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Scale interaction is studied in wall-bounded turbulence by focusing on the frequency
modulation (FM) mechanism of the large scales on small-scale velocity fluctuations.
Different from the analysis of amplitude modulation (AM), FM has been less investigated
owing to the difficulty of developing robust tools for broadband signals. To tackle this
issue, the natural visibility graph approach is proposed in this work to map the full
velocity signals into complex networks. We show that the network degree centrality is
able to capture the signal structure at local scales directly from the full signal, thereby
quantifying FM. Velocity signals from numerically-simulated turbulent channel flows
and an experimental turbulent boundary layer are investigated at different Reynolds
numbers. A correction of Taylor’s hypothesis for time series is proposed to overcome
the overprediction of near-wall FM obtained when local mean velocity is used as the
convective velocity. Results provide network-based evidence of the large-to-small FM
features for all the three velocity components in the near-wall region, with a reversal
mechanism emerging far from the wall. Additionally, scaling arguments, in view of the
quasi-steady quasi-homogeneous hypothesis, are discussed, and a delay time between
the large and small scales is detected that is very close to the characteristic time of the
near-wall cycle. Results show that the visibility graph is a parameter-free tool that turns
out to be effective and robust to detect FM in different configurations of wall-bounded
turbulent flows. Based on the present findings, the visibility network-based approach can
represent a reliable tool to systematically investigate scale interaction mechanisms in
wall-bounded turbulence.
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1. Introduction

The characterization and modelling of wall-bounded turbulent flows is of paramount
importance in physics and engineering (Marusic, Mathis & Hutchins 2010). Organized
motions, in particular, play a crucial role in wall-bounded turbulence analysis, because
they are associated with high-energy levels and are directly involved in transport processes,
which make them preferential targets for flow control strategies (Jiménez 2018). Coherent
streaks are recognized as the dominant flow structures very close to the wall, and
are characterized by a distinctive (inner) peak in the spectrogram of the streamwise
velocity fluctuations, u, within the buffer layer (Jiménez 2018). The investigation
of high-Reynolds-number experiments and simulations also reveal the formation of
large-scale motions (LSMs) and very-large-scale motions (VLSMs) that reside in the log
region (Smits, McKeon & Marusic 2011), whose presence is detected by the appearance of
another (outer) peak in the (pre-multiplied) energy spectrogram of the streamwise velocity
fluctuations (Hutchins & Marusic 2007b; Monty et al. 2009; Peruzzi et al. 2020). The
wall-normal location in wall units (i.e. made dimensionless by the mean friction velocity,
Uτ , and the fluid kinematic viscosity, ν), y+ = yUτ /ν, of the inner peak is conventionally
assumed to be fixed at y+ = 15, while the position of the outer peak increases with the
frictional Reynolds number, Reτ , as y+ ≈ 3.9Re1/2

τ (Mathis, Hutchins & Marusic 2009a).
In addition to the effect of the Reynolds number, some differences emerge from the

comparison of different canonical wall-bounded turbulent flows. While near-wall statistics
(such as the mean velocity profile) agree well in channel, pipe and boundary layer flows,
the features of the large scales depend on the flow configuration (Balakumar & Adrian
2007; Monty et al. 2007; Mathis et al. 2009b; Monty et al. 2009; Chernyshenko 2020). In
particular, spectral analyses of internal and external flows have revealed that the very-large
scales tend to be longer for channel and pipe flows than boundary layer flows, although they
appear to be qualitatively similar (Balakumar & Adrian 2007; Monty et al. 2009). Such
large-scale differences are expected to increase for larger Reynolds numbers as energetic
contributions resulting from VLSM increases with the Reynolds number.

The investigation of higher Reynolds number data has progressively revealed novel
developments and questions concerning the interaction between the small-scale turbulence
(whose spectral peak occurs in the proximity of the wall) and LSMs (whose spectral
peak resides far from the wall). Insights on scale interaction were initially reported
by Brown & Thomas (1977) and Bandyopadhyay & Hussain (1984), who observed a
modulation mechanism on the (near-wall) small scales by the large turbulent scales. Later,
Hutchins & Marusic (2007b) provided further evidence of a top-down footprint and an AM
phenomenon by the large scales residing in the log region on the near-wall (small-scale)
dynamics. With the aim to illustrate such an inter-scale mechanism, figure 1(a) shows
a schematic of a wall-bounded turbulent flow in a streamwise-vertical plane, where
uniform momentum regions arising from LSM and VLSM (highlighted as dark- and
light-blue structures) entail large-scale fluctuations, uLS (see red lines). Figure 1(a) is
drawn following the current picture of the kinematics of turbulent scales and their
interaction in wall-bounded turbulence (e.g. see Ganapathisubramani et al. 2012; Baars,
Hutchins & Marusic 2017). The turbulent flow field can be decomposed as u(x, y, z, t) =
uLS(x, y, z, t) + uSS(x, y, z, t), where uSS are small-scale fluctuations (see black signals),
while x, y, z are the streamwise, vertical and spanwise directions, respectively, and t is the
time. Figure 1(a) also highlights the top-down footprint of the large scales, being the two
uLS signals (red lines) positively correlated with each other (eventually accounting for the
inclination of the large scales Marusic & Heuer 2007).
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Figure 1. (a) Schematic of a wall-bounded turbulent flow in the (x–y) plane, showing three alternating LSM
and VLSM structures of uniform large-scale momentum, uLS ≶ 0. Two pairs of time series of uLS and uSS are
also depicted as red and black lines, respectively, at two wall-normal locations (referred to as the inner and
outer positions). (b) Small-scale, uSS, and large-scale, uLS, streamwise velocity fluctuations at y+ ≈ 10, shown
as blue and red lines, respectively, where the light- and dark-blue portions of uSS correspond to intervals of
uLS < 0 and uLS > 0, respectively. The velocity series is extracted from an experimental turbulent boundary
layer at Reτ = 14 750 (Marusic 2020) in the range tU∞/δ = 483–503, where U∞ and δ are the free stream
velocity and boundary layer thickness, respectively. Two intervals of the signal (i.e. 490 < tU∞/δ < 493 and
495 < tU∞/δ < 498), in which the small scales display enhanced or reduced activity, are also indicated.

A modulation of the amplitude of the small scales caused by the large scales implies
that high or low values of uLS correspond to (on average) high or low values of uSS. This
mechanism can be observed in figure 1(b), which shows time intervals of uLS and uSS at
y+ ≈ 10 in an experimental turbulent boundary layer. An increase of the local amplitude
of the small-scale signal (see dark-blue intervals) is discernible during positive large-scale
velocity fluctuations, uLS > 0, and, vice versa, a damping of the small-scale amplitudes
(light-blue intervals) is evident during negative large-scale velocity fluctuations, uLS < 0.

Mathis et al. (2009a) quantified this AM by correlating uLS with the large-scale-filtered
envelope of uSS at different wall-normal coordinates. The authors observed an AM (as
shown in figure 1b) only close to the wall (approximatively below the centre of the log
region), while a reversed AM mechanism – i.e. an uSS amplitude increase under uLS < 0
and an uSS amplitude decrease under uLS > 0 – occurred far from the wall. Further studies
on turbulent boundary layers have suggested that a modulation mechanism does actually
take place only in the near-wall region, while different mechanisms occur in the log and
wake regions. In particular, the behaviour of the scale interaction away from the wall
has been explained either through a preferential arrangement of the small scales – i.e. an
alignment of the small-scale turbulence with internal shear layers that separate zones of
large-scale uniform momentum (Hutchins 2014; Baars et al. 2017) – or as an effect of
variations in the mean strain and in the shear-driven production (Agostini & Leschziner
2019).

Based on the insights from Hutchins & Marusic (2007b) and Mathis et al. (2009a),
AM has been widely investigated for several flow configurations and Reynolds numbers,
both experimentally (e.g. see Mathis et al. 2009b; Schlatter & Örlü 2010; Guala, Metzger
& McKeon 2011; Ganapathisubramani et al. 2012; Talluru et al. 2014; Baars et al. 2015;
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Duvvuri & McKeon 2015; Squire et al. 2016; Baars et al. 2017; Pathikonda & Christensen
2017; Basley, Perret & Mathis 2018; Pathikonda & Christensen 2019) and via numerical
simulations (e.g. see Chung & McKeon 2010; Bernardini & Pirozzoli 2011; Agostini
& Leschziner 2014; Agostini, Leschziner & Gaitonde 2016; Anderson 2016; Hwang
et al. 2016; Yao, Huang & Xu 2018; Agostini & Leschziner 2019; Dogan et al. 2019).
Furthermore, findings on scale interactions have fostered the development of predictive
models for near-wall turbulence that explicitly account for the footprint and AM by the
large scales on the small scales (Marusic et al. 2010; Mathis, Hutchins & Marusic 2011;
Mathis et al. 2013; Baars, Hutchins & Marusic 2016; Wu, Christensen & Pantano 2019).
It should be noted that, although large-scale spectral features do not match between
internal and external flows, similar AM results have been found for channel, pipe and
boundary layer flows at similar Reτ values (Mathis et al. 2009b), which suggest a similar
scale-interaction mechanism is at play in all configurations.

In addition to AM, small-scale turbulence has also been found to change its
instantaneous (i.e. local) frequency during intervals of positive or negative uLS, namely
the large scales affect the small scales through a frequency modulation (FM) mechanism
(Ganapathisubramani et al. 2012; Baars et al. 2015; Fiscaletti, Ganapathisubramani &
Elsinga 2015). However, only a few investigations to quantify FM in wall-bounded
turbulence have been carried out so far (Ganapathisubramani et al. 2012; Baars et al. 2015,
2017; Pathikonda & Christensen 2017; Awasthi & Anderson 2018; Tang & Jiang 2018;
Pathikonda & Christensen 2019) when compared with the vast literature on AM and its
application into predictive models. One of the main reasons for this literature imbalance
resides on the difficulty to produce robust methodologies to quantify FM in broadband
signals, as well as the difficulty to effectively capture instantaneous frequencies in a signal.

With the aim to quantify FM in the context of a wall-bounded turbulence scale
interaction, two methodologies have been proposed so far. Ganapathisubramani et al.
(2012) proposed a peak–valley approach, following the idea that the local frequency
is proportional to the number of maxima and/or minima per unit length of the series.
The peak–valley approach was applied to streamwise uSS signals from experimental
measurements in a turbulent boundary layer at Reτ = δUτ /ν = 14 150 (where δ is the
boundary layer thickness). Similar to AM, the authors found a relevant FM of the small
scales in the near-wall region in which higher frequencies correspond to large (positive)
uLS values while lower frequencies correspond to low (negative) uLS values. However,
different from AM, substantial FM was observed only up to y+ ≈ 100. As an example of
this FM mechanism, in figure 1(b), a rapidly fluctuating uSS activity can be seen during
positive uLS (dark-blue intervals) rather than negative uLS (light blue intervals). Despite
its conceptual simplicity, the main drawback of the peak–valley approach is the need of
a signal discretization into sub-intervals of arbitrary spacing to quantify the number of
maxima and minima within each sub-interval. The choice of the size of the signal partition
into sub-intervals is non-trivial and requires a trade-off between too short or too large
intervals that can affect the results. Moreover, as pointed out by Baars et al. (2015), the
short-time partitioning of the peak–valley approach makes it less applicable if a focus on
temporal shifts in AM and FM is required.

An alternative approach to quantify FM and effectively account for time shifts was then
proposed by Baars et al. (2015), who exploited wavelet analysis to extract from the velocity
time series a new signal that is representative of the local frequency variations at the small
scales. The authors performed a time–frequency analysis of the streamwise velocity, in
which a time series – representative of the small-scale instantaneous frequency – was
obtained by evaluating the first spectral moment of the wavelet power spectrum, namely an
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average energetic contribution at each time for the range of (high) frequencies pertaining
the small scales (Baars et al. 2015). The first spectral moment was eventually long-pass
filtered to retain only its large-scale component, and correlated with uLS to quantify FM
(similar to the AM technique proposed by Mathis et al. 2009a).

The wavelet-based procedure was applied to experimental streamwise velocity time
series measured at different wall-normal locations from a turbulent boundary layer at
Reτ = 14 750 (Baars et al. 2015). The authors showed positive correlations up to the
centre of the log region, which meant that higher and lower frequencies in uSS were
detected under uLS > 0 and uLS < 0, respectively. Almost zero correlations were observed,
instead, for higher wall-normal locations up to the boundary layer intermittent region,
where negative correlation values were detected. The near-wall FM found by Baars et al.
(2015) is in accordance with the outcomes from Ganapathisubramani et al. (2012), but
the y+ coordinate above which FM was found to be almost absent is larger by using
the wavelet-based approach (y+ ≈ 470) compared with that obtained by the peak–valley
approach (y+ ≈ 100), although the Reτ values were rather similar. Furthermore, a phase
lead of the small-scale amplitude and frequency was found in the near-wall with respect
to the large-scale signals, and – in accordance with previous studies (Bandyopadhyay &
Hussain 1984; Guala et al. 2011) – a much larger lead was detected for the small-scale
amplitudes than for frequency. Although the FM has been accepted as a near-wall
mechanism, the interaction mechanism in terms of FM between the small and large scales
in the log and wake regions has not been completely clarified, in particular, the precise
wall-normal coordinate at which the small-scale frequency is no longer affected by the
large scales needs to be determined.

So far, the wavelet-based technique by Baars et al. (2015) has been exploited as the
main tool to quantify FM in wall-bounded turbulence. Different flow configurations have
been explored in terms of FM, such as experimental smooth-wall turbulent boundary
layers via hot-wire measurements (Baars et al. 2017) and particle image velocimetry
(Pathikonda & Christensen 2019), experimental boundary layers in the presence of
wall roughness (Pathikonda & Christensen 2017; Tang & Jiang 2018), as well as
large-eddy simulation of a turbulent channel flow with spanwise heterogeneity (Awasthi
& Anderson 2018). These works highlighted that, despite the specific quantitative
differences, near-wall FM is present both for smooth and rough walls, as well as for
several Reynolds numbers. However, despite its preferred employment for quantifying
FM, the wavelet-based approach presents some criticalities. First, as discussed by Baars
et al. (2015), the choice of the mother wavelet can have an impact on the results because
different frequency resolutions are gained from different mother wavelets. Moreover,
the procedure necessitates multiple filtering operations that demand the choice of an
appropriate frequency filter value. In particular, a frequency threshold is required both
in the computation of the first spectral moment of the wavelet power spectrum (which
involves a numerical integration) and in the long-pass filtering of the first spectral moment.
Therefore, different from the peak–valley approach of Ganapathisubramani et al. (2012), in
which maxima and minima are counted, the wavelet-based approach intrinsically requires
several procedural steps and assumptions that need to be carefully handled.

In this work, a novel approach to study FM in wall-bounded turbulence is put forward
with a twofold aim: (i) to propose a non-parametric and robust methodology to extract
local frequency changes in a signal; and (ii) to show its effectiveness for two wall-bounded
turbulence configurations, as well as to report novel insights that can help to further
shed light on the large–small-scale interaction. Our methodology relies on the natural
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visibility graph (NVG) approach proposed by Lacasa et al. (2008), which is used to map
a signal into a network by exploiting a geometrical criterion. Thanks to its simplicity
of implementation, the NVG has been widely employed in a variety of research areas
such as, among many others, economy, biomedicine and geophysics (Zou et al. 2018). In
particular, visibility-based investigations have been carried out in fluid mechanics to study
jets and fires (Charakopoulos et al. 2014; Murugesan, Zhu & Li 2019; Tokami et al. 2020),
wall-bounded turbulent flows (Liu, Zhou & Yuan 2010; Iacobello, Scarsoglio & Ridolfi
2018b), passive scalar plumes (Iacobello et al. 2018a, 2019a) and turbulent combustors
(Murugesan & Sujith 2015, 2016; Singh et al. 2017).

In spite of its simplicity, the NVG approach (defined in § 2.1) has been shown to
be a powerful tool in capturing important features of the mapped signal (such as the
occurrence of extreme events) and as a reliable indicator of the transition between different
flow dynamics (Iacobello, Ridolfi & Scarsoglio 2021). Here we show that the degree
centrality, which is one of the simplest network metrics, is much more sensitive to the
small-scale spectral energy variations than their large-scale counterpart (2.2). Accordingly,
the network degree is viewed as a metric that is able to inherit the local frequency
variations in a signal (2.3), without any a priori assumption (e.g. signal filtering).
Therefore, the NVG approach can be directly used to study the full velocity signals rather
than the small-scale component.

The proposed NVG approach is used to analyse the time series (§ 3.2) from an
experimental smooth-wall zero-pressure-gradient turbulent boundary layer (Reτ = 14 750,
Marusic 2020), and the spatial series – namely one-dimensional (1-D) signals along
spatial transects at a fixed time (§ 3.1) – from two direct numerical simulations (DNSs) of
smooth-wall incompressible turbulent channel flows (Reτ ≈ 5200 and Reτ = 1000, Lee &
Moser 2015; Graham et al. 2016). In this regard, for simplicity, we refer FM to indicate
both temporal and spatial frequency (i.e. wavenumber) modulation, where the former
applies to the time series while the latter to the spatial series. A comparative FM analysis is
performed by highlighting the differences and similarities between outcomes from the two
wall-bounded turbulence set-ups for the streamwise velocity (§ 4.1). In particular, the effect
of different Reynolds numbers is examined, and the application of Taylor’s hypothesis
to the time series is discussed by proposing a convection velocity that compensates for
the overprediction of the modulation in the near-wall region. Moreover, FM results are
examined, in view of the quasi-steady quasi-homogeneous theory, in terms of degree
centrality scaling with respect to the large-scale velocity values (§ 4.2). The analysis is
then extended to the wall-normal and spanwise velocities of the channel flow (§ 4.3), and
the time and space shifts are eventually investigated for all the three velocity components
(§ 4.4). Finally, we provide a discussion on some general features of the visibility approach
(§ 5) as well as concluding remarks (§ 6).

2. Visibility-based analysis of frequency modulation

2.1. Definition of visibility graph
Visibility graphs represent a widely employed technique to map a discrete signal in a
network. The idea behind the visibility graph approach is to assign a node of the network
to each datum in the signal, and activate a link between two nodes if a geometrical
criterion is satisfied. The main variant is the NVG, which is based on a convexity criterion
(Lacasa et al. 2008). Geometrically, two nodes in an NVG (corresponding to two points
in the signal) are linked if the straight line connecting the two points lies above any other
in-between data. Figure 2(a, lower diagram) shows an example of a short series, si ≡ s(χi),
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Figure 2. (a) The lower diagram shows an example of a signal, si ≡ s(χi), and the corresponding visibility
network, where nodes are depicted as black filled circles and links as green lines. In particular, the node i = 8
and its links are highlighted in orange. The degree values for each node, ki, are also shown in the upper
diagram. (b) Probability density function (PDF) of the link length evaluated on the network built from the
streamwise velocity, u(x), in a turbulent channel flow at Reτ ≈ 5200. The link length is expressed in wall units
as L+ = |i − j|Δx+, where i and j are the indices of two connected nodes and Δx+ = 12.7 (see § 3.1).

for the independent variable χi (i.e. a time or space coordinate), comprising N = 20
observations, illustrated as vertical bars. Nodes and links in figure 2(a) are depicted as
filled circles at the tip of each bar and green straight lines, respectively. A representative
node is highlighted in red and its links are reported in orange.

The NVG criterion applied to a generic signal, s(χ), can be formally written as

s(χn) < s(χj) + (s(χi) − s(χj))
χj − χn

χj − χi
, i, j = 1, . . . , N, (2.1)

for any χn (i.e. time or space coordinate) such that χi < χn < χj (Lacasa et al. 2008). The
corresponding visibility network is represented through the adjacency (binary) matrix A,
whose entries are Ai,j = 1 if the inequality (2.1) is satisfied for the node pair (i, j) with
i /= j, and Ai,j = 0 otherwise. For example, in figure 2(a), the node i = 8 is connected (i.e.
A8,j = 1) to nodes j = {1, 2, 3, 4, 5, 7, 9}, as highlighted by the orange links. By definition,
visibility networks are connected (i.e. each node i is linked to at least one other node j, e.g.
j = i + 1 or j = i − 1) and undirected (Newman 2018), namely the adjacency matrix is
symmetric (Ai,j = Aj,i).

Different from other techniques developed to transform a signal into a network (Zou
et al. 2018; Iacobello et al. 2021), the visibility algorithm does not require any a priori
parameters. Given a signal, a unique visibility network is obtained in a straightforward way
by applying the convexity criterion in (2.1) for each pair of data. Another feature of NVGs
is the invariance under affine transformations of the mapped signal, namely translation
and rescaling (i.e. multiplication by a positive constant) of both horizontal and vertical
axes (Lacasa et al. 2008). This implies that two signals with the same temporal (or spatial)
structure, but with different mean values (i.e. vertical translation of the series) and standard
deviations (i.e. vertical rescaling of the series), are mapped in the same visibility graph.

In the present work, we exploited the NVG approach to study turbulent velocity signals
from wall-bounded turbulence, both as a time series (from the boundary layer, § 3.2) and
spatial series (from the channel flow, § 3.1). We note that this is the first time the NVG
is employed for studying wall-bounded turbulence by focusing on a spatial series rather

918 A13-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

is
te

m
a 

Bi
bl

io
te

ca
ri

o 
de

l P
ol

ite
cn

ic
o,

 o
n 

20
 M

ay
 2

02
1 

at
 0

9:
36

:1
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.279
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


G. Iacobello, L. Ridolfi and S. Scarsoglio

than a time series. An optimized code for computing the NVG (either for the spatial or
time series) was provided by Iacobello (2020), where the possibility to account for spatial
series periodicity is also implemented.

One remarkable feature of NVGs from signals referring to physical phenomena with
a wide range of different scales (such as in turbulence) is the infrequent appearance of
long-range links. In fact, the presence of fluctuations of different amplitude in the signal
prevents the possibility that a node is visible by other distant nodes (Zhuang, Small & Feng
2014). To grasp this concept, the PDF of the link length in u(x) signals from a turbulent
channel flow (Reτ ≈ 5200, see § 3.1) is shown in figure 2(b), which shows that long-range
links are very unlikely to occur (the increasing PDF for large- L+ values arises from signal
periodicity in the x-direction).

The capability of visibility graphs to capture the temporal (or spatial) structure of a
signal by means of a convexity-based geometrical framework, hence, turns out to be a key
feature to study the occurrence in time (or space) of specific events (Iacobello et al. 2018a,
2019a). In this work, we take advantage from the features of visibility networks to detect
FM of the large scales on small scales.

2.2. Node degree in relation to small-scale signal features
The degree centrality (or, simply, degree) of a node, i, is defined as the number of
neighbours of i, that is, the number of nodes linked to i,

ki ≡
N∑

j=1

Ai,j, (2.2)

where N is the total number of nodes, which corresponds to the number of sampled values
of the signal (Newman 2018). The top panel in figure 2(a) shows the sequence of degree
values for the example of signal, si, shown in the bottom of figure 2(a); for instance, the
degree of node i = 8 (highlighted in red) is k8 = 7 because it is connected to seven other
points (links are highlighted in orange). By averaging over all nodes, a representative
degree value for the network (i.e. for the whole signal) is obtained as K = ∑

i ki/N. It
should be noted that the degree, ki, provides a measure of the extent to which a single
node i belongs to a convex interval in the signal, but it is not directly able to quantify
whether the properties of node i (e.g. its importance in the network) are similar or not
to the properties of other nodes. Instead, this issue can be tackled through assortativity
measures, which can be used to assess similarities among nodes (e.g. in terms of their
importance in the network through degree–degree correlation) (Newman 2018).

Recalling that long-range links are unlikely to appear in visibility graphs (figure 2b), the
main contribution to degree values arises from short-range links, which makes the degree
a metric that is typically sensitive to the local structure of the signal. Rapidly fluctuating
signals are then expected to show lower-degree values, ki, and in turn, a lower-average
degree K (Zhuang et al. 2014). Because rapid variations in the local structure of turbulent
signals are mainly governed by high frequencies (i.e. low wavelengths), a relation should
exist between the average degree, K, and the high-frequency spectral energy (that produces
the local variations in the turbulent signals).

With the aim to explore this relation, we report in figure 3(a) the energy spectral density
of the streamwise velocity, φuu, pre-multiplied for the wavenumber, κx = 2π/λx, from a
turbulent channel flow at Reτ ≈ 5200 (see § 3.1). Notice that φuu is normalized by the
variance of the streamwise velocity fluctuations, 〈uu〉t,x,z (here angular brackets indicate

918 A13-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

is
te

m
a 

Bi
bl

io
te

ca
ri

o 
de

l P
ol

ite
cn

ic
o,

 o
n 

20
 M

ay
 2

02
1 

at
 0

9:
36

:1
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.279
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


FM analysis in wall turbulence via visibility networks

y+

0.07
3.95
50
1000
5180

10510110–1 100 101 102 103 102 103 104

100

10–2

10–4

10–6

LSSS

(a) (b) (c)

u
uSS

40

35

30

25

20

15

〈K
〉

y+y+ λx
+

λx
+

10–1 100 101 102 103 104

105

102

103

104

κxφuu/〈uu〉t,x,z

κ
xφ

uu
/〈u

u〉 t,x
,z

0.25

0.20

0.15

0.10

0.05

0

Figure 3. (a) Pre-multiplied energy spectral density, φuu, from a turbulent channel flow at Reτ ≈ 5200 (see
§ 3.1), normalized by the streamwise velocity variance, 〈uu〉t,x,z. The horizontal dashed line indicates the value
of the spectral filter, while vertical dashed lines highlight five representative y+ coordinates. (b) Pre-multiplied
energy spectral density for the five selected y+ locations in (a). (c) Wall-normal behaviour of the average degree
centrality, 〈K〉, for NVG built from the full streamwise velocity, u(xi) (black curve), and from the small-scale
streamwise velocity, uSS(xi) (red curve), obtained through a spectral decomposition. Angular brackets in 〈K〉
indicate averaging over the (homogeneous) spanwise direction, z.

the average over time, t, and homogeneous directions, x, z). In figure 3(a), the spectral peak
separation is easily distinguishable between the small and large scales, as is the spectral
filter adopted in this work, marked by a horizontal dashed line. Five curves of the spectrum
at five representative y+ coordinates (highlighted as dashed vertical lines in figure 3a) are
also shown in figure 3(b).

The rationale behind the normalization of the spectrum through the variance is twofold.
First, the streamwise energy density at each y+ is accentuated, thus emphasizing the
occurrence of the two spectral peaks and, second, this normalization permits a congruent
comparison with the degree behaviour computed on visibility networks (which are
insensitive to different variance levels, i.e. on signal rescaling). Moreover, as a result of the
variance normalization, the area under each curve in figure 3(b) is equal to unity, so that
the integral of curves in figure 3(b) in a given range of λx represents the fraction of total
energy pertaining to that scale range. In this way, figure 3(b) elucidates the redistribution
of the spectral energy density over scales, λ+x , at different y+ coordinates (a log–log plot
in figure 3(b) is shown with the aim to highlight the behaviour at small λ+x values).

Focusing on the small scales (that is, λ+x < Reτ ≈ 5200) in figure 3(b), we observe that
by moving from very close to the wall (y+ ≈ 0.07) up to y+ ≈ 4, there is a small decrease
in the (normalized) energy content, then an increase of the (normalized) spectral energy
occurs from y+ ≈ 4 up to the beginning of the log layer (y+ ≈ 50), and lastly a persistent
decrease happens up to the channel centreline (y+ ≈ 5200). A reduction or a growth of the
(normalized) spectral energy at the small scales indicates that the signal tends to be locally
smoother (i.e. slowly varying, without rapid low-intensity fluctuations) or more irregular
(i.e. rapidly varying), respectively. Recalling that the mean degree, K, is sensitive to the
local structure of the signal, an increase of the degree values is then expected for locally
smoother signals (i.e. low-spectral energy at local scales) and vice versa. Figure 3(c)
shows the wall-normal behaviour of the mean degree, K, of networks built from the full
streamwise velocity, u(xi) (black line), in the channel flow setup. As expected, the y+-trend
of K for the full signal closely follows the behaviour of the small-scale spectral-energy
density as described above, where the degree growth is faithfully related to the small-scale
spectral-energy decrease and vice versa. In particular, we point out that the value of K at
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each y+ is associated to an integral effect of all wavelengths in the signal, so that K( y+)

arises from a cumulative effect of different spectral-energy levels.
Figure 3(c) also shows the y+-behaviour of the mean degree of networks built from

uSS(xi) (red line), namely, in which the large-scale component is removed. The values and
the trends of K from the full and the small-scale velocity signals are very close, and a
slight difference appears only very far from the wall. Note that a similar behaviour of K as
that shown in figure 3(c) for the channel case is also found for the turbulent boundary layer
case. It should be noted that because very long-range connections are unlikely to appear
(figure 2b), they only barely contribute to the average degree, K, which instead is mainly
related to shorter links.

The excellent agreement between K( y+) for the full u signal and the y+-variations
in the small-scale spectral energy (corroborated by the similarity of K( y+) for u and
uSS) indicate that the network degree is able to capture the features of the small-scale
turbulence directly from the full signal, i.e. without the arbitrary requirements of filtering
operations. These features will be exploited in § 2.3 to provide a metric which is able
to quantify FM. We notice that, to the best of our knowledge, this is the first time that
insights from the visibility graph approach are directly related to the spectral properties of
a signal.

2.3. FM detection via degree centrality
The aim of this section is to provide a degree-based metric that is able to quantify FM
from full velocity signals. With this aim, in figure 4(b), we show a short representative
interval of the streamwise velocity series reported in figure 4(a), which is extracted from
the turbulent channel flow at y+ ≈ 10. The corresponding NVG is then built from the short
signal in figure 4(b), and the links activated by two representative nodes, i = {19, 49}
(highlighted as red dots in figure 4b), are shown as green arcs in figure 4(c). Node
i = 19 clearly displays more connections than node i = 49 (i.e. k19 > k49), because node
i = 19 is in a larger convex interval than i = 49; therefore, the signal around i = 49
varies more rapidly than around i = 19. Therefore, although the degree, ki, represents
a pointwise value, because ki refers to a single coordinate i, the information enclosed
in ki originates from the surroundings of i. The degree ki can then be interpreted as a
measure of the instantaneous period (or instantaneous wavelength) at the temporal (or
spatial) coordinate ti (or xi), by analogy with the concept of instantaneous frequency
used in signal analysis (Huang et al. 1998; Boashash 2015). Larger ki values correspond
to larger instantaneous periods (or wavelengths), and, in turn, to smaller instantaneous
frequencies.

On the basis of this argument and the insights illustrated in § 2.2, we introduce the ratio,
Knp, to quantify frequency modulation, defined as

Knp ≡ Kn

Kp
, Kn = 1

Nneg

N∑
j=1

(kj | uLS < 0), Kp = 1
Npos

N∑
j=1

(kj | uLS > 0), (2.3a–c)

where Kn and Kp are the average degree values computed on the NVG of the full velocity
signal, conditioned to intervals of uLS < 0 and uLS > 0, respectively, while Nneg and Npos
are the number of occurrences in which uLS < 0 and uLS > 0, respectively.

Values of Knp greater than 1 indicate that the degree is (on average) larger during
uLS < 0 intervals than during during uLS > 0, and vice versa for Knp smaller than 1. In
the example of figure 4(b,c), the degree values, ki, of the two representative nodes in red
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Kp ≈ 12.8
Kn = 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20i:
ki:

1 20 40 60

7.30 7.35 7.40 7.607.45 7.557.50 7.65
–5
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x+
(×104)

i

48 49 50 51 52 53 54 55 56 57 58 59 6042 43 44 45 46 4741
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(a)

(c)

uSS < 0

uSS > 0

uLS < 0

uLS > 0

25 28 25 26 21 18 12 23 19 17 16 16 15 18 15 14 12 15 17 20

21 9 8 8 8 8 8 8 9 9 3 2 24 6 6 4 5 1315

i:
ki:

u+ uLS

ui
+

+

Figure 4. (a) An interval of the streamwise velocity, u, and its large-scale component, uLS, extracted along
the streamwise direction, x, of the turbulent channel flow at y+ ≈ 10. The full u signal is depicted as
orange–magenta lines, which indicate intervals of positive and negative small-scale velocity fluctuations,
uSS = u − uLS, respectively, while the uLS signal is depicted as light–dark blue lines, which highlight intervals
of uLS < 0 and uLS > 0, respectively. Both the series are normalized in wall units. (b) A section consisting of
60 data points of the velocity u from (a), depicted as vertical bars whose colour reflects the sign of uLS. Two
representative data points (corresponding to nodes i = 19 and i = 49 of the NVG network) are highlighted in
red. (c) Network representation of the NVG built from the signal in (b). Two subsets of nodes and links from the
two representative nodes, i = {19, 49}, are shown as coloured dots and green arcs, respectively. The sequence
of degree values, ki, for each node, i, is also reported.

(k19 = 17 and k49 = 9) exemplify the behaviour of the two signal intervals during uLS < 0
and uLS > 0, which result in Kn = 17, Kp ≈ 12.8 and Knp > 1. Hence, Knp discriminates
among (i) positive FM for Knp > 1 (i.e. an increase of the local frequency in the velocity
signal gained for uLS > 0 and a decrease for uLS < 0), (ii) negative FM for Knp < 1, and
(iii) an absence of modulation for Knp ≈ 1. We emphasize that the arguments leading to
the ratio (2.3a–c) do not involve any a priori parameters, but only the unique availability
of the full velocity signal to compute the degree value of each node. A filtering operation
is only required to condition the degree values to the sign of the large-scale velocity.

To test the NVG-based approach, we built synthetic signals that mimic the
near-wall modulation mechanism in wall-bounded turbulence for three modulation cases:
amplitude modulation (AM), frequency modulation (FM), and both amplitude and
frequency modulation (AM+FM). Appendix A contains details on the synthetic signal
construction and reports the Knp values for each configuration (see figure 9), which shows
that Knp is able to highlight the presence of FM and, in presence of both AM and FM
mechanisms, tends to be more sensitive to FM while only weakly to AM.

In summary, the Knp ratio combines the capability of visibility networks (i) to capture
the information on the local temporal structure of a series (§ 2.1), and (ii) to inherit the
small-scale energetic features from the full signal (§ 2.2). These characteristics make
the visibility approach a powerful and easy-to-use alternative to previously proposed
methodologies for time–frequency characterization of turbulence signals. In the following,
the NVG approach is carried out for wall-turbulent signals, which reveals its robustness
(with respect to different cut-off filtering size) and effectiveness in capturing the
large-to-small scale FM mechanism.
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3. Description of the turbulent flow datasets

Two main datasets of high-Reynolds-number wall-bounded turbulent flows are exploited
in this work to study FM by means of visibility-network-based tools: (i) spatial series from
a numerically-simulated turbulent channel flow at Reτ ≈ 5200 (Lee & Moser 2015); and
(ii) time series from experimental measurements in a turbulent boundary layer at Reτ =
14 750 (Marusic 2020). Although outer flow structures start to occur and play a role in
scale interaction at lower Reynolds numbers (Agostini & Leschziner 2014; Hu & Zheng
2018; Wu et al. 2019), high-Reynolds-number flows are required to enhance the inter-scale
separation and amplify the scale interaction mechanism. Moreover, a third DNS dataset
of turbulent channel flow at Reτ = 1000 is also employed for comparison purposes, thus
showing effects of inertia on FM results.

To the best of our knowledge, this is the first time a state-of-the-art DNS at
Reτ ≈ 5200 is employed to specifically investigate large-to-small scale FM. In fact,
while high-Reynolds-number boundary-layer flows are typically obtained in experimental
facilities (as witnessed by most previous works on AM and FM), high-Reτ experiments
of channel flows are difficult to realise owing to strong side-wall boundary effects (Lee
& Moser 2015). The DNS employed in this work is at a sufficiently large Reynolds
number (i.e. Reτ > 4000, as reported by Hutchins & Marusic 2007b) to guarantee
a sufficient large–small-scale spectral separation (e.g. see energy peaks separation
in figure 3a), and allows us to perform a FM analysis on all the three velocity
components that, so far, has only been performed for AM (e.g. see Talluru et al. 2014;
Agostini & Leschziner 2016).

The scale decomposition of the streamwise velocity fluctuation signals was performed
as u(x) = uLS(x) + uSS(x) (e.g. figure 4a) and u(t) = uLS(t) + uSS(t) (e.g. figure 1b) for
the spatial and time series taken from the turbulent channel and boundary layer flows,
respectively. A common approach to obtain uSS and uLS is to employ a spectral filter to
retain the high and low wavelength or frequency, respectively, as performed in several
previous works (Mathis et al. 2009a; Ganapathisubramani et al. 2012; Baars et al. 2015,
2017; Pathikonda & Christensen 2017, 2019). Alternatively, Agostini & Leschziner (2014)
proposed employing empirical mode decomposition (Huang et al. 1998) to separate the
large- and small-scale contributions. In this work, both the spectral and empirical mode
decompositions were tested to separate the large- and small-scale contributions. However,
for the sake of simplicity and in line with most of the current literature, results are
only shown for a spectral decomposition, as both the procedures produce equivalent
results.

3.1. DNS of turbulent channel flows
Velocity fields were extracted from two direct numerical simulations of incompressible
turbulent channel flows. The first DNS was run at frictional Reynolds number Reτ ≡
hUτ /ν = 5186, where h = 1 is the half-channel height, Uτ = 4.14872 × 10−2Ub and ν =
8 × 10−6Ubh, with the bulk velocity Ub = 1. The size of the spatial domain was (8πh ×
2h × 3πh) with (10 240 × 1536 × 7680) grid points along the streamwise, wall-normal
and spanwise directions, respectively. The flow fields were recorded only after statistical
stationarity of the flow was reached, and 11 temporal frames of the velocity and pressure
spatial fields were stored in the dataset. The time interval between two consecutive frames
was a flow-through time of approximately 0.7, which corresponded to approximately
3785ν/U2

τ in wall units.
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FM analysis in wall turbulence via visibility networks

The simulation was performed at a sufficiently high Reynolds number and with
a sufficiently large spatial domain to exhibit characteristics of high-Reynolds-number
turbulence, e.g. the presence of LSMs and a rather large wall-normal range for statistics
scaling (Lee & Moser 2015). The dataset is available online (doi:10.7281/T1PV6HJV)
from the Johns Hopkins Turbulence Database (Li et al. 2008). For further simulation
details and statistics, see Lee & Moser (2015).

The second DNS was run at Reτ ≡ hUτ /ν = 1000, with h = 1, Uτ = 4.9968 ×
10−2Ub, ν = 5 × 10−5Ubh and Ub = 1. The size of the spatial domain was (8πh ×
2h × 3πh) with (2048 × 512 × 1536) grid points along the streamwise, wall-normal and
spanwise directions, respectively. Data were stored for approximately one flow-through
time, [0, 26]h/Ub, with a storage temporal step of 0.0065. This dataset is also available
online (doi:10.7281/T10K26QW) from the Johns Hopkins Turbulence Database (Li et al.
2008). For further simulation details, see Graham et al. (2016).

In this work, 1-D spatial series (i.e. extracted at a fixed time) of the three velocity
components, u, v, w, along the streamwise direction, x, were exploited to build visibility
networks. Network-based results were averaged in time (i.e. on 11 temporal frames for
the Reτ ≈ 5200 set-up, and on 400 uniformly-spaced temporal frames for the Reτ = 1000
set-up) and in the spanwise direction; in the latter case, averages were performed for a
set of uniformly-spaced spanwise locations separated from each other by 64 and 128 grid
points for the Reτ ≈ 5200 and Reτ = 1000 configurations, respectively.

The cut-off spectral filter to separate the large- and small-scale streamwise velocity
for the Reτ ≈ 5200 set-up was set equal to λx,c = h (i.e. λ+x,c = 5186), in analogy with
previous works in which λx,c was set equal to the boundary layer thickness (Hutchins &
Marusic 2007b; Mathis et al. 2009a,b; Marusic et al. 2010; Dogan et al. 2019; Wu et al.
2019). For the Reτ = 1000 set-up, the cut-off filter was λ+x,c = 5000, thus was comparable
to λ+x,c of the higher-Reτ channel flow set-up.

3.2. Experimental turbulent boundary layer at Reτ ≈ 14 750
Experimental measurements were performed in the wind-tunnel facility of the University
of Melbourne, which employs a 27 m test section, under a free-stream velocity U∞ =
19.95 m s−1 (Baars et al. 2015). Under these conditions, a zero-pressure-gradient boundary
layer developed at a frictional Reynolds number Reτ ≡ δUτ /ν = 14 750, where δ =
0.361 m is the boundary layer thickness at the measuring location (i.e. 21.65 m from
the inlet of the test section), while Uτ = 0.626 m s−1 and ν = 1.532 × 10−5 m2 s−1 at
the same streamwise location. The dataset was the same employed by Baars et al. (2015,
2017), and is available online at the Fluid Mechanics Research webpage of the University
of Melbourne (Marusic 2020).

Time series of the streamwise velocity were simultaneously recorded by means of
two constant-temperature hot-wire probes, one at a fixed wall-normal location at y+ =
4.33, and the other vertically moved throughout the boundary layer in the range y+ ∈
[10.5, 2.14 × 104] (or y/δ ∈ [7.087 × 10−4, 1.45]) for 40 vertical locations. At each
wall-normal measurement location, three sets of data were recorded at a sampling
frequency of 20 kHz, each one for 120 s corresponding to a large-scale time of 6.6 ×
103δ/U∞, thus ensuring the convergence of spectral statistics at the longest energetic
wavelengths (Baars et al. 2015). The resulting time step in wall units was Δt+ = 1.28.
Further details on the measurement procedure and instrumentation can be found in Baars
et al. (2015).
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To separate the large- and small-scale components, we employed a cut-off spectral filter
λ+x,c = 7000 following Hutchins & Marusic (2007b), Hutchins (2014) and Baars et al.
(2015, 2017), who showed this is a proper filter value for turbulent boundary layers at
high Reynolds numbers. Differently from the channel flow set-up in which spatial series
are considered, here the spectral filter was converted in terms of frequency by invoking the
Taylor’s hypothesis as fc( y+) = Uc( y+)/λx,c, where Uc( y+) is a local convection velocity
at the wall-normal coordinate y+. The effects of different convection velocities on FM will
be elucidated in § 4, where a comparison with spatial data from DNSs is carried out.

4. Results

The results from the application of the degree centrality as a metric to quantify frequency
modulation are reported in this section for velocity signals extracted from the turbulent
channel flows and the turbulent boundary layer described above. A one-point modulation
analysis was carried out: the large scale component, uLS, used to condition the degree on
the uLS sign (see (2.3a–c)) was extracted at the same y+ in which the signal was mapped
into a visibility network. Owing to the footprint of the LSMs and VLSMs towards the wall,
uLS evaluated at each y+ represented a good estimate of the large-scale velocity component
in the outer region, thus resulting in a more applicable procedure than the two-points
analysis (Mathis et al. 2009a). In fact, two-point synchronized measurements are not
easy to perform experimentally (Mathis et al. 2009a). Previous works have shown that
similar results are obtained by adopting a one- or two-point procedure for characterizing
scales interaction (see, among others, Hutchins & Marusic (2007a); Mathis et al. (2009a);
Ganapathisubramani et al. (2012)), thus one-point modulation was preferred here for
simplicity.

First, the streamwise velocity component, u, was considered, both in an overall
perspective (§ 4.1) and with a near-wall focus (§ 4.2). Most of the current literature on
scale interaction in wall-bounded turbulence has indeed focused on the u component,
being the component in which the large and small scales can be clearly separated. We
then extended the analysis to the other velocity components, v and w (§ 4.3). Finally, a
space-shifted FM analysis was carried out for all velocity components and for both the
turbulence configurations (§ 4.4).

4.1. FM in the streamwise velocity component
The values of the ratio Knp as a function of the wall-normal coordinate, y+, are shown
in figure 5 for visibility networks built from the streamwise velocity, u. We recall that
Knp > 1 indicates a higher frequency under intervals of positive large-scale velocity than
under negative ones, and vice versa for Knp < 1.

Figure 5(a) shows Knp for the spatial series of the two channel flows DNS at Reτ ≈ 5200
(black) and Reτ = 1000 (red), while figure 5(b) illustrates the Knp behaviour for the time
series of the boundary layer (green). Values of Knp > 1 were detected close to the wall
for all configurations, while moving away from the wall, Knp became smaller than 1,
which indicated a reversal in the scale-interaction mechanism, i.e. higher frequencies were
detected during uLS < 0 than for uLS > 0. The overall behaviours shown in figure 5 were
in accordance with previous works on scale interaction in wall-bounded turbulence, which
have indicated that a higher (amplitude and) frequency of the small scales is found for
positive uLS intervals in regions close to the wall, while a reversal mechanism occurs
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(a) (b) Turbulent boundary layer
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u, Full signal (Channel 5200)
u, Random phase (MTH)
Intermittency region

Figure 5. Large-scale conditional average degree ratio, Knp, as a function of the wall-normal coordinate, y+,
for streamwise velocity, u, extracted from (a) the channel flow DNS at different Reτ and (b) the boundary layer
experiment. The inset in (a) shows the Knp behaviour for the two channel flows as a function of y/h. In (b),
Knp( y+) is shown for the spatial series obtained through the classical (CTH) and modified Taylor’s hypothesis
(MTH) as green and cyan plots, respectively; for comparison, the behaviour for the channel flow at Reτ ≈ 5200
is also reported in black. Moreover, the boundary layer intermittency region is highlighted in (b) as a shaded
grey region. Angular brackets indicate averaging over time and spanwise direction in (a) and over three different
realizations in (b). The results for synthetic velocity signals with shuffled phases are also shown.

far from the wall (Ganapathisubramani et al. 2012; Baars et al. 2015, 2017; Pathikonda
& Christensen 2017; Awasthi & Anderson 2018; Tang & Jiang 2018; Pathikonda &
Christensen 2019). However, the behaviour of Knp( y+) for the two set-ups also highlights
peculiar features of large-to-small scale FM that deserve further investigations.

First, we compared the results for the two channel flows at different Reynolds numbers
(red and black lines in figure 5a). A similar trend of Knp( y+) was found for both channels,
but the intensity of the FM (close to the wall) was larger for Reτ ≈ 5200 than for Reτ =
1000, thus clearly showing that the effect of higher Reynolds numbers was to increase the
FM mechanism in the near-wall region, as a consequence of the increasing magnitude of
the large-scale fluctuations with increasing Reτ . Similarly, away from the wall, the reversal
mechanism of scale interaction was strengthened for the higher-Reynolds-number DNS.
Furthermore, in figure 5(a) and also in figure 5(b) for the boundary layer, we observed a
peak of Knp at y+ ≈ 10: this peak was shown to be related to strong sweep-like events, a
phenomenon referred to as ‘splatting’ in which the large scales transport the high-intensity
small scales towards the wall below the buffer layer (Agostini & Leschziner 2014; Agostini
et al. 2016). Thus, being the highest small-scale intensity detected in the buffer layer
(Agostini et al. 2016), the strongest FM is revealed by a peak in Knp, which then represents
a sensitive metric to local changes in the flow dynamics. Eventually, it was remarkable
to observe in figure 5(a) the near-wall agreement of Knp plotted against y+ between the
two channel flows at different Reynolds numbers, as the near-wall dynamics is related to
near-wall cycle whose characteristic scales are fixed in wall units (see also a discussion on
characteristic near-wall spatial and temporal scales in § 4.4).

The behaviour of Knp obtained from the time series of the turbulent boundary layer is
shown in figure 5(b). When time series are considered, a convection velocity, Uc, has to
be defined to apply Taylor’s hypothesis in filtering the large and small scales. Typically,
Uc is set equal to the local mean velocity, U, and in the following, this assumption will be
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referred to as the CTH. Here, Knp obtained through the CTH is displayed as a function of
y+ in green in figure 5(b); although a similar behaviour with respect to the channel flows
is observed (e.g. the black line in figure 5b), there is a significant vertical shift when time
series are employed. It is worth noting that, because the local mean velocity, U, does not
depend on time, the temporal structure of the time series is preserved when the CTH is
applied. This implies that the application of any technique (including NVG) to study the
scale interaction from a time series is the same as from the corresponding spatial series
(i.e. obtained through the CTH), because Δx ∝ Δt.

The overestimation of modulation parameters when the time series and CTH are used
has been previously observed for AM in jet (Fiscaletti et al. 2015), mixing layer (Fiscaletti
et al. 2016) and turbulent boundary layer flows (Yang & Howland 2018). Specifically,
Yang & Howland (2018) reported a distortion of the spatial series when the CTH is
used and suggested employing a convection velocity, Uc, defined as Uc(t) = U + αu(t),
where u(t) = uLS(t) + uSS(t) is the fluctuating component of the streamwise velocity and
α = O(1) is a proportionality constant. The correction proposed by Yang & Howland
(2018) is based on the rationale that the sampling time step has to be scaled using the
local viscous scales, so that the small-scale activity is enhanced (or reduced) where the
wall shear stress is high (or low) owing to an increase (decrease) in the local friction
velocity (Yang & Howland 2018). However, variations in the (fluctuating) wall shear stress
are mainly induced by variations into large-scale fluctuations, uLS(t), rather than u(t), as
observed by Yang & Howland (2018) and reported in the previous literature (e.g. Zhang &
Chernyshenko 2016; Baars et al. 2017) (see a more detailed discussion about the relation
between the near-wall small scales and wall shear stress in § 4.2). Therefore, in this work,
we exploited the time varying formulation by Yang & Howland (2018) but only accounted
for the large-scale component of u(t), namely

Uc(t) = U + αuLS(t). (4.1)

In what follows, we will refer to the application of (4.1) as the convection velocity as
the MTH, where we selected α = 0.8 (which has been proven to be a suitable value). It
should be noted that a correction based on uLS arguments was also discussed by Fiscaletti
et al. (2015) for jet and boundary layer flows to compensate for an AM overestimation.
Moreover, it should be noted that, different form the CTH, the structure of u(x) is different
from the structure of u(t) for the MTH case, because Uc(t) is not a constant, thus leading
to a non-uniform spacing of the spatial series.

The Knp behaviour for the MTH is shown in cyan in figure 5(b): the overestimation
of Knp is compensated and its values are much more comparable to the spatial series
obtained from DNS of the channel flow at Reτ ≈ 5200 (black line in figure 5b). This
analysis confirms the applicability of the time-dependent correction of Yang & Howland
(2018) for AM when time series are employed, and extends such a correction to the study
of FM through (4.1). In particular, we stress that uLS(t) represents a more suitable choice
than u(t) in (4.1) because it is assumed that fluctuations in the large-scale velocity, uLS(t),
drive the variations in the friction velocity affecting the behaviour of the small scales (see
relation (4.2) and the accompanying discussion). In this regard, the relation (4.1) leads to
scaling arguments that are in good agreement with the quasi-steady quasi-homogeneous
theory, as will be discussed in § 4.2.

One additional feature emerging from figure 5 concerns the reversal in the modulation
mechanism from the wall proximity to the outer flow. In fact, while figure 5 shows
a continuous decrease of Knp for y+ > 10 and y/h � 0.5, an almost absence of FM
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was previously found in the log region by means of other techniques (where a reversal
of the FM was only detected in the proximity of the end of the boundary layer)
(Ganapathisubramani et al. 2012; Baars et al. 2015). We point out that the Knp behaviour
in figure 5 resembles the decreasing behaviour of the AM parameters (e.g. see Mathis
et al. 2009a,b), with a reversal of Knp from the near-wall (where Knp > 1) towards the
outer region (where Knp < 1). In principle, if the small scales are both amplitude and
frequency modulated, one could expect that – following the Newtonian principle that to
the same natural effects we must, as far as possible, assign the same causes – a similar
underlying mechanism is at play for both AM and FM. This can justify the similarity
between the Knp( y+) behaviour, which quantifies FM, and the widely reported behaviour
of AM parameters, either in internal or external wall-bounded turbulent flows. Therefore,
both AM and FM result from a common underlying phenomenon, for which both the
amplitude and frequency of the small scales are concurrently affected by negative or
positive large-scale fluctuations at different wall-normal locations.

Specifically, concerning the reversal coordinate (i.e. the y+ location where Knp switches
from Knp > 1 to Knp < 1), for AM, the reversal typically occurs in the middle of the log
region, y+ ≈ 3.9Re1/2

τ (Mathis et al. 2009a,b; Ganapathisubramani et al. 2012; Baars et al.
2015). For FM, it is still not clear whether a modulation reversal occurs in the log region
(as shown in figure 5) or if it is only limited to the wake region (Baars et al. 2015). From
figure 5, we can conclude that the FM mechanism is indeed limited to a near-wall region up
to approximatively y+ = 100, which is consistent with the analysis by Ganapathisubramani
et al. (2012). Nevertheless, figure 5 also shows that the reversal y+ location increases
with the Reynolds number. In fact, we find that when the spatial series are focused
both from channel DNSs and the time series by the MTH, the reversal coordinates (i.e.
y+ ≈ 35, 75, 145 for the channel and boundary layer flows at Reτ = 1000, 5186, 14 750,
respectively) scale as y+ ≈ 1.15Re1/2

τ (the power-law fit gives an exponent of 0.5 with
an R2 = 0.985). This scaling has the same functional relationship found for AM, i.e.
y+ ≈ 3.9Re1/2

τ , but with a different proportionality constant. In particular, the Re1/2
τ trend

is reminiscent of the scaling of the outer peak position as a function of Reynolds number
(Mathis et al. 2009a), thus strengthening the underlying connection of FM with the change
in large-scale features.

Another notable aspect discernible in figure 5 is the V-like shape of Knp in the outer
region of the channel flow, i.e. around y/h ≈ 0.5 (y+ ≈ 2500). In the literature, the
increase, which gives the V-like shape, of AM of the small scales (which are representative
of fine-scale turbulent motion) can be observed close to the channel centre, e.g. in Chung
& McKeon (2010) (see figure 4 therein) for the streamwise velocity, u, or in Yao et al.
(2018) (see figure 3(c) therein) for the v and w components. However, to the best of our
knowledge, this peculiar increase of the modulation parameter in the channel flow has not
been explicitly discussed so far. Here we propose an interpretation based on the insights
gained from turbulent boundary layers.

Previous analyses, in fact, have highlighted that the preferential arrangement of the
small scales in the wake region of turbulent boundary layers is mainly affected by
intermittency, namely the presence of bulges of turbulent and non-turbulent flow (Baars
et al. 2015, 2017). However, figure 5(a) shows a similar V-like behaviour – as for previous
results on AM – also in the outer region of the channel flows, despite the absence
of a turbulent/non-turbulent region in the channel flow (that is, an internal flow). In
particular, the V-like shape for the channel at Reτ = 1000, although less evident than at
Reτ ≈ 5200, consistently occurs at y/h ≈ 0.5, as highlighted in the inset of figure 5(a).
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Here we suggest that, similar to the effect of intermittency in boundary layer flows, the
preferential arrangement in the proximity of the channel centreline could be affected by an
alternating occurrence of high- and low-rotational fluid motion above the head of large-
or very-large-scale structures. This phenomenon would lead to the increase of both the
AM and FM parameters toward the channel centreline. Although the clarification of this
issue goes beyond the aim of this work, we do believe it deserves future investigations,
as the channel flow set-up is much less considered for scale interaction analyses than the
turbulent boundary layers (for which high Reτ data are much more readily available from
experimental measurements).

With the aim to ensure that the behaviour of Knp( y+) described so far is the result of an
intrinsic flow phenomenon, rather than an artefact arising from the network representation,
figure 5 shows the results for random-phase signals. Through a randomization of the
phase of velocity Fourier coefficients, the energy spectral density and the turbulence
intensity do not change, but all phase information is lost. Hence, following Mathis et al.
(2009a), first the signals of u were phase-scrambled, then the large-scale component,
uLS, was extracted from the new random-phase signal (the amplitude spectrum was not
changed), and eventually the degree was calculated from the full random-phase signal
and conditioned to the sign of the random-phase uLS. Figure 5 shows that in both the
channel flow and boundary layer set-ups, the characteristic behaviour of Knp for turbulent
signals (black curves) disappeared for the random-phase velocity signals (blue curves). As
previously reported (e.g. see Chung & McKeon 2010), phase relationships between the
large and small scales play an important role in the characterization of scale interaction,
specifically on scale modulation; thus, if any realistic phase information is lost, modulation
effects will disappear as well.

The NVG-based approach is demonstrated to be reliable in capturing FM in turbulent
velocity signals, and sensitive to phase randomization. Moreover, the behaviour of
Knp( y+) for both the channel and boundary layer is found to be robust under different
cut-off wavelengths (used to extract uLS from the full signal u), as discussed in
Appendix B. Further insights into the FM of the streamwise velocity will be presented
in § 4.2 focusing on the near-wall region, i.e. where large-to-small scale modulation
essentially takes place.

4.2. Scale interaction in the near-wall region
The presence of a near-wall modulation, whose intensity increases with the Reynolds
number, has posed a challenge to the classical view on the universality of near-wall
turbulence, i.e. the independence of the near-wall statistics (scaled in wall units) to the
Reynolds number when this is sufficiently large. Because large-scale structures affect the
behaviour of the wall shear stress (Mathis et al. 2013), the classical universality hypothesis
has been recently replaced with the hypothesis that statistics have to be normalized
by considering the large-scale skin friction, τLS, rather than the mean skin friction, τw
(Zhang & Chernyshenko 2016; Chernyshenko 2020). This hypothesis is referred to as the
quasi-steady quasi-homogeneous (QSQH) hypothesis, because the temporal and spatial
variations of the large-scale structures are much slower than variations of the near-wall
turbulence (Zhang & Chernyshenko 2016).

The aim of this section is (i) to provide the proportionality relationships between uLS
and the (temporal or spatial) frequency of the small scales as expected from the QSQH
hypothesis; and (ii) to test the validity of such relationships by means of the network
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degree centrality. In particular, we will focus on velocity signals extracted at y+ = 15,
which corresponds to the y+ value of maximum Knp in figure 5, thus being a representative
wall-normal coordinate of the near-wall region. This choice is also related to the fact
that, evidenced by Zhang & Chernyshenko (2016) and Agostini & Leschziner (2019), the
validity of the QSQH hypothesis is found to be rather accurate only in a narrow region
close to the wall, that is, y+ < 70 − 80.

According to the QSQH hypothesis, variations in the large-scale velocity, uLS, induce
proportional variations in the large-scale skin friction, τLS, namely (τw + τLS) ∝ (U +
uLS), where U is the local mean velocity. Because, by definition, Uτ = √

τw/ρ (where ρ

is the fluid density), the effect of uLS on τLS can be stated in terms of velocities as

(Uτ + uτ,LS) ∝
√

(τw + τLS) ∝
√

(U + uLS), (4.2)

where uτ,LS is the fluctuating (i.e. zero-mean) large-scale component of the friction
velocity (Baars et al. 2017). Owing to near-wall modulation, a quasi-steady or
quasi-homogeneous variation of the friction velocity affects also the (amplitude and)
frequency of the small scales. Specifically, uLS > 0 events induce uτ,LS > 0 (see relation
(4.2)) that, in turn, produces an increase of the small-scale instantaneous spatial or
temporal frequency according to the FM mechanism; and vice versa for uLS < 0 (Baars
et al. 2017).

In the near-wall region, the spatial scales are supposed to have a constant characteristic
length when normalized in wall units (e.g. see the inner spectral peak for λ+x = λxUτ /ν =
const. ≈ 1000 in figure 3a). Therefore, spatial scales are related to uτ,LS variations as
λx(Uτ + uτ,LS) = const., namely λx ∝ 1/(Uτ + uτ,LS). Because the spatial frequency (i.e.
wavenumber), κx, is related to the spatial scales as κx ∝ λ−1

x , by using (4.2), we obtain the
following scaling relations:

λx ∝ (U + uLS)
−1/2, κx ∝ (U + uLS)

1/2. (4.3a,b)

In the case of a time series, the temporal frequency, f , is related to the spatial scales as f =
Uc/λx, where Uc is the convection velocity. Assuming that Uc scales in wall units (Baars
et al. 2017), namely Uc ∝ (Uτ + uτ,LS), the temporal frequency is eventually expected to
scale as

f ∝ (Uτ + uτ,LS)
2 ∝ (U + uLS). (4.4)

Therefore, the relations (4.3a,b) and (4.4) represent the expected scaling of the spatial and
temporal frequency, respectively, according to the QSQH hypothesis.

As discussed in § 2.3, the degree centrality represents a measure of the instantaneous
wavelength or a temporal period. Therefore, it is expected that the degree, k, scales as
k ∝ λx for the channel flow (in which spatial series are mapped into NVGs), and k ∝ 1/f
for the boundary layer (in which time series are analysed). If the degree is indeed an
effective parameter to quantify FM, k should then be proportional to (U + uLS)

βu,x in
the channel flow and (U + uLS)

βu,f in the boundary layer. Following the aforementioned
scaling arguments (i.e. relations (4.3a,b) and (4.4)), the two exponents that verify the
QSQH hypothesis should be equal to βu,x = −0.5 and βu,f = −1.

To test the βu,x and βu,f scaling, we conditionally averaged the degree centrality values
(computed from NVGs of the full velocity signals u(x)) to the uLS values at y+ ≈ 10. In
particular, the uLS values were first divided into uniformly-binned intervals in the range
between min[uLS] and max[uLS]. Then, for each visibility network (i.e. each signal), nodes
i, for which uLS(i) belongs to a specific bin, were selected, and the corresponding degree
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〉

~x–0.48; R2 = 0.998

~x–0.5; R2 = 0.993

0.7 0.9 1.1 1.30.8 1.0 1.2
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~x–0.4; R2 = 0.98
~x–0.5; R2 = 0.88

~x–1.0; R2 = 0.998

CTH

MTH

Figure 6. Average degree conditioned to the uLS values as a function of the normalized uLS deviation, for u
signals at y+ ≈ 10 in (a) the turbulent channel flow and (b) the turbulent boundary layer (angular brackets
indicate the average over time and homogeneous directions). In (b), the scaling for the spatial series obtained
through the CTH and MTH are shown as black lines. The power-law fitting curves are shown as dashed lines,
together with the exponent of the fitting and the coefficient of determination, R2, for both set-ups. Light-blue
dashed lines correspond to the expected scaling trends for the spatial data. The intervals of uLS/U + 1 in
abscissa cover, for each set-up, a range from the 5th to the 95th percentile of all uLS at the selected vertical
coordinate y+ ≈ 10.

values, ki, were averaged for that specific bin. By extending the averages to all uLS bins, the
conditional average, (k̄ | uLS), was obtained, where the overbar indicates an average over a
set of nodes. When plotting (k̄ | uLS), the uLS value representative of each bin was chosen
as the middle value of the bin.

The behaviour of (k̄ | uLS) as a function of uLS revealed the scaling between degree-based
frequency variations and large-scale velocity variations. Such conditional degree averages
are shown in figure 6 for the channel flow at Reτ ≈ 5200 (figure 6a) and the boundary
layer (figure 6b), as a function of (uLS/U + 1), where U = U( y+ = 10) is constant and
(uLS/U + 1) values equal to 1 correspond to large-scale zero-crossing points (uLS = 0).
We find a scaling of the conditioned degree, which follows a power-law with the best-fit
exponent βu,x = −0.48 for the channel flow (spatial data) and βu,f = −1 for the boundary
layer when the local mean velocity is used in the Taylor’s hypothesis (CTH). These
exponent values are in excellent agreement with the expected values of −0.5 and −1. We
recall that, for the CTH case, because the convection velocity is constant and equal to the
local mean velocity U, the scaling exponent obtained is representative of a (temporal)
frequency, thus βu,f = −1. However, when the MTH is employed (4.1), the structure
of the spatial series (obtained from the corresponding time series) significantly changes
and scaling arguments are therefore congruent with the DNS spatial series. Accordingly,
the (k̄ | uLS) scaling for the MTH case in figure 6(b) produces an exponent which is
close to −0.5, as expected from the spatial series. Finally, we mention that an exponent
βu,x = −0.5 is found for the channel flow at Reτ = 1000 with an R2 ≈ 0.92 when the
cut-off filter is set to λ+x,c = 2500, while for larger λ+x,c values, a poorer fitting is observed,
likely as a result of the limited scale separation for this set-up.

The conditional averages were performed here by using uniformly-binned intervals of
uLS, whereas Baars et al. (2017), by adopting a variable-interval scheme for conditional
averages, reported a scaling of approximatively 0.8 (instead of 1) for the frequency in
turbulent boundary layers over a wide range of Reτ . They indicated that the discrepancy in
the expected exponent might be caused by an inaccurate assumption that the small scales
are convected at a fixed inner-scaled velocity. However, here we show that the expected
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〉
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R2 = 0.997
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Figure 7. (a) The Knp ratio as a function y+ for the wall-normal and spanwise velocity components, v and
w, extracted from the two channel-flow DNSs, together with the corresponding Knp values for random-phase
signals. The respective Reynolds number value of the DNS is reported within brackets in the legend. Angular
brackets indicate averaging over time and the spanwise direction. (b) Average degree conditioned to the uLS
values as a function of the normalized uLS deviation for v and w signals at y+ ≈ 10 in the turbulent channel
flow at Reτ ≈ 5200. The power-law fitting curves are shown as cyan and green dashed lines for the v and w
cases, respectively, together with the exponents of the fitting and the coefficients of determination, R2.

scaling for f is still obtained by assuming Uc ∝ (Uτ + uτ,LS), which suggests that the
discrepancy in the fitting in Baars et al. (2017) might be related to different methodological
arguments.

The relevance of the scaling shown in figure 6 is twofold. First, it demonstrates that,
similarly to the near-wall AM (Baars et al. 2017), the near-wall FM agrees with the
quasi-steady quasi-homogeneous hypothesis. Second, the outcomes of figure 6 further
validate the capability of the visibility-based approach, which relies on the degree
centrality, to capture FM in wall-bounded turbulence, as well as the validity of the MTH
(4.1) in converting a time series into a spatial series.

4.3. Analysis of the spanwise and wall-normal velocity components
The application of the NVG approach to the spatial series of wall-normal, v(x), and
spanwise, w(x), velocity from the DNS of the turbulent channel flows is here reported.
Figure 7(a) shows the ratio Knp for the v (black and green curves) and w (red and purple
curves) components as a function of y+ for the two channel flows at different Reτ . Here,
Knp > 1 is found in the near-wall region, which indicates a positive frequency modulation
of the large scales on the small scales of v and w. This result is consistent with the AM
investigations, which show a similar modulating effect of the large scales on the small
scales of the three velocity components (Hutchins & Marusic 2007b; Talluru et al. 2014;
Yao et al. 2018; Wu et al. 2019). In particular, the trends shown in figure 7(a) are similar
to that reported in figure 5(a) for the u signals, although lower Knp values are obtained
from v and w. Moreover, as for u, the FM of the small scales of v and w is weaker at
lower Reynolds number, because smaller Knp values are observed in the near-wall region
for Reτ = 1000.

Furthermore, similar to the u component, an almost constant Knp ≈ 1 behaviour is found
for the network built from the random-phase v and w signals (see orange and blue curves in
figure 7(a) referring to Reτ ≈ 5200 as a representative case), which confirms the ability of
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the degree to capture phase information from the (full) signal. It should be noted that, for
the sake of consistency, a unique phase shuffling was performed in this case for the three
velocity components. As the degree centrality from the v and w signals is conditionally
averaged on uLS, the phase of the streamwise velocity signal was extracted and randomly
shuffled, so that the random-phase uLS, v and w signals were obtained via the respective
(non-shuffled) amplitudes but with the same random phases.

Although spectral peak separation in the spectrograms of the transversal velocity
components is less evident than for the streamwise velocity, the generation and
amplification of small-scale motions (i.e. fine-scale vortices) of all the three velocity
components are strongly connected with large-scale events (Hutchins & Marusic 2007b).
Within this perspective, the wall-normal and spanwise velocities are expected to be
modulated in the near-wall region by following the QSQH hypothesis in a similar way
as the streamwise component, u. However, while results for AM of the three velocity
components (Talluru et al. 2014; Agostini & Leschziner 2019; Chernyshenko 2020) and
scaling arguments for the AM and FM of the u component (Baars et al. 2017) have been
provided, as far as we know, similar scaling arguments (as in Baars et al. (2017), figure 9
therein) for v and w have not been pursued for FM to date.

By analogy with the modulation of the u component, the conditional average degree,
(k̄ | uLS), is evaluated as a function of (uLS/U + 1) at y+ ≈ 10 for NVGs built from v(x)
and w(x) signals. The conditional average degree and the corresponding fitting are shown
in figure 7(b) for the Reτ ≈ 5200 set-up and confirm the power-law modulation effect of
the large scales in the near-wall region even for the other velocity components, namely k ∝
(U + uLS)

βv,x and k ∝ (U + uLS)
βw,x . However, while, for the u component, the exponent

of the power-law was βu,x ≈ −0.5, a weaker scale interaction effect was found for the
v and w components, being βv,x ≈ −0.3 and βw,x ≈ −0.3, which are both smaller (in
modulus) than βu,x. This outcome is consistent with the smaller Knp values for v and w
(see figure 7a) than for u (see figure 5a), which indicates a weaker FM in the near-wall
region for the transversal velocity components.

The power-law relationships found for u, v and w suggest that, although the intensity
of modulation is different for each velocity component, the response of the small-scales
of v and w exhibits a functional relation qualitatively analogous to the response of u. In
general, there could be several factors playing a role in the scale-interaction mechanisms
(such as the direction of the large scales as discussed by Chernyshenko 2020), but we can
conclude that the QSQH hypothesis is valid for all velocity components, although a more
refined description is required for the transversal components, v and w.

The results shown in this section reveal that the three velocity components are all
affected by a large-scale FM in the near-wall region, where an increase of the local
(spatial) frequency is observed under uτ,LS > 0 periods induced by positive uLS events.
In particular, we provide novel insights on FM for the v and w components, which have
been investigated less than u, in terms of FM intensity for the spatial series (figure 7a) and
scaling arguments on the QSQH hypothesis (figure 7b).

4.4. Time and space shifting in FM
To conclude our analysis, we provide results on the investigation of the time- and
space-shifted FM, as quantified by Knp. We recall that a lead of the small-scale amplitude
was found with respect to the large scales in the near-wall region of turbulent boundary
layers, while a small-scale lag is found above the reversal coordinate (Bandyopadhyay &
Hussain 1984; Guala et al. 2011). Concerning FM, a lead of the small-scale frequency
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Figure 8. Contour plot of the Knp ratio as a function of the wall-normal coordinate, y+, and the temporal
or spatial shifting, Δt+ or Δr+

x , respectively. Shiftings for the turbulent boundary layer are reported in (a,b)
whether the CTH or MTH is used, respectively. The spatial shifting for the turbulent channel flow at Reτ ≈
5200 is shown in (c–e) for the three velocity components. Iso-level contours are displayed by using a level-step
equal to 0.03 in (a), 0.01 in (b) and 0.015 in (c–e).

with respect to the large scales was found in the near-wall region but, different from AM,
scattered behaviours were found far from the wall (Ganapathisubramani et al. 2012; Baars
et al. 2015).

To address this issue, in figure 8, we show the conditionally average degree, Knp, as
a function of y+ and the spatial delay, Δr+

x , where for the time series, it holds the
Taylor’s hypothesis Δr+

x = −UcΔt+ (the minus sign highlights the opposite direction of
the reference systems between the fixed-point time series and spatial series). Therefore, the
formulation of Knp reported in (2.3a–c) is extended to account for spatial shifting, Δr+

x ,
as Knp(Δrx) = Kn(Δrx)/Kp(Δrx), with

Kn(Δrx) = 1
Nneg(Δrx)

N∑
j=1

(
k(xj − Δrx)|uLS(xj) < 0

)
,

Kp(Δrx) = 1
Npos(Δrx)

N∑
j=1

(
k(xj − Δrx)|uLS(xj) > 0

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.5)

Positive or negative Δr+
x values indicate in (4.5) a lag or lead, respectively, of the degree,

k, with respect to uLS in the conditional averages of (2.3a–c) (the results in figure 5
correspond to Δr+

x = Δt+ = 0). If the CTH is employed for the turbulent boundary layer
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time series (figure 8a), a slight lead of Knp with respect to uLS (i.e. high Knp values are at
Δr+

x < 0 but close to Δr+
x = 0) is observed for y+ � 15. However, a more substantial

lead is observed for larger y+ coordinates in the near-wall region up to y+ ≈ 100, in
agreement with previous analyses (Baars et al. 2015), while a lag of Knp with respect
to large scales is detected for y+ � 100. A clearer picture is obtained when the MTH is
exploited (figure 8b). Significant lead of Knp with respect to uLS is found in the whole
near-wall region (including the wall proximity, y+ � 15), while the lag for y+ � 100 is
less evident and a lead is recovered for larger y+ values (see blue contours in figure 8b).
Eventually, no clear patterns are observed in the intermittent regions (y+ � 5 × 103).

The space-shifted Knp values in the turbulent channel flow at Reτ ≈ 5200 for the three
velocity components are displayed in figure 8(c–e). Similar to the turbulent boundary layer,
a lead of Knp with respect to uLS is found for y+ < 100, as highlighted by high Knp values
for Δr+

x < 0. Differences among the u, v and w components are detected in proximity of
the channel centreline, where Knp appears to lead, be in-phase and slightly lag uLS for the
u (figure 8c), v (figure 8d), and w components (figure 8e), respectively. It should be noted
that the Reτ ≈ 5200 is here used as a representative set-up for spatial data, and the results
for the lower Reτ channel flow are in agreement with the results in figure 8, so they are not
shown for the sake of conciseness.

In particular, it is worth highlighting that the maximum Knp values in the near-wall
region are found at Δr+

x ≈ 1000 for the streamwise velocity in the turbulent boundary
layer when the MTH is employed (figure 8b), as well as for all the velocity components in
the turbulent channel flow (figure 8c–e). The value Δr+

x ≈ 1000 is in excellent agreement
with the characteristic length scale in the near-wall region, being λ+x = O(103) (see inner
spectral peak in figure 3a). The equivalent time scale is Δt+ = Δr+

x /U+
c ≈ 100 (being

U+
c ≈ 10 in the buffer layer and viscous sublayer), which is the characteristic turnover

time of the near-wall cycle. As the small scales are supposed to be actively modulated by
the large scales, the time taken for this process to be completed is therefore equivalent to
the time scale of the near-wall cycle (Ganapathisubramani et al. 2012).

The results shown in figure 8(a–c) for the streamwise velocity reveal that different
convection velocities indeed play a significant role in the FM dynamics, not only in terms
of overestimation (as highlighted in figure 5b), but also in terms of spatial delay that,
in the near-wall region, is strongly related to the near-wall cycle. Therefore, NVG is again
revealed to be a reliable approach for quantifying FM even in the presence of a temporal or
spatial shifting. Finally, we note that an important issue about scale interaction is whether
the large scales actually cause an increase or decrease of the small-scale activity, as the
parameters used so far to quantify AM and FM only show that there is a relation (e.g.
a correlation) between the large scales and small scales. Although definite answers to
this issue are not still available, our detection of the presence of a significant temporal
or spatial delay close to the characteristic time or length scale of the near-wall cycle, in
conjunction with the arguments leading to relation (4.2), could provide supporting clues
that a causation process is at play. In fact, fluctuations in the large-scale component of the
wall shear stress, which affect the small-scale behaviour, appear to be directly caused by
the outer large-scale structures rather than being the feature of near-wall processes (Zhang
& Chernyshenko 2016).

5. Discussion

In this work, the natural visibility graph was used to study the 1-D spatial series and time
series from two turbulent flow configurations, but some generalizations can be outlined.
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FM analysis in wall turbulence via visibility networks

First, the geometrical criterion at the basis of the visibility algorithm can be extended to
scalar fields of arbitrary dimension (Lacasa & Iacovacci 2017). For instance, Tokami et al.
(2020) recently constructed a spatial visibility graph (employing a simplified version of the
NVG, horizontal visibility graph, as proposed by Luque et al. 2009) from a 2-D velocity
field in a buoyancy-driven turbulent fire. Therefore, our approach could be extended to 2-D
velocity fields at fixed y+ coordinates, thus concurrently taking into account the degree
variations along the streamwise and spanwise directions.

The results provided by natural visibility graphs, specifically about the degree centrality,
necessarily depend on the signal resolution (either the sampling frequency or the grid size),
which needs to be sufficiently high to capture the behaviour of the small scales. However, if
the temporal or spatial resolution is sufficient to capture the smallest significant features of
the signal, the degree centrality tends to proportionally scale with the signal resolution, as
has already been shown, e.g. in Iacobello et al. (2018b). Nevertheless, an additional feature
of visibility networks is the possibility to explicitly account for the spatial or temporal
discretization. In fact, one can assign to each discrete observation, i, the corresponding
signal spacing (e.g. Δxi, Δzi, Δti, etc.). In this way, each node i of the network is
representative of an interval centred in i, thus providing a continuous representation of
the signal. As a result, a weighted network is obtained in which the relation (2.2) is
reformulated as k̃i ≡ ∑

j ΔχjAi,j for a series sampling, Δχj, where χ is independent
variable (e.g. time). This generalization is particularly useful for non-uniformly sampled
signals from experimental measurements, in which k̃ can be used in place of k, e.g. in the
definition (2.3a–c).

Finally, it is worth observing that, so far, the visibility approach has been presented as a
convexity criterion (see inequality (2.1)). In particular, the network degree was interpreted
as a measure of the instantaneous period (quantified in terms of the local convexity
of the signal), in analogy with the concept of instantaneous frequency based on the
Hilbert transform (where the local properties of a series are emphasized by performing
a convolution of the signal with the function 1/t (Huang et al. 1998)). Nevertheless,
the visibility algorithm can also be used as a concavity criterion by applying it to the
opposite signal, −si, whose effect is to change the direction in the inequality (2.1)
(Iacobello et al. 2019a). The comparison of the network metrics extracted from si and −si
allows the characterization of the peak–pit asymmetry of a signal, especially in real-world
phenomena (Hasson et al. 2018). Following this point of view, we evaluated, for the sake
of completeness, the values of Knp( y+) by using the NVG as a concavity criterion for
the streamwise velocity, and we found that the main features of the FM for full and
random-phase signals are retained when the information is only taken from either the
convexity or concavity criterion.

6. Conclusions

In this study, we propose a novel approach to investigate the frequency modulation (FM)
mechanism in wall-bounded turbulence by means of the natural visibility graphs. The
spatial series and time series of the velocity from two turbulent channel flows and a
turbulent boundary layer, respectively, are mapped into visibility networks and the degree
centrality is conditionally averaged to the sign of the large-scale velocity to quantify FM.
In particular, the versatility of visibility graphs to map either the time or spatial series,
allows us to exploit the velocity spatial fields from turbulent channel flows that have been
much less investigated than turbulent boundary layers under the lens of FM.
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G. Iacobello, L. Ridolfi and S. Scarsoglio

The overall results for the streamwise velocity indicate a FM mechanism occurring in
the near-wall region with a peak of intensity in the buffer layer, in agreement with previous
works. However, in contrast with the previous observations on FM, we observe a reversal in
the FM mechanism far from the wall, similar to what is observed for AM, in both channel
and boundary layer flows. We propose that such similarity could stem from a common
underlying phenomenon, for which both the amplitude and frequency of the small scales
are concurrently affected by negative or positive large-scale fluctuations. Moreover, we
observe that the reversal coordinate scales as Reτ

0.5, which is reminiscent of the scaling in
the wall-normal position of the outer spectral peak.

The effect of different convection velocities for the time series analysis is also discussed.
In particular, we modify the correction proposed by Yang & Howland (2018) by accounting
for only the large-scale velocity component in the definition of the convection velocity.
This choice is based on the rationale that variations in the large-scale velocity induce
variations in the wall shear stress, which, in turn, affect the behaviour of the small
scales. We detect an overprediction of the FM when the local mean velocity is employed
as the convection velocity in the turbulent boundary layer, while such overprediction
is compensated when the proposed MTH is used. Moreover, scaling behaviours of the
degree centrality as a function of the large-scale velocity are found to be in excellent
agreement with the the QSQH theory. In this regard, our correction of the Taylor’s
hypothesis provides reliable scaling trends as the large-scale velocity is supposed to induce
a modulation of the small scales through variations in the wall shear stress.

Finally, the FM for the wall-normal and spanwise velocity components is analysed for
the turbulent channel flows and FM scaling is discussed for the transversal velocities. We
find a FM mechanism for the wall-normal and spanwise velocity components qualitatively
similar to FM of the streamwise velocity. Specifically, a power-law scaling of the degree
conditioned to the large-scale velocity is found for the three velocity components, although
smaller exponents are found for the transversal velocities than for the streamwise velocity.
Moreover, a delay-based analysis is carried out for the three velocity components in the
channel flow and for streamwise velocity time series in the boundary layer. We observe
that the small scales lead the large scales in the near-wall region (in accordance with
previous studies), but significant differences are found when the CTH or MTH is applied.
Specifically, our MTH provides results in agreement with spatial series analysis, where the
delay of maximum modulation corresponds to the characteristic length (or temporal) scale
of the near-wall cycle.

Furthermore, we emphasize here that, to the best of our knowledge, this is the first time
that FM is thoroughly investigated for all the three velocity components, as previous works
have mainly focused on AM. The findings gained through the visibility networks of all the
three velocities can then contribute to the development of a more general model of scale
interaction, which accounts for the different modulating effect of the large scale on each
velocity component.

The visibility-based approach reveals to be robust in the quantification of FM with
respect to AM (Appendix A), and to different cut-off filtering sizes and high-frequency
noise (Appendix B), as well as sensitive to a spectral phase randomization of the signals.
The latter implies that the natural visibility graph is able to capture nonlinearities in the
signal, as linear effects are preserved during phase randomization (i.e. amplitude spectrum
does not change) while nonlinearities are lost through phase shuffling. We stress that the
visibility networks do not require any a priori parameters and are directly built from the
full velocity signals (instead of the small-scale component), because the network degree is
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FM analysis in wall turbulence via visibility networks

able to capture the signal structure at the local scales. In this regard, although in this work a
one-point analysis is carried out for simplicity, a two-point analysis (where the large-scale
signal is extracted at a fixed wall-normal coordinate) would reveal the full potential of
visibility networks. In fact, when multiple synchronized signals are available at different
wall-normal locations (e.g. from numerical simulations, hot-wire rakes or through particle
image velocimetry), the large-scale signal can be obtained only once at a fixed wall-normal
location, and probes working on a smaller frequency range can be employed (as only
low-frequencies are necessary). The full velocity signals, instead, can be used without
any filtering operation to capture the small-scales frequency modulation at the remaining
wall-normal locations.

In the wake of the recent successful applications of network science to the analysis of
turbulent flows (Murugesan & Sujith 2015; Taira, Nair & Brunton 2016; Schlueter-Kuck
& Dabiri 2017; Iacobello et al. 2019b; Krishnan et al. 2019), the proposed visibility-based
approach is a candidate as a parameter-free and robust tool for FM investigation.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Giovanni Iacobello https://orcid.org/0000-0002-0954-8545.

Appendix A. Synthetic signals for visibility-based FM detection

In this appendix, we provide the results of the application of the visibility-based approach
to quantify FM from synthetic signals, which is a simple but representative benchmark
of more complex signals such as those from turbulent flow fields. Three configurations of
modulation are here investigated, as shown in figure 9(a–c), namely amplitude modulation
(AM), frequency modulation (FM) and both amplitude and frequency modulation
(AM+FM). In this way, we assess the effect of different modulations on the ratio Knp
and its ability to discern FM only.

All the generated signals have length N = 104 and sampling frequency fsamp = 4000 Hz,
which is chosen to be much larger than the characteristic frequencies of the modulated and
modulating signals. The modulating (i.e. large-scale) signal, shown in red in figure 9(a–c),
is given by the expression sL(ti) = cos(2πfLti)/3, where ti = (i − 1)/fsamp is the time,
with i = 1, . . . , N, and fL = 2 Hz is the frequency of the modulating signal.

The three modulated signals, sAM , sFM and sAFM , are constructed as a high-frequency
sinusoidal series, which emulate the small-scale velocity component, modulated by sL.
A positive modulation is considered, namely, an increase of amplitude and/or frequency
is induced for intervals of positive sL values and vice versa for negative sL values. This
behaviour mimics the modulation close to the wall by the large scales to the small scales
in wall-bounded turbulence. Specifically, the three modulated signals, shown as black lines
in figure 9(a–c), are given as

(i) sAM = (cos[2πfHti] + sR)(1 + sL);
(ii) sFM = cos[2πfHti + ϕL] + sR; and

(iii) sAFM = sFM(1 + sL),

where fH = 12 Hz is the (high) carrier-frequency of the modulated signals. The role of
(1 + sL) is to provide the AM effect on sAM and sAFM , while the role of ϕL is to give a
frequency-modulated component to sFM and sAFM . In particular, ϕL is a time-varying phase
depending on sL typically used to generate frequency-modulated signals (Boashash 2015),
defined as ϕL = 2πfΔIm, where fΔ = 11 Hz is the frequency deviation (i.e. the maximum
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Figure 9. First 2500 time instants (out of 104) of the three synthetic modulated signals (shown in black) and
the modulating signal (shown in red) for: (a) amplitude modulated signal (shown as AM); (b) frequency
modulated signal (shown as FM); (c) amplitude and frequency modulated signal (shown as AM+FM). The
inset shows a zoom of the AM+FM modulated signal. (d) Results of the application of the NVG to the
synthetic signals in (a–c). Values of Knp are shown as box plots, where q1, q2 and q3 are the 25th, median, and
75th percentiles, respectively, while qmin = q1 − 1.5(q3 − q1) and qmax = q1 + 1.5(q3 − q1), whose values
are explicitly indicated at the tips of the whiskers as percentages.

frequency shift from fH) and Im ≡ ∑
i sL(ti)/fsamp. The frequency deviation, fΔ, is selected

to be close to the value of the carrier frequency, fH , to maximize the modulation effect on
the signal.

In each of the three modulated series, an additional signal, sR, is also included. It is
obtained as a sum of unmodulated cosine signals with randomly-varying amplitude, given
by

sR(ti) =
5∑

q=2

rA

2q cos[2π(2qfH)ti], (A1)

where rA is a random number extracted from a uniform distribution in the range (0, 1).
The effect of sR in a modulated signal can be observed in the inset of figure 9(c).
The role of sR is to introduce – similar to turbulence velocity spectra – additional
high-frequency low-amplitude components, thus making the modulated (small-scale)
signal a broadband-like series.

By generating several random amplitudes, rA, in (A1), an ensemble of sR series is
obtained for each rA. This leads to an ensemble of different modulated signals, sAM , sFM
and sAFM , which are characterized by different sR. Specifically, we generated 5 × 103

values of rA for each of the three modulated signals. The values of the ratio Knp (see
(2.3a–c)) are then computed for each ensemble, by evaluating the degree on the NVGs
built for the full signals, namely, (sAM + sL), (sFM + sL) and (sAFM + sL).

Figure 9(d) shows the values of Knp for the three modulation configurations as box
plots, in which the most significant percentiles are highlighted. For the AM case, Knp is
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Figure 10. (a) Power spectra of synthetic signals following a f −5/3 law. Signals are generated through
inverse-Fourier transform of the power spectrum shown in black for different frequency ranges (i.e. different
number of harmonics). Fifty ranges of f are generated, and the spectra of the synthetic signals for some
representative f ranges are highlighted with different colours, as well as vertically shifted to enhance
visualization. (b) Power spectrum of signals generated as per (A1). The range of frequencies considered for
the (A1) is highlighted as a shaded red region, and an f −2 scaling is also shown. (c) Average degree centrality,
K, for signals generated as in (a,b) for increasing maximum frequency, f ∗.

concentrated around unity, with a median value that is very close to one, as is expected
because the main modulating effect is on the amplitude. For the FM and AFM cases,
instead, values of Knp greater than one are consistently obtained (note the percentile values
in figure 9d), as a result of the positive frequency modulating effect of the large-scale
signal. In particular, it is worth noting that even when a signal is modulated both in
amplitude and frequency, the ratio Knp is able to emphasize the contribution of the FM.

The results shown in figure 9(d) reveal that Knp is an accurate parameter to quantify
FM, because it consistently shows positive values under positive FM, and also a precise
metric, because there is narrow spreading of the Knp values around the median. The
results shown in this appendix corroborate the ability and robustness of the proposed
visibility-based approach, which relies on the conditioned degree centrality, to capture
frequency modulation, thus fostering its application as a tool to study scale interaction in
wall-bounded turbulence.

To conclude this section, we show the effect of higher frequency harmonics on the
average degree, K, for synthetic signals. With this aim, we use two sets of synthetic
signals according to their power spectrum scaling following: (i) a −5/3 spectrum; and
(ii) a −2 spectrum. The former emulates turbulent signals in the inertial range, while the
second refers to signals defined in (A1). Figure 10(a,b) shows the power spectra for both
types of synthetic signals, while figure 10(c) illustrates the behaviour of K as a function
of the maximum frequency considered, f ∗. As discussed in § 2.2 referring to figure 3(c)
for a turbulent series, K decreases as the number of high-frequency harmonics increases.
Moreover, the changes in K are stronger for the synthetic signals following the f −5/3

spectrum (figure 10a) than for the f −2 spectrum (figure 10b), because the energy content
of the small scales is larger in the former case, as the exponent −5/3 is lower (in modulus)
than −2.

Appendix B. Sensitivity analysis

The aim of this section is to assess the robustness of the proposed NVG-based approach
under different values of the spectral filtering wavelength and under high-frequency noise.
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Figure 11. Effect of different cut-off wavelengths in the large-scale conditional average degree ratio, Knp( y+),
for streamwise velocity, u, extracted from (a) the channel flow DNS at Reτ ≈ 5200 and (b) the boundary layer
experiments. In (b), the cut-off effect for spatial series obtained from the time series via the CTH, namely using
as convection velocity the local mean velocity, and the MTH. Angular brackets indicate averaging over time
and spanwise direction in (a) and over three different realizations in (b).

We recall that the spectral filtering wavelength is used to extract the large-scale
component, uLS, from the streamwise velocity signal, u. Mathis et al. (2009a) first reported
a sensitivity analysis on the AM of streamwise velocity in a turbulent boundary layer.
They showed that a decrease of the cut-off wavelength leads to a small increase of the
AM below the reversal wall-normal coordinate (i.e. in the near-wall region) and a small
decrease of AM above the reversal coordinate (i.e. far from the wall). The conclusion was
that, despite the small variations arising from different cut-off wavelengths, the general
form of the AM parameter is retained. For this reason, subsequent works on AM and FM
exploited the sensitivity analysis by Mathis et al. (2009a) as a reference case to justify the
choice of the cut-off wavelength.

Here we perform a sensitivity analysis on the wall-normal behaviour of Knp for the
streamwise velocity by changing the cut-off wavelength, λx,c. Figure 11 shows Knp as
a function of y+ for four λx,c values, in the turbulent channel flow at Reτ ≈ 5200
(figure 11(a), λ+x,c = 5186 in the main text) and the turbulent boundary layer (figure 11(b),
λ+x,c = 7000 in the main text). For the boundary layer, both the classical and modified
Taylor’s hypotheses are considered and labelled as CTH and MTH in the legend of
figure 11(b). The nominal shape of Knp as a function of y+ is maintained for both the
channel and boundary layers setups, and – similar to the analysis carried out by Mathis
et al. (2009a) – a decrease in λx,c leads to a reduction of Knp below the reversal y+ and a
rise of Knp above the reversal y+. Specifically, variations of Knp in the wall proximity are
less evident for the boundary layer when the MTH is applied rather than when local mean
velocity is considered as convection velocity (CTH).

This sensitivity analysis confirms the robustness of the decoupling procedure to extract
uLS, which is employed to evaluate Knp as a metric for studying the FM.

Finally, our method is tested with the presence of high-frequency noise in the velocity
signals (as usually happens in experimental measurements). With this aim, high-frequency
noise is artificially added to the experimental signals of the streamwise velocity (whose
sampling frequency is fs = 20 000 Hz) in the turbulent boundary layer. The noise signal
is given by the sum of three harmonics with random phase and with frequencies equal to
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Figure 12. (a) Pre-multiplied energy spectrum of the streamwise velocity, uu, from the turbulent boundary
layer at two representative y+ locations with and without high-frequency noise. The inset shows a zoom at
the highest frequencies. (b) The Knp as a function of y+ for velocity signals without (black) and with (green)
high-frequency noise (the MTH is used).

0.5fs, 0.475fs and 0.45fs (the maximum frequency included is fs/2 as higher frequencies
are not captured in the amplitude spectrum), whose effects on the spectra are displayed
in figure 12(a). The corresponding values of Knp are shown in figure 12(b), where we
observe that the behaviour of Knp is retained throughout the boundary layer except for the
intermittency region, where the noise intensity significantly affects the signal structure.
Therefore, we conclude that, although a pre-processing of the (experimental) data is always
a good practice to avoid biased behaviours, the NVG approach based on Knp is sufficiently
robust under high-frequency noise.
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