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Introduction

Motivation and general aspects
Spatio-temporal dynamics

Spatial patterns

@ Patterns are widely present in natural dynamical systems:
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ecosystems (e.g. dryland and riparian vegetation), biochemical
and neural systems, etc;

S. Scarsoglio IFOM-IEO Campus, Milano



Introduction

general aspects

Spatial patterns

@ Patterns are widely present in natural dynamical systems:
= hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant
ecosystems (e.g. dryland and riparian vegetation), biochemical
and neural systems, etc;

@ Useful information on the processes causing changes of the sys-
tem. For example, vegetation patterns have been related to:

S. Scarsoglio IFOM-IEO Campus, Milano



Introduction

Motivation and general aspects
Spatio-temporal dynamics

Spatial patterns

@ Patterns are widely present in natural dynamical systems:
= hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant
ecosystems (e.g. dryland and riparian vegetation), biochemical
and neural systems, etc;

@ Useful information on the processes causing changes of the sys-
tem. For example, vegetation patterns have been related to:

e the nature of the interactions among plant individuals (Lefever & Leje-
une 1997, Barbier et al. 2007);

S. Scarsoglio IFOM-IEO Campus, Milano



Introduction

Motivation and general aspects
Spatio-temporal dynamics

Spatial patterns

@ Patterns are widely present in natural dynamical systems:
= hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant
ecosystems (e.g. dryland and riparian vegetation), biochemical
and neural systems, etc;

@ Useful information on the processes causing changes of the sys-
tem. For example, vegetation patterns have been related to:

e the nature of the interactions among plant individuals (Lefever & Leje-
une 1997, Barbier et al. 2007);

e the landscape’s susceptibility to desertification (von Hardenberg et al.
2001, D’Odorico et al. 2005).

S. Scarsoglio IFOM-IEO Campus, Milano



Introduction

Motivation and general aspects
Spatio-temporal dynamics
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@ Patterns are widely present in natural dynamical systems:
= hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant
ecosystems (e.g. dryland and riparian vegetation), biochemical
and neural systems, etc;

@ Useful information on the processes causing changes of the sys-
tem. For example, vegetation patterns have been related to:

e the nature of the interactions among plant individuals (Lefever & Leje-
une 1997, Barbier et al. 2007);

e the landscape’s susceptibility to desertification (von Hardenberg et al.
2001, D’Odorico et al. 2005).

@ Deterministic models have been studied for quite a long time (Tur-
ing 1952, Cross & Hohenberg 1993) with a number of applications to en-
vironmental processes (Borgogno et al. 2009, von Hardenberg et al. 2010,
Manor & Shnerb 2008, Couteron & Lejeune 2001, Rietkerk & Van de Koppel 2008,
Kefi et al. 2007, Lefever et al. 2009).
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Noise-induced pattern formation

@ Stochastic models have only been developed more recently (Garcia
& Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of
noisy fluctuations.
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@ Stochastic models have only been developed more recently (Garcia
& Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of
noisy fluctuations.

= An increase of the noise can produce a more regular be-
haviour (counterintuitivel).

@ Models of noise-induced pattern formation mainly involve multi-
plicative noise (Van den Broeck et al. 1994, Garcia & Ojalvo 1996, Sieber et
al. 2007) along with a high-order diffusion term (Garcia & Ojalvo 1993);

@ Additive noise has often been investigated in non-linear models
(Zaikin & Schimansky-Geier 1998, Dutta et al. 2005), and with the concur-
rent action of a multiplicative noise (Landa et al. 1998, Zaikin et al. 1999);

@ Since these models use complicated non-linear terms for the local
dynamics and the multiplicative noise terms, their process-based
interpretation is often not straightforward.
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Stochastic mechanisms

@ Overview of the main stochastic processes related to the pres-
ence of a Gaussian white noise. In particular, we focus on the
fundamental components able to induce spatial coherence:

e alinear local dynamics, which damps the system to zero;
@ an additive noise, which avoids the deterministic dynamics to decay;
e a diffusive spatial coupling term, which provides spatial coherence.

@ Gaussian white (in time and space) noise:
e Valid assumption for the unavoidable randomness of real systems;
e Simplification of analytical and numerical calculations;
e Rich literature (unlike Gaussian colored or dichotomous noise).

@ We call patterned a field that exhibits an ordered state with or-
ganized spatial structures. This definition is often adopted in the
environmental sciences, where the concomitance of many pro-
cesses can prevent the organization of the system with a clear
dominant wavelength.
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Temporal evolution of the state variable ¢ at any point r = (x, y):

99

=2 = £(6) + g(6)<(r, 1) + DLIG] + h(6)F (1)
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Temporal evolution of the state variable ¢ at any point r = (x, y):

0

09 — 1(6) + g(o)e(r, 1) + DEI6] + H()F(1)

@ f(¢): local dynamics (in the absence of spatial interactions with
other points of the domain) = local rate of increase/decrease
(vegetation mortality rate);

@ g(#)¢&: noise component, £ zero-mean Gaussian white noise with
correlation (&(x, H&(x', t')) = sé(x — x’)o(t — t') and intensity s =
environmental disturbances (fires, rain, etc);

@ DL[¢]: spatial coupling. Laplacian (V?) or Swift-Hohenberg (V2 +
k&)? coupling (ko: selected wavenumber, D: strength of the spatial
coupling) = diffusion mechanisms (vegetation interactions);

@ h(¢p)F(t): time-dependent forcing term, which can be modulated
by a function, h(¢), of the local state of the system = seasonal
phenomena (phreatic aquifer).
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Additive noise Stochastic modeling

-order diffusion term: Swift-Hohenberg spatial coupling

Simple stochastic model
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Simple stochastic model

% =—¢+DVZp+¢

@ —¢: linear decreasing term = Deterministic local dynamics;

@ DV?¢: linear Laplacian (diffusive) operator = Spatial interactions;

@ ¢&: white Gaussian zero-mean noise = Random fluctuations;

@ Noise-induced pattern formation =- the deterministic dynamics
(¢ = 0) do not exhibit patterns;

@ Additive noise does not play the role of a precursor of a phase
transition in a deterministic system close to a bifurcation point,
since there is no bifurcation in the deterministic dynamics;

@ Analytical tools:

o Mean-field analysis (MFA): analytical expression of the pdf at steady
state. Classic MFA and a corrected version;

e Structure function (SF): prognostic tool able to assess the presence
of a selected wavelength in the spatial field;

Scarsoglio, Laio, D’Odorico, Ridolfi, Math. BioSci., 2011.




Additive noise Stochastic modeling
Results
High-order diffusion term: Swift-Hohenberg spatial coupling

Simple stochastic model

% =—¢+DVZp+¢

@ —¢: linear decreasing term = Deterministic local dynamics;

@ DV?¢: linear Laplacian (diffusive) operator = Spatial interactions;

@ ¢&: white Gaussian zero-mean noise = Random fluctuations;

@ Noise-induced pattern formation =- the deterministic dynamics
(¢ = 0) do not exhibit patterns;

@ Additive noise does not play the role of a precursor of a phase
transition in a deterministic system close to a bifurcation point,
since there is no bifurcation in the deterministic dynamics;

@ Numerical simulations:

e Heun’s predictor corrector scheme, 2D square lattice with 128x128
sites;

e periodic BCs, ICs given by uniformly distributed random numbers
between [-0.01, 0.01].

Scarsoglio, Laio, D’Odorico, Ridolfi, Math. BioSci., 2011.




Additive noise > tic modeling

Results
High-order diffusion term

Steady and multiscale patterns
L ol ' E 3“

1 0 1
(top) Numerical simulation of ¢ at t = 0,10, 100, D = 12.5, s = 2.5. (bottom) Pdf
(solid: numerical simulation, dotted: classic MFA, dashed: corrected MFA) and
azimuthal-averaged power spectrum S (solid: numerical simulation, dotted: SF) of ¢ at
t =100.
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(top) Numerical simulation of ¢ at t = 100, s = 0.5, D = 0.25, 2.5, 25 (left to right).
(bottom) Pdf of ¢ (solid: numerical simulation, dotted: classic MFA, dashed: corrected
MFA).
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Additive noise Stochastic modeling
Results
High- ision term: Swift-Hohenberg spatial coupling

Comparison with vegetation pattern

o0 2
e =6+ DV + £+

@ —¢: local linear decreasing dynamics of the existing vegetation;
@ DV?2¢: vegetation’s ability to develop spatial interactions;

@ ¢+ p: random rain water availability;

(left) Aerial photograph of vegetation pattern in New Mexico (34°47’N, 108°21’0) and
(right) numerical simulation at t = 100, D =20, s =1, p = 0.1.
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High-order diffusion term: Swift-Hohenberg spatial coupling

Steady and periodic patterns

=6 DIV + K0+ €

S. Scarsoglio IFOM-IEO Campus, Milano



Additive noise

High-order diffusion term: Swift-Hohenberg spatial coupling

Steady and periodic patterns

(left) Numerical simulation of ¢ at t = 100, s = 0.5, D = 10, ky = 1. (right) Azimuthal-
averaged power spectrum S (solid: numerical simulation, dotted: SF).
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Stochastic model
Multiplicative noise

Short-term instability and spatial coupling
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Multiplicative noise

Short-term instability and spatial coupling

9 _

ot

@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(0)¢(r, t) + DL[Y]
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@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(0)¢(r, t) + DL[Y]

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;
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@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(0)¢(r, t) + DL[Y]

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;

e The spatial coupling exploits this initial instability, giving rise to the
pattern and stabilizing it.
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Stochastic model
Multiplicative noise Swift-Hohenberg spatial coupling
Lapl al coupling

Short-term instability and spatial coupling
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@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(0)¢(r, t) + DL[Y]

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;

e The spatial coupling exploits this initial instability, giving rise to the
pattern and stabilizing it.

@ For s < s, the system remains blocked in the disordered phase
and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;
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Short-term instability and spatial coupling

9 _

ot

@ The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

f(¢) + 9(0)¢(r, t) + DL[Y]

e The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;

e The spatial coupling exploits this initial instability, giving rise to the
pattern and stabilizing it.

@ For s < s, the system remains blocked in the disordered phase
and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;

@ For s > s, the spatial term can take advantage from the noise-
induced short-term instability and prevents the decay to zero. The
spatial coupling traps the system in a new ordered state.
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Stochastic model
Multiplicative noise Swift-Hohenberg spatial coupling
Lapl al coupling

Short-term instability and spatial coupling
[<¢>—¢ol

s>s¢, D>0

s>S¢, D=0

“.5<s¢, D=0

t

@ For s < s, the system remains blocked in the disordered phase
and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;

@ For s > s, the spatial term can take advantage from the noise-
induced short-term instability and prevents the decay to zero. The
spatial coupling traps the system in a new ordered state.
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Stochastic model
Multiplicative noise Swift-Hohenberg spatial coupling
Laplacian spatial coupling

Steady and periodic patterns

0
(7(;) =—¢— ¢ + 66— D(VZ + K§)?¢
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Multiplicative noise

-25 0 25 0 1 2
(top) Numerical simulation of the spatial field ¢ at t = 0,10, 100, with D = 15, s = 2.5,
ko = 1. (bottom) Pdf and azimuthal-averaged power spectrum S at t = 100.
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Multiplicative noise i lohenberg spatial coupling
Laplacian spatial coupling

Transient and multiscale patterns
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Multiplicative noise nberg spatial coupling
Laplacian spatial coupling

Transient and multiscale patterns

L ¢ 0 L 1 k
-2 0 2 0 0.5 1

(top) Numerical simulation of the spatial field ¢ at t = 0,10, 40, with D =5, s = 2.
(bottom) Pdf and azimuthal-averaged power spectrum S at t = 40.
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General ts

. Wetland ation dynamics
Stochastic resonance

Temporal Dynamics

@ Stochastic resonance may occur when a bistable system is dis-
turbed by an external random forcing and by a weak temporal
periodic fluctuation:
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General Aspects

. Wetland vegetation dynamics
Stochastic resonance -

Temporal Dynamics

@ Stochastic resonance may occur when a bistable system is dis-
turbed by an external random forcing and by a weak temporal
periodic fluctuation:

e A bistable system presents a bistable potential, where two minima
are separated by a potential barrier;

e The external random forcing, if strong enough, can drive the system
from a stable state to the other;

e The periodic forcing is supposed not to be able to induce state tran-
sitions.
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@ Stochastic resonance may occur when a bistable system is dis-
turbed by an external random forcing and by a weak temporal
periodic fluctuation:

e A bistable system presents a bistable potential, where two minima
are separated by a potential barrier;

e The external random forcing, if strong enough, can drive the system
from a stable state to the other;

e The periodic forcing is supposed not to be able to induce state tran-
sitions.

@ A suitable synchronization between the frequency of the random
transitions and the frequency of the periodic forcing creates a sort
of resonance = regular transitions between the two stable states
(Gammaitoni et al. 1998, Wellens et al. 2004, Lindner et al. 1995).
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Spatio-Temporal Dynamics

@ Recent applications of the theories of stochastic resonance to
eco-hydrology (e.g. Spagnolo et al. 2004, Rao et al. 2009, Sun et al., 2010);
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Spatio-Temporal Dynamics

@ Recent applications of the theories of stochastic resonance to
eco-hydrology (e.g. Spagnolo et al. 2004, Rao et al. 2009, Sun et al., 2010);
@ Occurrence of spatial patterns induced by spatio-temporal stochas-
tic resonance for a model describing a groundwater dependent
ecosystem (Ridolfi et al. 2006):
e An additive white Gaussian noise, accounting for external random
disturbances such as fires or rain water availability;
e A weak periodic modulation in time, describing hydrological drivers
such as seasonal fluctuations of the water table depth;
e A spatial coupling term, which takes into account the vegetation abil-
ity to spread out;

@ A suitable cooperation between the three terms is able to give rise
to ordered structures which show spatial and temporal coherence,
and which are statistically steady in time.
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Spatio-temporal stochastic model
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(left) Ecosystem carrying capacity, Ve, and (right) potential, U( V).
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Results
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Numerical simulation: s =0.012, D = 0.2, A=0.08, « = 0.5/d, 3 =1,a= 13,
dsup = 1.8, djpr = 1.2, T = 365 days.
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Conclusions

@ Three main components play a fundamental role in the mecha-
nism of noise-induced pattern formation:

e A deterministic local dynamics, which tends to drive the field vari-
able to a uniform steady state (this component is not able to explain
pattern formation);

e An additive noise able to maintain the dynamics away from the uni-
form steady state;

e A spatial coupling term which provides spatial coherence.

@ For high enough multiplicative noise intensity, the spatial coupling
exploits the initial instability giving rise to ordered structures;

@ Since noisy fluctuations are always present in real systems and
pattern formation, here described, is completely noise-induced,
randomness can actually promote spatial coherence in different
environmental processes.
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Bounded Noise
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(left): n unbounded. (middle): n € [—1,1]. (right): n € [-0.1,0.1].
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