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The spatio-temporal features of the velocity field of a fully-developed turbulent channel flow are 
investigated through the natural visibility graph (NVG) method, which is able to fully map the intrinsic 
structure of the time-series into complex networks. Time-series of the three velocity components, 
(u, v, w), are analyzed at fixed grid-points of the whole three-dimensional domain. Each time-series 
was mapped into a network by means of the NVG algorithm, so that each network corresponds to a 
grid-point of the simulation. The degree centrality, the transitivity and the here proposed mean link-
length were evaluated as indicators of the global visibility, inter-visibility, and mean temporal distance 
among nodes, respectively. The metrics were averaged along the directions of homogeneity (x, z) of the 
flow, so they only depend on the wall-normal coordinate, y+ . The visibility-based networks, inheriting 
the flow field features, unveil key temporal properties of the turbulent time-series and their changes 
moving along y+. Although intrinsically simple to be implemented, the visibility graph-based approach 
offers a promising and effective support to the classical methods for accurate time-series analyses of 
inhomogeneous turbulent flows.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

One of the most challenging research topics in classical physics 
is represented by turbulent flows. Their great importance is ev-
ident through a number of natural phenomena (e.g., rivers, at-
mospheric and oceanic streams), industrial and civil applications 
(e.g., flow through pumps, heat exchangers, wake flows of vehicles 
and aircraft, wind-building interactions) in which turbulence is in-
volved. The study of wall-bounded turbulent flows, in particular, is 
a very active research field, due to the great attention paid to the 
fluid–structure interaction. Although deeply studied from a phe-
nomenological and theoretical point of view, the turbulence dy-
namics, due to their complexity, are still not fully understood [1,2]. 
Nowadays, several numerical simulations and experiments are per-
formed, providing a massive amount of spatio-temporal data that 
needs to be properly examined. Different approaches, mainly rely-
ing on statistical techniques, are then typically used to explore and 
analyze turbulent flows.

Among all the proposed techniques, time-series analysis is a 
broadly adopted approach to study the temporal evolution of dy-
namical systems, specifically those with high intrinsic complexity. 
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Different methods, such as Fourier and wavelet transforms [3,4], 
as well as nonlinear approaches [5–7], have been developed so 
far to extract information from time-series. However, since each 
method unavoidably loses some information about the temporal 
structure of the series analyzed, new approaches are continuously 
required to fill this lack. In the last decades, complex networks, 
by combining elements from graph theory and statistical physics 
[8–10], have turned out to be powerful tools to study complex 
systems, specifically by mapping time-series to extract non-trivial 
information [11]. Recently, several improvements were gained in 
this field and numerous advances were proposed based on dif-
ferent approaches [12], such as correlation [13,14], visibility [15,
16], phase-space reconstruction [17,18], recurrence quantification 
[19–21], and transition probabilities [22,23] algorithms.

Beside the well-established applications to Internet, World 
Wide Web, economy and social dynamics [24,25], growing at-
tention has been given nowadays to the application of complex 
networks to fluid flows and different flow regimes have been ex-
plored, such as two-phase flows [18,20,26], geophysical flows [27,
28], turbulent jets [23,29], reacting flows [30], as well as fully de-
veloped turbulent flows [31,32] and isotropic turbulence [33,34].

In this work, the natural visibility algorithm is exploited to in-
vestigate the spatio-temporal characterization of a fully-developed 
turbulent channel flow, solved through a direct numerical sim-
ulation (DNS) and available from the Johns Hopkins Turbulence 
Database (JHTDB) [35,36]. Time-series of the three velocity com-
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ponents were analyzed at fixed spatial positions, and a single net-
work was built at each point. In so doing, an ensemble of networks 
was obtained, where each network corresponds to a time-series. 
This novel approach allows us to capture some important aspects 
of the temporal structure of the signal and how these features 
change along the wall-normal direction. In fact, we can system-
atically extract information about the occurrence and temporal 
collocation of extreme events (i.e., peaks) and irregularities, which 
are fundamental features to characterize turbulent flows. The sta-
tistical tools classically adopted in turbulence, such as correlation 
function, higher-order statistics, structure functions, energy spec-
trum and probability density functions, all fail in preserving and 
discerning the temporal structure of a time-series (e.g., two differ-
ent temporal signals can have the same probability density func-
tion or energy spectrum). The visibility approach here presented is 
instead able to fully inherit and point out the temporal structure 
of the turbulent series: the different temporal dislocation of events 
such peaks and fluctuations will lead, case by case, to a different 
network topology.

A systematic approach to highlight temporal features of the 
time-series through the most significant network metrics is thus 
proposed and discussed. Particular care is given not only to re-
late the network topology to the temporal structure of the series, 
but also paying attention to the physical interpretation of the re-
sults. New insights into how the network topology is affected by 
important temporal features of the mapped signal are thus pro-
vided. Specific combinations of the trend of the network metrics 
are able to shed light into the time-series structure. Furthermore, 
a qualitative correspondence between the network metrics and the 
flow dynamics is presented, underlying the ability of the method 
to identify different flow regions.

2. Methods

2.1. Database description

The data here used were extracted from a DNS of a fully devel-
oped turbulent channel flow [37], available from the JHTDB [35,
36]. The simulation is performed at Reτ = 1000, where Reτ =
huτ /ν is the friction velocity Reynolds number, h = 1 is the half-
channel height, ν = 5 · 10−5 Ubh is the viscosity, Ub = 1 is the 
bulk channel velocity, and uτ = 5 · 10−2 is the friction veloc-
ity (all physical parameters are dimensionless). Periodic bound-
ary conditions in the streamwise (x) and spanwise (z) directions 
are adopted, while the no-slip condition is imposed at the top 
and bottom walls, y/h = ±1 (y is the direction normal to the 
wall). Once the statistically stationary conditions were reached, 
the simulation was carried on for approximately one flow-through 
time, t ∈ [0, 26]h/Ub , with a storage temporal step δt = 0.0065. 
Thus Nt = 4000 temporal frames are available. Velocity (u, v, w)

and pressure (p) fields were computed over the physical domain, 
(Lx × L y × Lz) = (8πh × 2h × 3πh), and stored with a grid res-
olution (Nx × N y × Nz) = (2048 × 512 × 1536). Other simulation 
parameters and flow statistics are given elsewhere [37].

In this study, a subset of the domain was taken into account, 
exploiting the geometrical features of the flow field along the three 
directions (x, y, z). In the wall-normal direction, y, due to the ge-
ometric symmetry, only grid-points from the bottom wall to the 
half-channel height, −1 ≤ y/h ≤ 0, were considered. As a result, 
the values of the dimensionless distance from the wall, y+ , defined 
as [38] y+ = (y/h + 1)Reτ , ranges in the interval [0, 103]. Along 
the y-direction the distance between consecutive grid-points was 
selected to increase gradually from the wall towards the center 
of the channel. Indeed, close to the wall the flow is strongly in-
homogeneous, and a finer spatial resolution is necessary to bet-
ter capture the features of the flow field. Differently, along the x
and z directions, a coarse uniform storage was adopted. In fact, 
along these two directions the flow is statistically homogeneous 
and fewer uniformly spaced grid-points are sufficient to guarantee 
the statistical stationarity of the results.

The selected sub-domain size is (S X × SY × S Z ) = (64 ×70 ×12), 
where the first grid-point Y = 0 corresponds to the wall coordi-
nates y/h = −1 and y+ = 0. Details of the sub-domain structure 
are reported in Appendix A.

2.2. Mapping time-series into networks: the visibility algorithm

In the time-series analysis, complex networks represent a re-
cent and promising tool to highlight and characterize important 
structural properties [7,9]. In the present work, the natural visibil-
ity algorithm proposed by Lacasa and co-authors [15] was adopted. 
According to this method, two values (ti, s(ti)) and (t j, s(t j)) of 
a univariate time-series s(tn), n = {1, 2, ..., N}, have visibility, and 
consequently are two connected nodes of the associated network, 
if the following condition

s(tk) < s(t j) + (
s(ti) − s(t j)

) t j − tk

t j − ti
, (1)

is fulfilled for any ti < tk < t j (or equivalently i < k < j). From a ge-
ometrical point of view, two nodes are linked if there is a straight 
line connecting them without intersecting any intermediate data. 
The natural visibility criterion is, therefore, a convexity criterion. 
A geometrically simpler version of the NVG can be obtained con-
sidering only horizontal lines among data, defining the so called 
horizontal visibility graph [16]. In this case, the horizontal visibil-
ity satisfies an ordering criterion.

The visibility algorithm is simple to implement and has been 
applied in many different fields (e.g., [39–43]), including fluid flows 
[29–32,44,45]. However, the visibility approach has some draw-
backs, related to the fact that it is invariant under affine transfor-
mations [15] (i.e., rescaling and translation of both horizontal and 
vertical axes), so this could lead to a lost of information in map-
ping the time-series. Moreover, if time-series with a considerable 
number of observations (indicatively Nt > 104) are analyzed, then 
the condition (1) requires to be verified many times. In these situ-
ations, as in this study, an optimized approach is crucial to sharply 
decrease the computational costs (e.g., see [46]).

2.3. Complex network metrics

A summary of the network metrics investigated in the present 
work is here reported [9,10,24]. A network is defined as a graph 
G(N, E) = (V, E), where V = {1, 2, ..., N} is a set of N labeled 
nodes (or vertices) and E = {1, 2, ..., E} is a set of E links (or 
edges), with non-trivial topological features. The adjacency matrix, 
Aij , defined as

Aij =
{

0, if {i, j} /∈ E,

1, if {i, j} ∈ E,
(2)

determines the existence of a link between a pair {i, j} of nodes. 
Beside being unweighted (A is a binary matrix), in this study we 
only consider undirected networks (Aij = A ji ) with no self-loops 
(Aii = 0).

In general, two kinds of metrics can be defined: metrics asso-
ciated to nodes, namely local metrics, and metrics related to the 
entire network, here referred as global metrics. In the following, 
the 〈•〉 notation is adopted to indicate that global metrics were 
obtained by averaging (over all nodes in the network) the corre-
sponding local metrics.
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The degree centrality of a node is defined as

ki =
N∑

j=1

Aij, (3)

and gives the number of topological neighbors of node i, that is 
the number of nodes linked to it (the set of neighbors is called 
the neighborhood, �i , of node i). In particular, if all N nodes in a 
network are linked each other, the network is said fully-connected
and the degrees are all constant and equal to N − 1. The average 
degree centrality of a network is then

〈k〉 = 1

N

N∑
i=1

ki . (4)

As a centrality measure, the degree, ki , is an indicator of the most 
important vertices in a network. The fraction of nodes in the net-
work that have degree k is the degree distribution, pk , and it also 
represents the probability that a randomly chosen node has de-
gree k. In many real networks, pk is heavy-tailed, because of an 
intrinsic noise due to the finiteness of the time-series [9]. In these 
cases it may be useful to evaluate the cumulative degree distribution
[10]:

Pk =
∞∑

k′=k

pk′ , (5)

which is the probability to find a degree greater than or equal to k. 
The statistical fluctuations present in the tails of the pk distribu-
tion are smoothed if Pk is used [9].

The transitivity, T r, is a global clustering metric and is defined 
as [24]

T r = 3N�

N3
, (6)

where N� and N3 are the number of triangles and the number 
of connected triples in the network, respectively. A triangle is a 
set of three nodes linked between them. A connected triple, in-
stead, is a set of three nodes where two of them must be directly 
linked to the third node. The transitivity, 0 ≤ T r ≤ 1, is therefore 
a measure of the presence of triangles in the network. Another 
commonly used clustering metric is the clustering coefficient, Ci
[9]. Both the transitivity and the clustering coefficient are mea-
sures of the presence of triangles in the network, but Ci tends to 
weight the contributions of low-ki vertices more heavily that T r
[10], being its denominator proportional to k2

i , and making its in-
terpretation less clear and general. For this reason, in the following 
we only focus on the transitivity to capture the inter-node relations 
among nodes.

Finally, we propose a new local metric, based on the temporal 
length between two mutually visible vertices [47], defined as the 
mean link-length:

d1n(i) = 1

ki

∑
j∈�i

|t j − ti|, (7)

where �i and ki are the neighborhood and the degree centrality of 
node i, respectively. From a time-series point of view, each node 
represents a temporal event and, then, the physical distance be-
tween two nodes i and j can be defined as |t j − ti |. It follows that 
d1n increases when a node is linked to nodes far in time from it. 
Averaging over all nodes in the network, a global measure is ob-
tained:

〈d1n〉 = 1

N

N∑
i=1

d1n(i). (8)
2.4. Building the networks

In this study, the velocity field (u, v, w) was focused on, being 
one of the most basic and significant field to analyze a turbulent 
flow. Exploiting the visibility-invariance under affine transforma-
tions, in the following each time-series is normalized as u∗(ti) =
(u(ti) − μ)/σ , where μ and σ are the local mean and standard 
deviation values of u(ti), respectively. By following the classical 
decomposition adopted for the statistical description of turbulence 
[38], the resulting signal, u∗ , has zero mean value and standard 
deviation equal to 1. At fixed point, (u∗, v∗, w∗) represent the net 
turbulent fluctuations of the velocity field. The adopted decom-
position allows one to separate the complete signal, u(t), into a 
mean term constant in time, μ, and a fluctuating temporal part, 
u∗(t). In so doing, we can focus on the temporal variations only, by 
comparing normalized signals having the same mean and standard 
deviation values. Turbulent fluctuations are the basis of the statis-
tical description of turbulence. For example, the root-mean-square 

velocity, urms =
√

u∗(t)2 (the overbar represents the temporal aver-
age), is usually defined to quantify the turbulence strength. A high 
urms indicates an elevate level turbulence. Thus, (u∗, v∗, w∗) hold 
the primary indication of the turbulence intensity of a velocity 
field.

For each grid-point in space, all the Nt = 4000 time frames 
were then exploited to build the networks, being the velocity se-
ries dependent only on the time (i.e., the series are univariate at 
fixed coordinates). Therefore, Sx × S y × Sz = 53760 networks were 
constructed for each velocity component. According to the visibil-
ity algorithm — since each of the resulting networks is connected 
(i.e. every node has at least one neighbor) [15] — each temporal in-
stant corresponds to a node. Consequently, all the 53760 networks 
have the same number of nodes N = Nt = 4000. The number of 
links of each network, E , instead, can be obtained from the av-
erage degree values by applying the general relation, E = 〈k〉N/2. 
A sensitivity analysis on the number of nodes N is reported in Ap-
pendix B, for which different temporal discretizations (namely 2 δt
and 4 δt , where δt = 0.0065 is the temporal discretization leading 
to 4000 time frames) are considered, resulting in different cardi-
nality of the networks.

We recall that in a fully developed turbulent channel flow the 
velocity and pressure fields are statistically homogeneous along 
the streamwise, x, and spanwise, z, directions. The wall normal 
coordinate, y+ , is then the only direction where spatial inhomo-
geneities develop. Since network measures inherit the properties 
of the mapped time-series [15], also the global metrics (i.e. aver-
aged over the nodes of each network) were assumed as statistically 
homogeneous in the x–z directions (more details are reported in 
Appendix C, where few representative plots of the global metrics 
calculated at fixed x and z locations are reported). Consequently, 
the global metrics were firstly calculated for each single network. 
Subsequently, such global metrics were averaged over the Sx × Sz

grid-points as:

F̃(Y ) = 1

Sx Sz

∑
X

∑
Z

F(X, Y , Z), (9)

where F represents the specific metric considered, namely F =
{〈k〉; T r; 〈d1n〉}. In so doing, we obtained three averaged quanti-
ties: k̃, T̃ r, and d̃1n , where the notation (̃•) indicates the average 
over grid-points in the directions of spatial homogeneity of the 
flow. This operation makes the above averaged metrics dependent 
only on the wall normal coordinate y+ and their plots statistically 
meaningful.
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3. Relating time-series structure and network metrics

It is known that the general structure of time-series is pre-
served in the topology of the associated natural visibility graphs, as 
shown by Lacasa et al. [15] and as emerges from successive works 
[29–32,39,41]. Specifically, periodic time-series are converted into 
regular networks, i.e. graphs where nodes have constant degrees re-
lated to the periods of the series. Fractal series, instead, convert 
into networks with power-law degree distributions [48]. In particu-
lar, fractional Gaussian noise with Hurst exponent equal to 0.5 (i.e., 
uncorrelated random series) are mapped by the NVG method into 
networks with power-law degree distribution with exponent, γ , 
equal to 4 [48].

Here, particular attention is paid relating the network topology 
and the temporal structure of the series to a physical interpretation 
of the network metrics, with respect to the flow dynamics. In fact, 
although the overall features of the time-series are inherited by 
the corresponding visibility graphs, it is not straightforward how 
topological network metrics are affected by different temporal be-
haviors of the series. In order to explore this gap, we qualitatively 
relate the global metrics behavior to the temporal structure of the 
corresponding time-series.

In general, if two different time-series are compared, they can 
differ in several ways. In this analysis, we focused on the pres-
ence of peaks and irregularities. A point of a time-series, s(ti), is 
said a peak if it is a local (or global) maximum of s(ti), with or-
der of magnitude comparable with the maximum excursion of the 
series, � = smax − smin . Peaks generally have higher probabilities 
to connect to other points in the series, because obstacles to the 
visibility are avoided from higher positions. However, in turn, the 
long-term visibility of points in the surroundings of peaks is ob-
structed by the peaks, thus creating local barriers to the visibility 
of lower points of the series. Irregularities are temporal variations 
with order of magnitude much smaller than �, and defined as 
local barriers decreasing the visibility of the surrounding points. 
Peaks and irregularities are focused mainly for two reasons. First, 
the occurrence and temporal collocation of extreme events (i.e., 
peaks) and irregularities represent some of the fundamental fea-
tures to characterize turbulent flows. Second, the NVG is a suitable 
method to evidence this kind of flow properties and translate them 
into the network topology. In particular, among all the topological 
parameters investigated, the transitivity, T r, the global mean link-
length, 〈d1n〉, and the average degree, 〈k〉, turned out to be the 
metrics that better capture the temporal structure of the time-
series in terms of peaks and irregularities, inheriting important 
features of the turbulent flow dynamics.

In order to schematize how the occurrence of peaks and irreg-
ularities affects the temporal structure and in turn the network 
topology, we consider four exemplifying time series, as reported 
in Fig. 1. The starting series (panel a) is a sine function. With re-
spect to panel (a), in panels (b)–(d) a uniform random noise is 
added to account for irregularity, while in panels (c) and (d) the 
periodicity is halved. The graphical representation of the networks 
corresponding to each time-series is reported on the right panels 
of Fig. 1.

3.1. Transitivity analysis

Let us first focus on the transitivity, T r. We recall that, since 
each pair ( j, l) ∈ �i (�i is the neighborhood of node i) always 
forms a connected triple with node i, the total number of triples 
in the network depends on the size of all the neighborhoods �. On 
the other hand, triangles are formed only if the nodes ( j, l) ∈ �i
are also linked, that is if Aij = Ail = A jl = 1. In general, short-
term connections are the most probable ones because time-series 
are not expected to sharply change in time (except for random 
Fig. 1. (Left) Examples of sine time-series with different temporal features. In pan-
els (a) and (b), the green-colored dot indicates the point s(ti = 34), while yellow 
points highlight its neighborhood, �34. In panels (c) and (d), the green-colored dot 
evidences the point s(ti = 50). (Right) Networks corresponding to the time-series 
on the left. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

series), so that nodes which are close in time are more likely to 
form triangles. If two neighbors ( j, l) ∈ �i are far in time, instead, 
there are many nodes in between j and l so that there is a high 
probability to find a node that obstructs the inter-visibility of j
and l. As a result, the total number of triangles and triples, and 
therefore the transitivity, strongly depend on the inter-visibility of 
nodes inside each neighborhood. The transitivity can be then inter-
preted as a measure to characterize the typical convexity proper-
ties on some intermediate time-scale (i.e., the neighborhood tem-
poral lengths) [41].

To better describe the effects of peaks and irregularities on the 
transitivity, let us consider the time-series, s(ti), and the corre-
sponding networks, G , reported in Fig. 1. Time-series s(ti)(a),(c)
are clearly more regular than the series s(ti)(b),(d) , while s(ti)(c)
and s(ti)(d) have three peaks instead of two. Therefore, while the 
networks G(a) and G(c) are well organized in clusters (one clus-
ter for G(a) , two for G(c)), G(b) and G(d) appear more complex 
(right panels of Fig. 1). This happens because in G(b),(d) there are 
many nodes with low visibility due to the presence of irregulari-
ties.

More in detail, any point in the ranges ti = (1–50) and ti =
(51–100) of s(ti)(c) has basically the same inter-visibility of cor-
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Fig. 2. Bar plot of the transitivity (blue) and global mean link-length (yellow) values 
for the four time-series of Fig. 1. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

responding points in s(ti)(a) (i.e., nodes at the same relative alti-
tude), because there are no substantial local changes of regularity 
between s(ti)(a) and s(ti)(c) . As a consequence, the value of tran-
sitivity of G(a) and G(c) are expected to be scarcely affected by 
different occurrence of peaks, as evident from the Fig. 2 where 
T r(c) and T r(a) are actually almost the same. The presence of more 
(or less) peaks in a time-series then does not significantly modify 
the inter-visibility (i.e., the transitivity) of nodes. Therefore, also T r
of G(b) and G(d) are almost equal (see Fig. 2), being the irregulari-
ties of time-series s(ti)(b) and s(ti)(d) very similar.

On the other hand, the time-series s(ti)(b),(d) clearly display 
irregularities if compared with time-series s(ti)(a),(c) . The inter-
visibility among neighbors of a generic node is obstructed because 
of the irregularities in the time-series. Let us consider an arbi-
trary node, for example i = 34, highlighted as a green-colored 
dot in panels (a) and (b) of Fig. 1. While in G(a) the neighbor-
hood �34,(a) (highlighted in yellow in Fig. 1) includes either short-
term, medium-term, and long-term links, in G(b) the neighborhood 
�34,(b) includes only short-term and long-term connections. There-
fore, the number of triangles (relative to the number of triples) in 
which is involved a generic node (e.g., i = 34) is generally lower in 
irregular networks than in regular ones. As a result, the values of 
T r(b) and T r(d) are much lower than T r(a) and T r(c) , as observed 
in Fig. 2. Summarizing, the transitivity is much more affected by 
local variations due to the presence of irregularities rather than 
the presence of local peaks in the series. In terms of flow dynam-
ics, the transitivity is related to the presence of local fluctuations 
between consecutive peaks. Recalling that the all signals are nor-
malized with respect to their mean and standard deviation values, 
the transitivity is thus a net measure of the intrinsic fluctuation 
level of the time-series.
3.2. Mean link-length analysis

The second metric considered is the global mean link-length, 
〈d1n〉. If peaks often occur in a series (as in Fig. 1, panels (c) 
and (d)), points far from each other are not visible because far 
connections are hampered by peaks, and 〈d1n〉 is consequently 
strongly reduced. The visibility of a generic node in the networks 
G(c) and G(d) is limited by the peak at i = 50 (green-colored dot 
in Fig. 1), which in turn divides the networks into two main clus-
ters (see bottom right panels of Fig. 1). The value of 〈d1n〉(c) and 
〈d1n〉(d) are indeed much lower than 〈d1n〉(a) and 〈d1n〉(b) , respec-
tively, as can be seen in Fig. 2. On the other hand, 〈d1n〉 is not 
essentially affected by the irregularities of a series. Indeed, irreg-
ularities mostly prevent medium-term connections than short and 
long-term links but, averaging over all nodes in the network, a 
value of the order of medium-term links is generally obtained for 
〈d1n〉. In fact, in Fig. 2 the value of 〈d1n〉(b) is approximately equal 
to 〈d1n〉(a) , while 〈d1n〉(d) is almost the same of 〈d1n〉(c) , indicating 
that there are no relevant changes in the global mean link-length 
due to irregularities. To conclude, the global mean link-length is 
strongly influenced by the occurrence of peaks, being slightly af-
fected by the irregularities. The mean link-length measures how 
isolate and sporadic extreme events (i.e., peaks) are, with low 〈d1n〉
values when the recurrence of peaks is high. Differently to high-
order statistics (such as, for example, kurtosis), 〈d1n〉 is able to fully 
capture the temporal dislocation of such extreme events along the 
time-series.

3.3. Combining T r and 〈d1n〉

As a consequence of the previous observations, the visibility 
algorithm turns out to be able to capture two main features of 
the temporal structure of a series: the recurrence of peaks and 
the presence of irregularities. It is worth noting that the two 
global (i.e., those associated to networks) measures analyzed so 
far inherit the local structural features of the mapped time-series. 
Therefore, a comparative temporal characterization of the time-
series can be carried out by combining the behaviors of the global 
metrics.

If T r and 〈d1n〉 are focused on, a time-series can differ from 
another through a combination of the metrics behaviors, namely 
T r and 〈d1n〉 can increase, decrease, or remain almost constant. 
Excluding the combination in which both T r and 〈d1n〉 are al-
most constant (i.e., the two compared time-series share the same 
temporal features), four different cases can occur and they are ex-
plained in Table 1. Therefore, given the metric trends, it is possible 
to infer from Table 1 how time-series differ in terms of peaks and 
irregularities.

Being the degree centrality, k, a direct measure of the visibility 
of nodes, it can contemporarily account for both the recurrence of 
Table 1
Scheme of the ways two time-series, T S(1) and T S(2) , can differ and corresponding behaviors of the global network-metrics, T r and 〈d1n〉.

Cases Temporal structure features Metric behaviors TS1 TS2

Case A Peaks occur more frequently in T S(2) than in T S(1) T r(2) ≈ T r(1)

〈d1n〉(2) < 〈d1n〉(1)

Case B T S(2) is more irregular than T S(1) T r(2) < T r(1)

〈d1n〉(2) ≈ 〈d1n〉(1)

Case C Peaks occur more frequently in T S(2) than in T S(1) , 
and T S(2) is more irregular than T S(1)

T r(2) < T r(1)

〈d1n〉(2) < 〈d1n〉(1)

Case D Peaks occur less frequently in T S(2) than in T S(1) , 
and T S(2) is more irregular than T S(1)

T r(2) < T r(1)

〈d1n〉(2) > 〈d1n〉(1)
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Fig. 3. Global metrics averaged over the Sx × Sz networks as function of y+ , reported in a log-linear plot. The values of the metrics at the wall (y+ = 0) are (̃k, T̃ r, d̃1n
) =

(1.9995,0,1), resulting from constant time-series and thus not shown here. Three representative values of y+ are also highlighted.
peaks and the presence of irregularities. In other words, 〈k〉 com-
bines the features of both T r and 〈d1n〉 in a single global metric. 
Therefore, due to its intrinsic definition, the degree variation in 
general cannot be univocally related to a specific temporal feature 
(either peaks or irregularities occurrence). For this reason, although 
being conceptually one of the easiest measure to interpret, here 
the degree centrality will be mainly discussed as a posteriori vali-
dation of the transitivity and global mean-length behaviors.

4. Results

The procedure described in the previous section is adopted 
to analyze the velocity time-series of the turbulent channel flow, 
starting from the streamwise component, u∗ , and then considering 
the other velocity components, v∗ and w∗ .

4.1. Streamwise velocity component, u∗

In Fig. 3 the metrics 
(̃
k, T̃ r, d̃1n

)
are plotted as a function of the 

wall-normal coordinate, y+ . Substantial variations of these metrics 
occur moving along the wall-normal direction, exhibiting clear and 
regular trends. The three metrics have overall similar behaviors, 
rising from the wall up to a maximum value, then decreasing to 
y+ 
 100–200 and, finally, barely changing towards the center of 
the channel. The maximum values of ̃k, T̃ r, and d̃1n are not exactly 
at the same value of y+ , but they are quite close in the range 
y+ 
 4–7. The global network-metrics {〈k〉; T r; 〈d1n〉}, computed 
for each of the Sx × Sz grid-point, have regular trends similar to 
the averaged ones shown in Fig. 3, which are thus representative of 
the global metrics measured along the wall-normal direction and 
in different (x, z) coordinates (see also Fig. C9 in Appendix C).

To infer the temporal structure of time-series along the wall-
normal coordinate, we start from time-series close to the wall 
and then proceed towards the center of the channel. In par-
ticular, we focus on three representative y+ stations, i.e. y+ =
0.017, 15.4, 996.3. The three time-series, u∗(t), at the selected y+
stations are shown in Fig. 4(a), while a graphical representation 
of the corresponding networks is displayed in Fig. 4(b), revealing 
the presence of different topological features at different distances 
from the wall.

Starting from the time-series at y+ = 0.017, this series ap-
pears globally quite smooth, with relatively slow variations in time, 
resulting in few pronounced peaks. Moving from y+ = 0.017 to 
y+ = 15.4, the Fig. 3 shows that the transitivity, T̃ r , consistently 
increases, while the average mean link-length, d̃1n , and the average 
degree, ̃k, noticeably decrease. This combination of metrics corre-
sponds to the Case D in Table 1 (here T S(1) and T S(2) correspond 
to time-series at y+ = 15.4 and y+ = 0.017, respectively). A nor-
malized time-series extracted at y+ = 15.4 is then expected to be 
(on average) more regular than a series extracted at y+ = 0.017
(indicated by the growth of T̃ r), and with a more frequent occur-
rence of peaks (indicated by the drop of d̃1n). The reduction of k̃
suggests that the increasing occurrence of peaks affects the global 
visibility more than the reduction in the irregularities. Looking at 
the time-series extracted at y+ = 15.4 of Fig. 4(a), it is indeed with 
more peaks than the series extracted at y+ = 0.017. This aspect is 
also evident in a more clustered topology of the network built on 
the time-series at y+ = 15.4 (see Fig. 4(b)). The regularities ap-
pear globally similar but, as zoomed in the inset of Fig. 4(a), the 
two time-series are locally different. In particular, the time-series 
at y+ = 0.017 appears more irregular, as indicated by the transi-
tivity.

From y+ = 15.4 to y+ = 996.3 (i.e., close to the center of the 
channel, h), all the average metrics substantially decrease. This 
combination of metrics corresponds to the Case C in Table 1. Ac-
cordingly, we expect that a time-series extracted at the center of 
the channel is (on average) less regular than a series at y+ = 15.4
and with a more frequent recurrence of peaks. This behavior can 
be clearly seen in Fig. 4 where the time-series at the center of 
the channel is more fluctuating than the time-series at y+ = 15.4, 
and the corresponding network appears more clustered and disor-
dered. It is interesting to note that from y+ ≈ 102 to the center of 
the channel, the three metrics barely change.

In summary, the temporal features of the series are actually 
as predicted by combining the network metrics. Through the be-
havior of the metrics along the y+ direction, Fig. 3 yields first 
important results on the presence, dislocation and structure of 
extreme events and irregularities of the time-series. This kind of 
information can enrich the comprehension of the flow dynamics. 
It is important to remark that the behavior of a single metric is 
not a sufficient information, but a combination of the two met-
rics, T̃ r and d̃1n , instead, determines how two time-series differ 
in terms of recurrence of peaks and/or irregularities. Moreover, we 
do not refer to the specific value assumed by the metric, but the 
analysis is comparative as it focuses on the trend each metric as-
sumes as a function of the distance from the wall. Specifically, 
comparing time-series at the wall and at the center of the chan-
nel, peaks are expected to be remarkably closer, while irregularities 
do not substantially change (d̃1n decreases while T̃ r slightly in-
creases). In fact, as shown in Fig. 4(a), in the center of the channel 
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Fig. 4. (a) Normalized time-series, u∗(ti), at the grid-points X = 1601, Z = 750 and y+ = 0.017, 15.4, 996.3. The choice of the coordinate in the homogeneous directions, 
x and z, is arbitrary. In the inset the time-series at y+ = 0.017 (blue) and y+ = 15.4 (red) are highlighted and compared in the range ti ∈ [300, 800]. (b) Graphical 
representation of the networks extracted from the time-series of panel (a). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
peaks occur more frequently but the irregularity between them 
remains basically unvaried. However, this trend is not monotonic 
along y+ , since the time-series locally (around y+ = 15.4) change 
their regularity. In terms of the network topology, as displayed in 
Fig. 4(b), close to the wall the network is composed by different 
subnetworks, corresponding to the peaks of the series, which are 
widely connected with each other and internally. Going towards 
y+ = 15.4, the simultaneous decrease of d̃1n and increase of T̃ r
mainly break down long connections among the subnetworks. The 
drop of d̃1n plays a major role here, acting to split long-term links. 
The subsequent decrease of both d̃1n and T̃ r (from y+ = 15.4 to 
y+ = 996.3) breaks principally intra-network connections. At this 
stage, the prevailing effect is locally induced by the increase of ir-
regularity, which leads to a ramification of each subnetwork.

A comment on the degree centrality can be eventually carried 
out. A high value of ̃k indicates a globally convex time-series, while 
low values indicate a strong fragmentation of the visibility network 
[41]. As a result, considering the behavior of k̃ in Fig. 3, at high 
values of y+ the time-series are globally more fragmented than 
the time-series close to the wall, confirming what found observing 
the trends of T̃ r and d̃1n .

Finally, the average cumulative degree distributions, P̃k , are il-
lustrated in Fig. 5 (semi-log plot). As for the metrics, a degree 
distribution was computed for each network and all the distribu-
tions were then averaged over the homogeneous directions. The Pk
of a visibility network can be thought of as a measure of the (linear 
and nonlinear) temporal dependences existing in the time-series 
[16]. However, differently from the horizontal visibility algorithm, 
the behavior of the degree distribution also depends on the prob-
ability density function (pdf) of the mapped time-series when the 
natural visibility algorithm is applied [49]. As evident from the 
Fig. 5, the tail of the distributions reveals decreasing exponential 
trends, i.e. the higher degree values (i.e., the hubs) are generally 
very infrequent. In particular, the exponent of the fitting, γ , of the 
P̃k increases (in modulus) from the wall towards the center of the 
channel, y = h. This is consistent with the temporal integral scale 
measurements [50], which decrease from the wall to the center of 
the channel.

In order to isolate (from the pdf contribute) the net impact of 
(linear and nonlinear) dependences in the turbulent time-series, 
we built four series by shuffling four velocity time-series (at ar-
bitrary (x, z) locations) at the same wall-normal distances consid-
ered, i.e., y+ = (0.017, 15.4, 106.2, 996.3). As shown in Fig. 5 (and 
highlighted in the inset), the slopes of Pk from the shuffled se-
ries are substantially steeper than the turbulent time-series. This 
demonstrates the key role of the (linear and nonlinear) correlation 
aspects of the turbulent series.

Up to now, we pointed out the ability of the visibility-based 
networks to shed light on the temporal structure of the corre-
sponding mapped time-series. Now we try to relate the network 
metrics with the flow dynamics, that are responsible for the time-
series behavior. Looking at the Fig. 3, three regions are particularly 
interesting (i.e. y+ � 7, 7 � y+ � 150, and y+ � 150) where the 
average metrics mostly change their trend. It should be noted that 
the values of y+ delimiting such regions are very close to the 
limit values, y+ = 5 and y/h = 0.1, of the viscous sub-layer and in-
ner layer, respectively [38]. In particular, for Reτ = 1000, the inner 
layer limit is about y+ = 100. The region for y+ < 5 is character-
ized by slow moving fluid and the flow dynamics are dominated 
by the viscous shear stresses. The normalized time-series u∗(ti)

here can be assumed to roughly share a similar temporal structure 
(although their mean and standard deviation values clearly change 
along y+). The corresponding metrics (see Fig. 3) highlight this 
behavior resulting in barely increasing trends. As previously ob-
served, around y+ 
 4–7 (which is the upper bound of the viscous 
sub-layer) the three metrics reach their maximum values. Here 
we expect, in terms of time-series shape, a minimum number of 
peaks along with the minimum irregularities. Recalling that all sig-
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Fig. 5. Cumulative degree distributions, P̃k , averaged over the grid-points in the homogeneous x and z directions, reported in a linear-log plot. The distributions close to 
the vertical axis (highlighted in the inset) correspond to networks built on shuffled time-series at wall-normal distances: (×), y+ = 0.017; (◦), y+ = 15.4; (1), y+ = 106.2; 
(P), y+ = 996.3. The fittings were performed as Pk ∼ exp(γ k), with a trust-region method of optimization. The resulting values of γ are (−1.01, −1.08, −2.85, −2.86) · 10−2

from y+ = 0.017 to y+ = 996.3, respectively; the slope for the shuffled series is about γ ≈ 2 · 10−1. The coefficient of determination, R2, of the fittings is always above 0.99.

Fig. 6. Average metrics T̃ r , d̃1n , and k̃ evaluated from time-series extracted from the velocity field, (u∗, v∗, w∗).
nals are normalized with the local mean and standard deviation, a 
possible interpretation is the following. Around y+ 
 4–7, we are 
approaching the buffer layer (5 < y+ < 30), an intermediate region 
where viscous shear stress starts decreasing while turbulence ac-
tivity begins to grow. However, at the very beginning (y+ 
 4–7), 
turbulent processes are very low, thus resulting in a minimum of 
irregularities, which act over a signal that is still affected by slow 
temporal variations (i.e., low number of peaks). The combination 
of these dynamics reasonably explains the maxima reached by all 
the metrics around the region y+ 
 4–7. For y+ > 5 the flow dy-
namics are more affected by the Reynolds shear stresses, and the 
flow shows a tendency to organize into coherent turbulent pat-
terns [38]. The structure of the time-series is then affected by tur-
bulent processes (e.g., ejections and sweeps [38]), leading to rapid 
temporal variations. This behavior could be recognized in the drop 
of the average metrics (Fig. 3). As y+ further increases (y+ > 100), 
the turbulent patterns are less affected by the wall and they can 
develop in larger structures. However, the coexistence of multiple 
scales and the more complicated flow structure [51] seems not to 
translate into a clear trend for the network metrics.

4.2. Transversal and spanwise velocity components, (v∗, w∗)

In Fig. 6, the three metrics T̃ r, d̃1n and k̃ are displayed for all 
the velocity components, (u∗, v∗, w∗) to facilitate the comparison. 
In general, the mean link-length and the average degree measured 
on the time-series of v∗ and w∗ show trends similar to those 
of u∗ , while different trends are obtained considering the transi-
tivity.
More in particular, for d̃1n the trends over y+ for the three 
velocity components are similar, but values for the streamwise ve-
locity, u∗ , are overall higher than those displayed by v∗ and w∗ . 
The relative difference decreases towards the center of the channel. 
The scenario for the degree centrality, ̃k, is analogous. Differences 
for the ̃k values of the three components are marked close to the 
wall, while ̃k values tend to coincide approaching the channel cen-
ter. This behavior can be explained by considering that close to 
the wall the presence of the wall itself strongly influences and dif-
ferently characterizes the flow dynamics in the three directions of 
the velocity, and consequently the networks based on the corre-
sponding time-series are affected. On the contrary, the wall effects 
decrease moving far from the wall (y+ > 100), thus differences 
among the metrics built on u∗ , v∗ and w∗ , reduce. As for the 
transitivity, T̃ r, the metric difference among velocity components 
is even more accentuated. In fact, in the region y+ < 100, not only 
values are different but also metrics display different trends. In 
particular, the wall-normal velocity component, v∗ , is strongly af-
fected by the presence of the wall (recall that close to the wall the 
motion corresponds to flow in planes parallel to the wall [38]) and 
this in turn involves the transitivity. For example, spikes with large 
negative values can be found in the time-series of v∗ as a conse-
quence of strong events that appear only in the very near-wall re-
gion, revealed by high kurtosis levels [52]. Since these deep peaks 
are negative and relatively short, the degree and the mean link-
length of the corresponding networks are barely affected, while the 
transitivity is strongly reduced. Towards the channel center, simi-
larly to the mean link-length d̃1n , the transitivity differences for 
the three velocity components tend to reduce.
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Fig. 7. Cumulative degree distributions of the networks built on the time-series of three velocity components, (u∗, v∗, w∗), and averaged over the grid-points in the homoge-
neous directions. (a): y+ = 0.0017, (b): y+ = 15.4, (c): y+ = 996.3.
In the end, the cumulative degree distributions, P̃k , of the net-
works built on the three velocity components, (u∗, v∗, w∗), and av-
eraged over the grid-points in the homogeneous directions are dis-
played in Fig. 7. At fixed positions from the wall ((a): y+ = 0.0017, 
(b): y+ = 15.4, (c): y+ = 996.3), the slope of the three compo-
nents is pretty similar, confirming that a steeper decay is present 
when moving far from the wall (from y+ = 0.0017 to y+ = 996.3).

5. Conclusions

In this work, the application of the natural visibility graph to 
time-series of a fully-developed turbulent channel flow was stud-
ied. Our attention was focused on the streamwise velocity com-
ponent, u, although the other velocity components were also ex-
plored. Velocity time-series were adopted to build the correspond-
ing networks as the velocity field is one of the most intuitive 
quantity to characterize a fluid flow. However, the visibility graph 
method can be applied to other quantities of turbulence interest, 
such as the Reynolds shear stress, the kinetic energy, or the vor-
ticity field. Firstly, we provided some novel insights into how the 
network metrics are affected by the different temporal structure of 
the mapped time-series. The average transitivity, T̃ r, the here in-
troduced mean link-length, d̃1n , and the average degree, k̃, were 
chosen as the most representative metrics. Their trends turned out 
to effectively highlight the temporal features, in terms of peaks and 
irregularities, of the mapped time-series along the wall-normal co-
ordinate, y+ . Furthermore, the cumulative degree distributions are 
found to show a decreasing exponential tendency, but with fit-
ting exponent values at least one order of magnitude greater than 
uncorrelated random series. Different metrics variations were also 
quite well associated to the flow dynamics, as responsible of the 
time-series behavior.

Despite several statistical techniques are available to study non-
linear time-series, specifically regarding turbulence, most of them 
are invariant under different temporal structures of the time-series. 
The visibility-network analysis, instead, reveled to be a powerful 
and synthetic tool to handle big-data and to explore specific tem-
poral features of the mapped series, without losing information 
about their temporal structures and also capturing the underlying 
flow dynamics. In fact, each network is built holding the temporal 
dislocation of important temporal features, such as extreme events 
and irregularities. To extract and handle this information is cru-
cial for a deeper understanding of the flow dynamics, since the 
most common statistical tools adopted in turbulence, from spectral 
analysis to higher-order moments, are not able to retain the tem-
poral collocation of such phenomena. Our network-based approach 
demonstrates that visibility graph method is able to give much in-
formation about temporal structure of turbulent time-series and it 
will deserve future efforts, such as community and neighborhood 
detection, to better explore the network topology and its physical 
meaning. Future works can also involve simulations with differ-
ent Reynolds numbers, and weighted or directed networks may be 
considered. Furthermore, finer spatial and temporal simulation res-
olutions may be considered.

Based on present findings, the proposed procedure may thus 
provide a promising support to the classical methods for accurate 
time-series analyses of inhomogeneous turbulent flows. In partic-
ular, given a time-series and the behaviors of the network metrics 
as a function of the distance from the wall, it is possible to qualita-
tively infer the behavior of the time-series at another wall-normal 
distance. This method can be then particularly useful as a pre-
dictive and supportive tool when experimental measurements are 
difficult.
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Appendix A

The selected grid-points of the sub-domain (Sx, S y, Sz) ⊂ (Nx ×
N y × Nz) are reported below (according to the labeling of the on-
line database) in the form (a : d : b), where a and b are respectively 
the first and the last index of a uniformly spaced interval, and d is 
a grid step size (e.g., (1 : 2 : 9) takes the indices {1;3;5;7;9}):

• wall-normal direction,

Y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0 : 1 : 21)

(23 : 2 : 39)

(42 : 3 : 54) and (58 : 3 : 79)

(84 : 5 : 169)

(179 : 10 : 239)

255, i.e. y+ = 996.3;
• streamwise direction, X = (0 : 32 : 2016);
• spanwise direction, Z = (110 : 128 : 1518).

Appendix B

A sensitivity analysis on the number of nodes N is here re-
ported, by varying the temporal discretization and consequently 
the cardinality of the corresponding network. We recall that δt =
0.0065 leads to a number of nodes, N = 4000. Two other time 
steps, namely 2 δt , and 4 δt , have been considered, resulting in 
networks with N = 2000 and N = 1000, respectively. In Fig. B8, 
the metrics as function of y+ are displayed for the three tempo-
ral samplings, c δt , with c = 1, 2, 4. Mean link-length and degree 
centrality are reported as scaled with c (namely c d̃1n and c k̃), to 
facilitate the comparison between samplings. The transitivity, T̃ r , is 
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Fig. B8. Averaged metric behaviors, T̃ r , cd̃1n , c̃k, as function of y+ for three different time sampling of the streamwise velocity time-series, u∗ . The curves are obtained with 
cδt , where the sampling is c = 1 (blue), which corresponds to the case in Fig. 3, c = 2 (red), c = 4 (green). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. C9. Metrics behaviors of networks built on the streamwise velocity component, u∗ , and extracted at 48 different uniformly spaced (x, z) locations. The black plots 
correspond to the averaged behavior, as shown in Fig. 3.
not scaled with c as by definition varies between 0 and 1. It can be 
observed that, apart from the specific values reached by the tran-
sitivity, the metrics behavior along the wall-normal direction y+ is 
not sensitive to the choice of the temporal discretization (i.e., the 
number of nodes).

Appendix C

In this section we report few representative plots of the global 
metrics calculated on networks at different single streamwise, x, 
and spanwise, z, locations. In Fig. C9 we illustrate the behavior 
of the transitivity, the mean link-length and the degree central-
ity as a function of y+ before the averaging operation, performed 
according to the Eq. (9), and compare them with the averaged be-
havior (as shown in Fig. 3). Specifically, in Fig. C9, we plotted 48
curves for each metric, obtained from 48 uniformly spaced grid-
points in the (x, z) directions and covering the whole domain. As 
can be seen, the averaged behaviors (reported in black in Fig. C9) 
are representative of the behavior of the global metrics for dif-
ferent streamwise and spanwise grid-points. The distributions of 
the mean link-length and the degree centrality appear less noisy 
(especially at the center of the channel) than the plots of the tran-
sitivity because the latter is globally evaluated for each network 
(see Eq. (6)), while 〈k〉 and 〈d1n〉 are defined as averages over 
nodes (see Eq. (4) and Eq. (8)). Therefore, we can conclude that 
the statistics homogeneity of the flow is inherited by the visibil-
ity networks, making the average behavior along y+ statistically 
meaningful.
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