Lumped-parameter modeling of the cardiovascular system

Stefania Scarsoglio1
Andrea Guala2 Carlo Camporeale2 Luca Ridolfi2

1DIMEAS, Politecnico di Torino, Italy
2DIATI, Politecnico di Torino, Italy

San Giovanni Battista Hospital
18 February 2015, Torino
Understand and quantify, through a stochastic modeling approach, the **impact of paroxysmal AF on the cardiovascular system** of a healthy young adult (structural remodeling effects neglected);
Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ highlight single cause-effect relations, trying to address the cardiovascular feedbacks which are currently poorly understood;
Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the **impact of paroxysmal AF on the cardiovascular system** of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ **highlight single cause-effect relations**, trying to address the cardiovascular feedbacks which are currently poorly understood;
- The main cardiac parameters can all be obtained at the same time (clinical studies usually focus only on a few of them at a time) ⇒ **overall good agreement with the current clinical measures**;

S. Scarsoglio

Lumped-parameter modeling of atrial fibrillation
Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the **impact of paroxysmal AF on the cardiovascular system** of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ **highlight single cause-effect relations**, trying to address the cardiovascular feedbacks which are currently poorly understood;
- The main cardiac parameters can all be obtained at the same time (clinical studies usually focus only on a few of them at a time) ⇒ **overall good agreement with the current clinical measures**;
- Accurate **statistical analysis** of the cardiovascular dynamics, which is not easily accomplished by in vivo measurements.
Cardiovascular scheme

P: pressure
V: volume
Q: flow rate
C: compliance
E: elastance
L: inductance
R: resistance
Reconstructed physiologic and fibrillated beating

- **Normal Sinus Rhythm (NSR)**
 - RR extracted from a correlated pink Gaussian distribution;
 - Time varying (right and left) atrial elastance;

- **Atrial Fibrillation (AF)**
 - RR extracted from an exponentially modified Gaussian distribution;
 - Constant (right and left) atrial elastance ⇒ No atrial kick;
Real RR series (MIT Database)

(a) Density plot of RR series

(b) Time decay of RR series

NSR 16773
NSR 18177
AF 71
AF 202

Sex
Age
NSR 16773
M 26
NSR 18177
F 26
AF 71/
AF 202/

Lumped-parameter modeling of atrial fibrillation
Real RR series (MIT Database)

(a) Distribution of RR intervals for different series:

- NSR 16773
- NSR 18177
- AF 71
- AF 202

(b) Cumulative distribution function of RR intervals for different series:

<table>
<thead>
<tr>
<th></th>
<th>μ [s]</th>
<th>σ [s]</th>
<th>c_v</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR 16773</td>
<td>1.03</td>
<td>0.13</td>
<td>0.12</td>
<td>M</td>
<td>26</td>
</tr>
<tr>
<td>NSR 18177</td>
<td>0.78</td>
<td>0.08</td>
<td>0.10</td>
<td>F</td>
<td>26</td>
</tr>
<tr>
<td>AF 71</td>
<td>0.76</td>
<td>0.15</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF 202</td>
<td>0.65</td>
<td>0.17</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hemodynamic parameters

Systemic arterial pressure

Left heart

Real series analysis

Left ventricle

\[P_{lv} \text{ [mmHg]} \]

\[V_{lv} \text{ [ml]} \]

<table>
<thead>
<tr>
<th>CO [l/min]</th>
<th>NSR</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SV [ml]</th>
<th>NSR</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EF [%]</th>
<th>NSR</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SW [J]</th>
<th>NSR</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Left ventricle

Hemodynamic parameters
- Systemic arterial pressure
- Left heart
- Real series analysis

<table>
<thead>
<tr>
<th></th>
<th>NSR</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO [l/min]</td>
<td>4.80</td>
<td>4.38</td>
</tr>
<tr>
<td>SV [ml]</td>
<td>63.84</td>
<td>47.21</td>
</tr>
<tr>
<td>EF [%]</td>
<td>53.27</td>
<td>37.12</td>
</tr>
<tr>
<td>SW [J]</td>
<td>0.87</td>
<td>0.57</td>
</tr>
</tbody>
</table>

S. Scarsoglio
Lumped-parameter modeling of atrial fibrillation
Arterial pressure: time series and statistics

<table>
<thead>
<tr>
<th>P_{sas} [mmHg]</th>
<th>Mean</th>
<th>Systolic</th>
<th>Diastolic</th>
<th>Pulsatile</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR</td>
<td>99.52</td>
<td>116.22</td>
<td>83.24</td>
<td>32.99</td>
</tr>
<tr>
<td>AF</td>
<td>89.12</td>
<td>103.66</td>
<td>77.24</td>
<td>26.42</td>
</tr>
</tbody>
</table>

Atrial pressure and volume

Hemodynamic parameters
- Systemic arterial pressure
- Left heart
- Real series analysis

Introduction

Lumped-parameter modeling

Results

Conclusions

Hemodynamic parameters

- **Systemic arterial pressure**
- **Left heart**
- **Real series analysis**

Atrial pressure and volume

Figure (a)
- **Atrial kick**
- **Rapid grow**
- **Plateau**

Figure (b)
- **Atrial kick**
- **Rapid grow**
- **Plateau**

<table>
<thead>
<tr>
<th>V_{la} [ml]</th>
<th>Mean</th>
<th>End-Systolic</th>
<th>End-Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR</td>
<td>56.53</td>
<td>64.41</td>
<td>55.37</td>
</tr>
<tr>
<td>AF</td>
<td>65.95</td>
<td>71.41</td>
<td>68.84</td>
</tr>
</tbody>
</table>

S. Scarsoglio

Lumped-parameter modeling of atrial fibrillation
Mitral and aortic flow rates

<table>
<thead>
<tr>
<th></th>
<th>NSR</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral RF [%]</td>
<td>13.59</td>
<td>9.94</td>
</tr>
<tr>
<td>Aortic RF [%]</td>
<td>7.62</td>
<td>10.91</td>
</tr>
</tbody>
</table>

- Different backflow valve openings during AF: Mi ↓, Ao ↑;
- Peak E wave velocity does not correlate with RF.

Bigger expense for the oxygen consumption (RPP, TTI/min, PVA/min) and decreased left ventricular efficiency (LVE) during AF;

The major effects of AF are due to HR acceleration, being rhythm changes less impacting.

Scarsoglio, Med. Eng. & Phys., under review 2015.
Analysis of the role of acute AF on the whole cardiovascular system through a stochastic modeling:

- Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
Discussion and Conclusive Remarks

- Analysis of the **role of acute AF on the whole cardiovascular system** through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- **Isolate single cause-effect relations**, a thing which is not possible in real medical monitoring;
Discussion and Conclusive Remarks

- Analysis of the **role of acute AF on the whole cardiovascular system** through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- **Isolate single cause-effect relations**, a thing which is not possible in real medical monitoring;
- Present results should be interpreted as **pure consequences of AF alone** and not induced by other pathologies;
Discussion and Conclusive Remarks

- Analysis of the **role of acute AF on the whole cardiovascular system** through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- **Isolate single cause-effect relations**, a thing which is not possible in real medical monitoring;
- Present results should be interpreted as **pure consequences of AF alone** and not induced by other pathologies;
- Accurate **statistical description** of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;
Discussion and Conclusive Remarks

- Analysis of the **role of acute AF on the whole cardiovascular system** through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;

- **Isolate single cause-effect relations**, a thing which is not possible in real medical monitoring;

- Present results should be interpreted as **pure consequences of AF alone** and not induced by other pathologies;

- Accurate **statistical description** of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;

- **New information** on hemodynamic parameters (e.g., flow rates, right ventricle dynamics), difficult to measure and almost never treated in literature.
Future work can be addressed to study:

- Response to AF together with *altered physical conditions* (e.g., during exertion, left atrial appendage clamping, etc);
Perspectives and future work

Future work can be addressed to study:

- Response to AF together with altered physical conditions (e.g., during exertion, left atrial appendage clamping, etc);

- Combined presence of other cardiovascular pathologies (e.g., mitral insufficiency, hypertension, etc);
Perspectives and future work

Future work can be addressed to study:

- Response to AF together with altered physical conditions (e.g., during exertion, left atrial appendage clamping, etc);
- Combined presence of other cardiovascular pathologies (e.g., mitral insufficiency, hypertension, etc);
- Inclusion of the baroregulation mechanisms.