

E(x) =

∣∣∣∣dD(x)

dx

∣∣∣∣
Tordella & Scarsoglio, Phys. Letters A, 2009.
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Stability Analysis
Results

Normal Mode Theory

The linearized perturbative equation in terms of stream function
ψ(x , y , t) is

∂t∇2ψ + (∂x∇2Ψ)ψy + Ψy∂x∇2ψ − (∂y∇2Ψ)ψx −Ψx∂y∇2ψ =
1

Re
∇4ψ

Normal mode hypothesis⇒ ψ(x , y , t) = ϕ(x , y , t) ei(h0x−σ0t)

ϕ(x , y , t) complex eigenfunction;
h0 = k0 + is0 complex wavenumber (k0 wavenumber, s0 spatial
growth rate);
σ0 = ω0 + ir0 complex frequency (ω0 frequency, r0 temporal growth
rate);

Convective instability: r0 < 0 for all modes, s0 < 0 for at least
one mode.
Absolute instability: r0 > 0, ∂σ0/∂h0 = 0 for at least one mode.
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Stability Analysis
Results

Stability analysis through multiscale approach

Slow variables: x1 = εx , t1 = εt , ε = 1/Re.

Hypothesis: ψ(x , y , t) and Ψ(x , y , t) are expansions in terms of ε:
(ODE dependent on ϕ0) + ε (ODE dependent on ϕ0, ϕ1) + O(ε2)
Order zero: homogeneous Orr-Sommerfeld equation

Aϕ0 = σ0Bϕ0 A = (∂2
y − h2

0)2 − ih0Re[u0(∂2
y − h2

0)− ∂2
y u0]

ϕ0 → 0, |y | → ∞ B = −iRe(∂2
y − h2

0)

∂yϕ0 → 0, |y | → ∞

⇒ eigenfunctions ϕ0 and a discrete set of eigenvalues σ0n.
First order: Non homogeneous Orr-Sommerfeld equation

Aϕ1 = σ0Bϕ1 +Mϕ0 M =
[
Re(2h0σ0 − 3h2

0u0 − ∂2
y u0) + 4ih3

0

]
∂x1

ϕ1 → 0, |y | → ∞ + (Reu0 − 4ih0)∂3
x1yy − Rev1(∂3

y − h2
0∂y ) + Re∂2

y v1∂y

∂yϕ1 → 0, |y | → ∞ + ih0Re
[
u1(∂2

y − h2
0)− ∂2

y u1

]
+ Re(∂2

y − h2
0)∂t1
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Perturbative hypothesis: saddle point sequence

For fixed values of x and Re, the saddle points (h0s, σ0s) of the
dispersion relation σ0 = σ0(h0, x ,Re) satisfy ∂σ0/∂h0 = 0;
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Global Pulsation
Comparison between present solution (accuracy ∆ω = 0.05), Ze-
bib’s numerical study (J. Eng. Math., 1987), Pier’s direct numeri-
cal simulations (J. Fluid Mech., 2002), Williamson’s experimental
results (Phys. Fluids, 1988).
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Exploratory Analysis of the Transient Dynamics
Asymptotic State

Formulation

Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Applied Math., 1990);

Base flow parametric in x and Re⇒ U(y ; x0,Re);
Laplace-Fourier transform in x and z directions, α complex, γ real;
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Perturbative equations

Perturbative linearized system:

∂2v̂
∂y2

− (k2 − α2
i + 2iαrαi )v̂ = Γ̂

∂Γ̂

∂t
= (iαr − αi )(

d2U
dy2

v̂ − UΓ̂) +
1

Re
[
∂2Γ̂

∂y2
− (k2 − α2

i + 2iαrαi )Γ̂]

∂ω̂y

∂t
= −(iαr − αi )Uω̂y − iγ

dU
dy

v̂ +
1

Re
[
∂2ω̂y

∂y2
− (k2 − α2

i + 2iαrαi )ω̂y ]

The transversal velocity and vorticity components are v̂ and ω̂y

respectively, Γ̂ is defined as Γ̃ = ∂x ω̃z − ∂z ω̃x .
Initial conditions:

ω̂y (0, y) = 0;
Γ̂(0, y) = e−y2

sin(y) or Γ̂(0, y) = e−y2
cos(y);

Boundary conditions: (û, v̂ , ŵ)→ 0 as y →∞.
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Measure of the Growth

Kinetic energy density e:

e(t ;α, γ) =
1
2

1
2yd

∫ +yd

−yd

(|û|2 + |v̂ |2 + |ŵ |2)dy

=
1
2

1
2yd

1
|α2 + γ2|

∫ +yd

−yd

(|
∂v̂
∂y
|2 + |α2 + γ2||v̂ |2 + |ω̂y |2)dy

Amplification factor G:

G(t ;α, γ) =
e(t ;α, γ)

e(t = 0;α, γ)
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Measure of the Growth

Temporal growth rate r (Lasseigne et al., J. Fluid Mech., 1999):

r(t ;α, γ) =
log|e(t ;α, γ)|

2t
, t > 0

Angular frequency (pulsation) ω (Whitham, 1974):

ω(t ;α, γ) =
dϕ(t)

dt
, ϕ time phase
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Full linear problem

Linearized 3D equations and Laplace-Fourier transform (x , z);

Base flow parametric in x and Re⇒ (U(y ; x0,Re),V (y ; x0,Re));

∂2v̂
∂y2 − (k2 − α2

i + 2ikcos(φ)αi )v̂ = Γ̂

∂Γ̂

∂t
= GΓ̂ + Hv̂ + K ω̂y

∂ω̂y

∂t
= Lω̂y + Mv̂

G = G(y ; x0, k , φ, αi ,Re), and similarly H, K , L and M, are ordi-
nary differential operators.
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Multiple scales hypothesis

Regular perturbation scheme, k � 1:

v̂ = v̂0 + kv̂1 + k2v̂2 + · · · ,
Γ̂ = Γ̂0 + k Γ̂1 + k2Γ̂2 + · · · ,
ω̂y = ω̂y0 + k ω̂y1 + k2ω̂y2 + · · · .

Temporal scales: t , τ = kt , T = k2t ;
Spatial scales: y , Y = ky .
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Multiple scales equations up to O(k)

Order O(1)

∂2v̂0

∂y2 + α2
i v̂0 = Γ̂0

∂Γ̂0

∂t
−G0Γ̂0 − H0v̂0 = 0

∂ω̂y0

∂t
− L0ω̂y0 = 0

where G0 = G0(y ; x0, φ, αi ,Re) and similarly for H0 and L0.
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Asymptotic state

Temporal asymptotic values of the angular frequency ω and the
temporal growth rate r .
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Conclusions

Modal analysis
Synthetic perturbation hypothesis (saddle point sequence);

Absolute instability pockets in the intermediate wake (Re = 50, 100);
Frequency in good agreement with numerical and experimental data;
No information on the early time history of the perturbation;

Initial-value problem
How the transient is affected by the perturbation: different growths
of energy, length of the transient, variety of temporal scales;
Asymptotic good agreement with modal analysis and with experi-
mental data (in terms of frequency and wavelength);
Multiscaling O(1) well approximates the full linear problem;
Rich description of the transient but more difficult handling of the
parameters.
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Conclusions

Next Steps

Energy spectrum of a general pre-unstable large set of multiple
transient three-dimensional waves (accepted for EFMC8, 2010).

⇒ Comparison with the Kolmogorov’s 5/3 law;
Initial-value problem for the cross flow boundary layer (U(y),W (y));
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⇒ Analytical solution of multiscaling O(1).
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