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The dispersion and mixing of passive particles in a turbulent channel flow are inves-
tigated by means of a network-based representation of their motion. We employ direct
numerical simulations at five different Reynolds numbers, from Reτ = 180 up to Reτ =
950, and obtain sets of particle trajectories via numerical integration. By dividing the
channel domain into wall-normal levels, the motion of particles across these levels is used
to build a time-varying complex network, which is able to capture the transient phase of
the wall-normal mixing process and its dependence on the Reynolds number Reτ . Using
network metrics, we observe that the dispersion of clouds of tracers depends highly on both
their wall-normal starting position and the time elapsed from their release. We identify two
main mechanisms that contribute to the long-lasting inhibition of the dispersion of particles
released near the walls. We also show how the relative importance of these mechanisms
varies with the Reynolds number. In particular, at low Reτ the weaker velocity fluctuations
appear dominant in inhibiting dispersion, while at higher Reynolds numbers a larger role
is played by cyclic patterns of motion. At the higher Reynolds numbers employed in this
work, we find that most network properties are Reynolds independent when scaled with
outer-flow variables. Instead, at lower Reτ , the aforementioned scaling is not observed. We
explore the meaning of the emergence of this scaling in relation to the features of dispersion
and to the network definition.

DOI: 10.1103/PhysRevFluids.6.124501

I. INTRODUCTION

Dispersion and mixing of particles advected by turbulent flows occur in several fluid processes,
including geophysical and environmental flows and many industrial applications [1]. Turbulence has
the ability to greatly enhance the dispersion of advected scalars; on the other hand, the complexity
introduced by the multitude of scales present in high Reynolds number flows makes such problems
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difficult to analyze and describe. A straightforward, albeit simplified, representation for a passive
species dispersed in a turbulent flow is the one provided by massless tracers which are simply
advected by the underlying velocity field; in this context, the Lagrangian description of turbulent
transport arises naturally [2]. Past contributions have explored the statistical properties of advected
tracers [3–7], particle pairs [8,9], and larger structures [10,11], providing a characterization of
the ensemble behavior of sets of tracers. Understanding these properties contributes to improve
stochastic models for dispersion, which play a key role in practical applications [12,13].

In homogeneous isotropic turbulence, the statistical properties of tracers do not depend on their
location; also, the properties of particle pairs and of higher-order structures depend only on their
mutual distance and not on their orientation. This is not true for inhomogeneous and anisotropic
flows, where both the physical location of particles and the orientation of groups of them matter. In
wall-bounded flows, dispersion properties depend on the wall-normal y coordinate. Wall-bounded
flows are also anisotropic, so wall shear enhances the dispersion of pairs whose separation lies in the
wall-normal direction; additionally, coherent structures of various sizes play a role in diversifying
the mixing properties inside a wall-bounded flow [14,15]. The importance of wall-bounded flows in
nature and in industrial applications makes their mixing processes compelling, although one has to
deal with the added complexity due to inhomogeneity and anisotropy.

In recent years new methods based on networks, which are topological structures comprising a
set of interacting objects (nodes) and a set of their mutual interactions (links), have proven useful
in the analysis of fluid dynamics data [16–19]. Classically, networks have been used to describe
the interactions between, for example, large groups of people, biological systems, electrical grids,
or transport infrastructures, allowing one to uncover the underlying collective behavior of the
elementary units that constitute the network [20–22]. Because of their ability to condense large
systems in a simplified description, networks appear suitable to represent the complex dynamical
interactions taking place in turbulent flows. The inherent complexity of fluids at high Reynolds
numbers, along with the increase in quantity and resolution of fluid flow data (especially from
high-resolution simulations), is among the main reasons to find new processing and analysis
methods.

Several networks have been defined to extract specific information from flow fields; common
applications include networks based on correlation of physical quantities (either fixed points in
space [23] or trajectories [24,25]), the analysis of time series [26,27], the proximity of particle
trajectories [28,29], or vortical interactions [30]. Another network-based method, i.e., the transport
network formalism, has been proposed to describe the material connections between discrete regions
of the fluid domain [31,32]. In particular, nodes are defined as the partitions of the domain and a link
between them is established if the two regions have exchanged fluid in the time frame considered.
This corresponds to a coarse graining of the Lagrangian dynamics of the flow, which enables us
to study the processes emerging from the collective behavior of fluid particles. In previous works,
our group has dealt with the properties of Lagrangian turbulence and scalar transport employing
network-based methods. We demonstrated that the mapping of particle motion into geometrical
objects is useful to unveil turbulent mixing features. Iacobello et al. [33] used visibility graph
analysis to analyze the regularity and the occurrence of peaks in turbulent transport time series
in an experimental wall-bounded flow. In [34] Iacobello et al. used instead a network accounting
for the proximity of Lagrangian tracers to analyze the transition from an unmixed to a fully mixed
state. Finally, Perrone et al. [35] used the same method employed in this work to provide results,
at a fixed Reτ , about the temporal evolution of particle dispersion and the existence of regions of
the channel that have a reduced exchange of fluid between them. In this paper we study a different
aspect by focusing on the scaling properties of turbulent dispersion with respect to the Reynolds
number Reτ in the range [180, 950]; to achieve statistical significance of the Reynolds number
comparison, we employ a much larger number of particle trajectories than used by Perrone et al.
[35]. Moreover, we employ different network-based tools, enabling us to analyze different aspects
of turbulent dispersion.
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TABLE I. Main simulation parameters employed to generate the set trajectories at the five Reynolds
numbers Reτ employed in this paper: domain size Lx × Ly × Lz, number of polynomials used for the simulation
Nx × Ny × Nz, and time step of the trajectories �t .

Reτ Lx × Ly × Lz Nx × Ny × Nz �t

180 4πδ × 2δ × 4πδ/3 384 × 193 × 192 12.5 × 10−4

265 2πδ × 2δ × πδ 512 × 257 × 512 10 × 10−4

395 2πδ × 2δ × πδ 512 × 257 × 512 7.5 × 10−4

590 2πδ × 2δ × πδ 768 × 385 × 768 6.25 × 10−4

950 2πδ × 2δ × πδ 768 × 385 × 768 5 × 10−4

The transport network formalism is applied to the trajectories of tracer particles obtained from
the direct numerical simulation of a fully developed turbulent flow in a channel at five different
Reynolds numbers. To do so, we periodically release tracer particles inside the domain and track
their motion over time. Using the trajectory data, we build the network by measuring the exchange
of fluid between fixed partitions of the wall-normal direction y of the domain. These partitions,
which are unbounded in the spanwise and streamwise directions and have constant wall-normal
width, are the nodes of the network; the motion of particles generates the connections between
the nodes. Starting from the network, we describe the spatial inhomogeneities of vertical mixing,
its dependence on the Reynolds number, and the relationship between particle motion and the
underlying turbulent flow phenomena.

The paper is organized as follows. Section II describes the methods employed, in particular the
numerical simulations used to obtain the particle trajectories (Sec. II A) and the procedure employed
to build the transport network (Sec. II B). Section III reports the results obtained from the network-
based analysis. Section IV contains a discussion of the results. Section V summarizes.

II. METHODS

A. Lagrangian data

The Lagrangian data used in this work were obtained by integrating trajectories of tracer
particles inside a numerically simulated turbulent flow field. Five direct numerical simulations were
performed, at friction Reynolds numbers Reτ = δuτ /ν = 180, 265, 395, 590, and 950, where δ

is the channel half-height, ν is the kinematic viscosity, and uτ = √
τw/ρ is the friction velocity,

with τw the wall shear stress and ρ the fluid mass density. The Navier-Stokes equations were
solved with a pseudospectral method in a rectangular box of size Lx × Ly × Lz [36–38]; periodic
boundary conditions were applied along the streamwise x and spanwise z directions, while the
no-slip condition was imposed at the walls (y = 0 and y = 2δ). The main parameters used for
the direct numerical simulations depend on the Reynolds number and are reported in Table I. The
Navier-Stokes equations were made nondimensional using outer-flow variables; accordingly, all the
following results will be provided in the same units xi and t , which are linked to the wall units by
the relations xi = x+

i ν/uτ and t = t+ν/u2
τ .

Tracer particles are assumed massless so that their velocity v(x0, t ) matches at any time that of
the local, instantaneous Eulerian velocity field v(x(x0, t ), t ), where x0 and x(x0, t ) are the release
location of a tracer and its position at time t , respectively. The trajectories are therefore integrated
according to the ordinary differential equation dx/dt = v(x(x0, t ), t ) with the same second-order
Runge-Kutta scheme as used in the explicit part of the integration of the Eulerian field. The time step
used for the integration of trajectories depends on the Reynolds number and is reported in Table I.
Whenever a particle reaches one of the periodic boundaries, it is reinserted into the computational
domain at the opposite side; particles cannot reach the solid walls, since they follow the fluid motion.
The fluid velocity at the particle position is obtained by means of a trilinear interpolation of the
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velocity field. Although higher-order methods could be used, the use of a low-order method does
not affect the statistical accuracy of the set of trajectories, since the time step is sufficiently small
[38].

Particles are released in an Nl × Nl grid located at x = 0; subsequent levels of the grid are spaced
in the vertical direction �y = 2δ/Nl , while the spacing in the spanwise direction is �z = Lz/Nl .
Here Nl is equal to 100 for all Reynolds numbers, so in any case Np = 10 000 particles are released.
Because of this layout, all particles are initially confined to one location in the streamwise direction
of the channel and are therefore influenced by the instantaneous velocity field of that location.
To evaluate the influence of the initial condition on the transient phase of the network evolution,
we release Nb = 61 subsequent sets of particles, each one composed of the same Nl × Nl grid of
tracers located at x = 0, for each Reynolds number. We separate the release of the batches by a
time appropriate to the Reynolds number of the simulation, i.e., a time larger than the Lagrangian
integral time scale; by doing so, we ensure that the different batches are uncorrelated. We integrate
all the trajectories for a duration of at least T = 10 in order to analyze the entire transient phase
of the mixing process before the Taylor regime is reached; accordingly, each set of trajectories
is composed of Nt = T/�t discrete time steps. Lagrangian statistics obtained from the sets of
trajectories employed in this work are available in an online repository [39].

B. Transport network

We aim to transform the continuous description of the Lagrangian dynamics of the flow provided
by the particle trajectories into a discrete network representation. Since our main focus is mixing
in the wall-normal direction, we divide the channel into Nl = 100 equal levels in the y direction,
each with height equal to 2δ/Nl ; these slabs are unbounded in the x and z directions. We map each
trajectory x(x0, t ) into a sequence of traversed levels; doing this for the entire set of particles, we
are able to transform the three-dimensional trajectories into a succession of discrete states s ∈ RNl ,
where si is the concentration of tracers in level i. Then we build the transition probability matrix
P(t0, τ ) ∈ RNl ×Nl . Each entry Pi j of the transition matrix is defined as the probability that a tracer,
located in level i at t = t0, ends up in level j at t = t0 + τ . We approximate this probability by the
fraction of the particles released in level i at time t0 that is in level j at t = t0 + τ . The entries of the
transition matrix are therefore computed as

P(t0, τ )i j = Ni→ j (t0, τ )

Ni(t0)
, (1)

where Ni→ j (t0, τ ) is the number of particles, released in level i at time t0, that are located in level j at
time t0 + τ ; Ni(t0) is the total number of tracers released in level i at the release time [Ni(t0) = 100
for all cases]. Since particles cannot leave the domain, the rows of P(t0, τ ) always add up to unity.
On the other hand, this is not true for the columns of P(t0, τ ); indeed, the sum of the ith column of
P(t0, τ ) is the number of particles contained in level i at time t0 + τ divided by Ni(t0).

Formally, P(t0, τ ) represents the transition process from the state st0 of the system at t = t0 to
the state st0+τ at t = t0 + τ . The transition between subsequent states is determined solely by the
transition matrix, so st0+τ = Pᵀ(t0, τ )st0 , where the superscript T indicates matrix transposition.

The transition matrix P(t0, τ ) can be interpreted in a straightforward manner as the weight
matrix of a network [21]. A network G(V, E ) is a structure which includes a set of nodes V ,
representing discrete interacting objects, and a set of links E , which are the interactions between
nodes. Networks may be directed, meaning that each link is an ordered pair of nodes and retains
directional information, and weighted, i.e., a value wi j ∈ R is associated with each link (i, j) ∈ E to
represent some relevant information. A natural representation of a weighted network is the weight
matrix W, defined as

Wi j =
{
wi j if (i, j) ∈ E
0 if (i, j) /∈ E .

(2)
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FIG. 1. (a) Schematic representation of the motion of tracers and the resulting network adjacency matrices.
Particles are marked with colors according to their release level and are tracked during the simulation. For
each time considered, a network can be derived: The adjacency matrices of the networks generated from the
particles in the example are shown in the lower panels (where a yellow square indicates an entry of A equal to
1). (b) Schematic of the different averages used in this work. A generic quantity qi(b, τ ), which is related to
node i and realization b, can be averaged over the height of the channel q(n)

i (b, τ ) or over different realizations
at the same Reynolds number 〈qi(τ )〉.

Ignoring the weights of links leads to the definition of the adjacency matrix A, whose entries are
defined as

Ai j =
{

1 if (i, j) ∈ E
0 if (i, j) /∈ E .

(3)

In this work we set the network weight matrix W(t0, τ ) to be equal to the transition matrix
P(t0, τ ). For each batch of particles released into the channel, we build a network that represents
the transition between the state of particles at the moment of their release and the state after a time
τ , therefore quantifying the transfer of tracers between levels of the channel as a function of time.
We obtain a temporal sequence of networks by keeping t0 fixed and increasing τ . The networks
resulting from the transition probability matrix are directed, because each link has a starting and an
ending node following the wall-normal direction of the motion of tracers in the interval [t0, t0 + τ ],
and also weighted, because connections have an associated weight equal to the fraction of particles
that move from one level to another. The networks are also time dependent and spatially embedded,
since their nodes have a definite (and stationary) location inside the physical domain.

The asymmetric and real-valued matrix W(t0, τ ) = P(t0, τ ) fully describes the discretized mo-
tion of tracers and thus provides a simplified framework for the study of turbulent mixing. The scales
of motion smaller than the level size are not explicitly displayed in the network representation, even
if the integration of trajectories accounts for their effects. The sensitivity of the network to the
number of levels Nl will be further analyzed in the Appendix. Furthermore, the adjacency matrix
A(t0, τ ) of the transport network may be constructed starting from its definition (3). The entries
Ai j (t0, τ ) of the adjacency matrix are equal to one if at least one tracer released in level i at t0 is
located in level j at t0 + τ . Therefore, the adjacency matrix gives information about the material
connection of two levels of the network at time τ , neglecting the strength of the connection. The
procedure used to build the network is illustrated in Fig. 1(a): At each time τ , the position of tracers
is binned into the Nl discrete levels while also keeping track of their release location. The lower
panels of Fig. 1(a) show the time-dependent adjacency matrices built from the motion of tracers.
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Because of the dispersion process experienced by tracers, as the delay τ grows more and more
particles leave the levels they were released in and drift away from them so that new links of the
network are activated. For sufficiently long delays τ , networks built upon different sets of tracers be-
come statistically similar independently of the flow field at the time of release, since the underlying
dispersion process has reached the asymptotic regime identified by Taylor [40]. This happens when
tracers have lost all memory of their starting location and are homogeneously distributed across the
channel, which occurs for times far larger than the Lagrangian integral timescales of the flow. At
this point, links in the network are randomly distributed and their properties depend solely on the
ratio Np/N2

l [if the normalizing factor in Eq. (1) is ignored, the weights follow a Poisson distribution
with mean equal to Np/N2

l = 1 [35]].
Whenever each batch b is released into the channel, we compute Nt network weight matrices

W(b, t0, τ ) (τ = j�t , with j = 1, . . . , Nt ). The network matrix depends only on the delay τ and
on the properties of the set of trajectories b. In the following we will omit the argument t0, which
we always set to be the release instant of the tracers, so that W(b, τ ) = W(b, t0, τ ). By doing so,
we obtain for each set of tracers a succession of weight matrices [and the corresponding adjacency
matrices A(b, τ )], covering the entire evolution of the trajectories across the channel. Repeating
this for all realizations gives us Nb successions of networks at each Reynolds number, which are
uncorrelated because they originate from particle sets whose trajectories are in turn uncorrelated.

Since particles of subsequent realizations are released after a temporal spacing larger than the
integral timescales of the flow, the uncorrelated velocity fields in which particles are inserted
originate highly diverse successions of networks W(b)(τ ). An ensemble analysis of the properties
of the network at each Reynolds number can therefore be obtained by averaging the properties of
the networks resulting from the Nb different realizations. Releasing several uncorrelated batches of
tracers allows us to study in great detail the effects of an irregular velocity field on the network
transient by sampling the domain at different times. Moreover, since particles are released in a
single plane at x = 0, we are able to assess the effects of different realizations of an inhomogeneous
velocity field. In the following, we mainly deal with quantities related to the nodes of the network,
which are the spatial levels in which the channel is divided; these quantities are dependent on the
physical location of the ith node, on the realization b, and on the delay τ . To provide statistical
information about the behavior of the network, we define two different averages for the generic ith
node-related quantity qi(b, τ ), one along the wall-normal direction q(n)(b, τ ) = ∑Nl

i=1 qi(b, τ )/Nl

and another between different realizations of the network 〈qi(b, τ )〉 = ∑Nb
b=1 qi(b, τ )/Nb. The y

average •(n) and the ensemble average 〈•〉 are illustrated in Fig. 1(b).

III. RESULTS

We focus our attention on the transient phase of the mixing process and its dependence on the
Reynolds number Reτ as captured by the transport network. The succession of networks resulting
from the motion of tracers can then be used to extract information about the mixing process. We
analyze the network, which is a reduced-order representation of particle motion, with different
tools in order to characterize its main features and obtain results about the underlying physics.
Section III A shows how the mixing process evolves from the network centrality perspective.
Section III B provides a methodology to find the long-time effects of coherent motions inside the
flow on particle dynamics using the network. Section III C deals with the relation between the
spectral properties of the network and the short-time properties of mixing. Section III D gives some
information about the role of the walls of the channel in relation to the temporal properties of the
network.

A. Degree centrality

We aim to quantify the dispersion process of massless tracers in a turbulent channel flow, with
particular focus on the impact of the Reynolds number on its transient temporal evolution, on the role
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FIG. 2. (a) Variance of the position of particles released from each node and divided by τ 2, plotted against
the velocity variance at the release location, at Reτ = 950. (b) Squared outgoing degree (kO)2, averaged over
different realizations at Reτ = 950 and divided by τ 2, versus the velocity variance. (c) Wall-normal velocity
variance profiles across the channel half-height.

of wall-induced inhomogeneities, and on the influence of the release condition. As time τ grows,
particles move farther and farther from the starting point of their trajectory, as they are driven away
by the mean flow advection and the dispersion induced by turbulent fluctuations of the velocity.
In particular, mixing in the wall-normal direction, which is the focus of this work, is primarily
influenced by the fluctuations of the y component of the velocity, while the mean velocity normal to
the wall is zero. We release large groups of particles at several wall-normal locations; as time grows,
they will move away from their starting location and disperse across the y direction of the channel.
From the coarse point of view employed in this work, tracers leave the level they were released in
and enter new different levels. Since turbulent channel flow is inhomogeneous in the y direction,
groups of tracers released from different levels will behave differently, according to the properties
of the underlying velocity field.

For times much shorter than the Lagrangian velocity integral timescale IL, all particles that share
the release location are still confined in the neighborhood of that location; moreover, their velocity is
still correlated to the velocity at their release. Taylor’s dispersion theory, adapted to inhomogeneous
and anisotropic flows, prescribes that the dispersion of particles for τ � IL is ruled only by the
variance of the velocity at the tracers’ release location [40,41]. In particular, the variance σ 2

y (y0, τ )
of the wall-normal position at time τ of particles released from the same wall-normal location y0

grows ballistically as.

σ 2
y (y0, τ ) = τ 2σ 2

v (y0, 0) + O(τ 3), (4)

where σ 2
v (y0, 0) = vyvy(y0, 0) is the wall-normal velocity variance [shown for all Reynolds numbers

in Fig. 2(c)], with the overline indicating the average over particles that share the same location y0.
Figure 2(a) shows the validity of this relationship in the channel flow at Reτ = 950 for three different
times τ � IL by plotting the position variance divided by τ 2 against the velocity variance for each
of the Nl release locations used in this work.

In contrast, for times comparable to or longer than the Lagrangian timescale, these assumptions
become invalid because the velocity of tracers is no longer strongly correlated to that at their release.
As particles move away from their starting level, they encounter regions with properties that are
different due to the inhomogeneity of the flow. Due to the advancing diffusion, the dispersing cloud
of tracers samples a statistically inhomogeneous velocity field, so a simple prediction of its evolution
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is no longer possible. Moreover, the dispersion of tracers released near a wall becomes skewed by
the presence of the boundary and particles can only diffuse in one direction. Also, clouds of tracers
become entrained and influenced by coherent motions with a relatively large scale, especially in the
near-wall region which is characterized by a range of coherent flow structures.

In the discrete approach proposed in this work, one can quantify the dispersion of a group of
particles released from a channel level by measuring the number of other levels reached by these
particles as a function of time. Conversely, mixing into the ith level can be quantified by measuring
the number of release levels whose particles are present in level i at any time τ . The number of
levels whose particles have reached level i at time τ is a measure for backward-in-time dispersion.

From the transport network perspective, quantification of the number of levels encountered by
dispersing tracers during their motion (forward or backward in time) is done by measuring the
number of connections leaving and entering a node (which, by definition, corresponds to a level
of the channel). The number of connections of a node i, regardless of their weight, is measured by
the degree centrality ki. For directed networks, both the outgoing kO

i and ingoing degrees kI
i can be

defined, accounting for the directionality of connections [21]. Both these measures can be computed,
at any time τ , as the sum of rows or columns of the adjacency matrix A(τ ) so that kO

i (τ ) =∑Nl
j=1 Ai j (τ ) and kI

i (τ ) = ∑Nl
j=1 Aji(τ ). In the example shown in Fig. 1(a), the outgoing degrees

of the nodes (from top to bottom) are kO(τ1) = {2, 2, 5, 5, 3, 2, 1} and kO(τ2) = {2, 2, 4, 7, 5, 3, 1},
while the ingoing degrees are kI (τ1) = {3, 4, 2, 2, 3, 3, 3} and kI (τ2) = {4, 5, 3, 3, 3, 3, 3}.

Similarly to the short-time wall-normal position variance σ 2
y (y0τ ), also the degree centrality for

τ � TL is influenced only by the local velocity field. Figure 2(b) shows how, for the same time
instants considered in Fig. 2(a), the squared outgoing degree [kO

i (τ )]2 divided by τ 2 is proportional
to the wall-normal velocity variance σ 2

v (y0, 0) measured at the center of the level (which is
the release location of tracers). Unlike the wall-normal position variance σ 2

y (y0, τ ), the squared
outgoing degree does not grow proportionally to τ 2. This happens because of the different sampling
of the wall-normal size of the cloud of particles; while the position variance varies continuously,
the degree changes discontinuously and only when a tracer enters a previously unexplored level.
The difference between the two sampling approaches is larger for shorter times τ , when the particle
distribution is narrower, and decreases afterward. Still, the degree is able to measure accurately the
differences in the dispersion of particles due to the fluctuating velocity field at short times, because
of its initial proportionality to the velocity variance.

For longer times, the degree centrality is able to quantify the extent of dispersion and mixing
in each level of the channel, embedding the complexity arising from the inhomogeneous geometry
of the flow. Due to this capability, both the spatial inhomogeneities and the differences between
realizations of the dispersion of tracers can be studied by means of the evolution of the degree
centrality. As expected, the y- and ensemble-averaged degree 〈kO,(n)(τ )〉 = 〈kI,(n)(τ )〉 [shown in
the inset of Fig. 3(a)] grows monotonically with τ , since particles everywhere tend to disperse
away from their starting level and enter new levels. The monotonic growth of the mean degree
reflects the transition from the ordered initial condition to the fully mixed, random final state of the
system. After some time, the rate at which tracers enter new levels balances the rate at which they
leave those levels, so the averaged degree reaches a stationary asymptote. Since at this point the
weights Wi j of the network are Poisson distributed, as stated in Sec. II B, also the asymptotic value
of the degree can be analytically determined and is equal to the number of nonzero weights, i.e.,
limτ→∞〈k(n)〉 = 1 − 1/e ≈ 0.63 [35]. Also, the y-averaged ingoing degree kI,(n)(τ ) is equal to the
y-averaged outgoing degree kO,(n)(τ ), because all connections leaving nodes of the network must
enter other nodes, since tracers cannot leave the domain.

To show the dependence of the degree on the wall-normal coordinate, we calculate its spatial
fluctuations around its y-averaged value, k′

i (b, τ ) = ki(b, τ ) − k(n)(b, τ ). Figure 3(a) shows the fluc-
tuation of the outgoing degree 〈kO′

i (τ )〉, ensemble averaged at Reτ = 950; the ingoing degree shows
a similar appearance, as do the ensemble averages at the other Reynolds numbers. The fluctuation
of the degree reveals the inhomogeneities of the dispersion process, which are determined by the
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FIG. 3. (a) Fluctuation of the outgoing degree around its y average, ensemble averaged at Reτ = 950 as a
function of τ (the black line marks the point for which 〈k′

i〉 = 0; also, the level located at y = δ/4 is marked in
red). The inset shows the y- and ensemble-averaged degree for all five Reynolds numbers. Also shown is the
ensemble-averaged standard deviation 〈σk〉 of the (b) outgoing and (c) ingoing degrees. The insets show the
standard deviation across different realizations of σk , i.e., 〈σ ′2

k 〉1/2 = 〈(σk − 〈σk〉)2〉1/2.

effects of the walls. While overall the degree grows everywhere, it does so differently, depending
on the position: Near the walls, the fluctuations of the degree are negative, indicating that there
〈ki(τ )〉 grows more slowly than its y average and consequently tracers in that region disperse more
slowly than in other parts of the channel. Moreover, the region in which 〈k′

i (τ )〉 < 0 expands over
time proportionally to

√
τ for τ < 1; after this initial growth, the size of the region in which the

fluctuations of the degree are negative occupies about one-quarter of the channel height on each
side until the transient phase ends. Instead, near the center of the channel and for τ < 0.5, the
fluctuations 〈k′

i (τ )〉 of the degree are small, so the ensemble-averaged degree grows as fast as its
y average. In the remaining regions of the channel, the degree grows faster than its average. In
particular, there are two symmetric peaks, initially located very close to the walls, that join at the
middle of the channel at τ ≈ 0.5. Finally, for large values of τ (τ > 6, not shown in the figure), the
fluctuations of the degree become rather small and, more importantly, uniformly distributed across
the channel, indicating that the transient phase of the dispersion process has ended.

As shown in Fig. 3(a), not only does the degree depend on the wall-normal position of the level
inside the domain, but this dependence also varies with time. As an example, the ensemble-averaged
fluctuation of the degree 〈k′

i (τ )〉 of a level located at y = δ/4 [marked in red in Fig. 3(a)] is initially
greater than zero, then decreases and becomes negative at about τ = 0.4, and remains negative
until the transient phase ends. This indicates that the diffusion in that location is initially stronger
than the average; indeed at that location the variance of the wall-normal component of the velocity
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is the highest of the entire channel. However, after some time particles have moved away from
there and have entered other levels. In particular, particles that have moved towards the wall now
diffuse more slowly than the average, thus causing a decrease of 〈k′

i (τ )〉 for the level considered.
Conversely, particles that are released near the center of the domain after some time reach regions
of the channel with stronger wall-normal velocity fluctuations (which are ultimately the main driver
for wall-normal dispersion) so that the fluctuation of the degree for the centerline levels increases
with time.

To effectively compare the fluctuations of the degree at different Reynolds number, we calculate
their root mean square

σk (b, τ ) =
√√√√ 1

Nl

Nl∑
i=1

[k′
i (b, τ )]2, (5)

which quantifies the spatial inhomogeneity of mixing inside the channel. Figures 3(b) and 3(c) show
the ensemble-averaged values of the root mean square of the degree, i.e., 〈σkO (τ )〉 and 〈σkI (τ )〉, for
the outgoing and ingoing degrees at all Reynolds numbers used in this work. Independently of
Reτ , the standard deviations of the ingoing and outgoing degrees grow rapidly, reach a peak at
approximately τ = 1, and then slowly decrease towards a stationary asymptotic value.

The standard deviations of the degree for Reτ � 395 are almost independent of the Reynolds
number and they collapse onto one single curve when outer units are used to normalize time. On the
other hand, 〈σk (τ )〉 at Reτ = 180 and 265 is significantly higher during the entire transient phase
for both the ingoing and outgoing degrees. We confirm the independence between realizations at
Reτ = 180 and 265 and those at higher Reynolds numbers with the Kruskal-Wallis test, while at
the same time we find that realizations at Reτ � 395 are not independent [42]. We analyze the
relationship between the collapse of the standard deviation and the discretization employed to build
the network in the Appendix. The main cause for the increased inhomogeneity of the degree at
Reτ = 180 is to be found in the near-wall region, where the fluctuations of the degree are larger (in
absolute value) than at the other Reynolds numbers.

While the ingoing and outgoing degrees mostly show similar behavior, we note that the spatial
standard deviation of the ingoing degree is in general higher than that of the outgoing degree. This
means that the mixing of tracers into the levels of the channel takes place more heterogeneously
than the dispersion of particles leaving these levels. The larger standard deviation of the ingoing
degree with respect to the outgoing degree is caused by the fact that the ingoing degree is higher
than the outgoing degree near the center of the channel, while it is lower towards the boundaries.
Since the ingoing and outgoing degree centralities are connected to dispersion of particles backward
and forward in time, the differences between 〈σkI 〉 and 〈σkO〉 signify a temporal asymmetry in the
dispersion process. Recent research has linked the presence of temporal asymmetries in particle
dispersion to the irreversibility of turbulence and to the dissipative flux of energy from large to
small flow scales [11,43,44]. A relation for the difference between the backward and forward in
time variance of particles’ position, which share some similarities with the ingoing and outgoing
degrees as seen at the beginning of this section, can be derived for short times τ . In particular,
including terms of O(τ 3) in Eq. (4) yields σ 2

y (y0, τ ) = τ 2σ 2
v (y0, 0) + vyay(y0, 0)τ 3 + O(τ 4), where

vy and ay are the wall-normal components of particle velocity and acceleration. The difference
between backward and forward dispersion is therefore

σ 2
y (y0,−τ ) − σ 2

y (y0, τ ) = −2vyay(y0, 0)τ 3 + O(τ 5), (6)

which quantifies the temporal asymmetry of the dispersion of a cloud of tracers released at a wall-
normal coordinate y0 [45]. We measure the value of −2vyay(y0, 0) and find that it is positive near the
center of the channel and negative at distances from the wall lesser than δ/2 [except for the near-wall
region, where particles moving towards the wall have to decelerate and thus −2vyay(y0, 0) > 0].
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This agrees with the difference between the ingoing and outgoing degrees, which at short times is
negative at wall distances y � δ/2 and positive elsewhere.

Finally, the insets of Figs. 3(b) and 3(c) show the standard deviation across realizations of σk ,
defined as

√
〈σ ′2

k 〉 =
√

〈(σk − 〈σk〉)2〉, for both the outgoing and ingoing degrees. This quantity
represents the variability due to the differences between different realizations of the spatial inho-
mogeneity of the diffusion process, as reported by the degree centrality. The Reynolds number does
not seem to play a significant role here, meaning that the intra-Reynolds variability is independent
of Reτ . In particular, the differences between transport networks W(b, τ ) originating from different
sets b = 1, . . . , Nb of trajectories at the same Reynolds number, which are due to the differences
between the velocity fields in which subsequent batches of particles are released, do not depend
on Reτ .

B. Cycles

As tracers spread past the immediate vicinity of their release location, the inhomogeneities
present in the fluctuating turbulent velocity field influence their dispersion and introduce complex
effects which are captured by the degree centrality of the transport network representation. More-
over, in addition to the statistical properties of the velocity field, the dispersion of tracers is also
influenced by the organized motions present in wall-bounded flows at a large range of scales, which
are present at all Reynolds numbers. In particular, particles located near the wall become entrained
in quasistreamwise and hairpin vortices, which populate the logarithmic and outer regions of the
flow; these structures determine the presence of intense wall-normal motions that eject low-speed
fluid (and the tracer particles therein) into the outer flow and the other way around [14]. Thus, tracers
sample the underlying velocity field; the more they are spread across the channel, the larger the flow
structures they sample and interact with are.

Small subsets of tracers that are close in space may become entrained in simple coherent
structures and in turn inherit their common and recognizable features. This translates, in the spatially
coarse perspective employed in this work, into simple patterns of fluid exchange between levels of
the channel. Tracers entrained in a wall-normal cyclic motion will move between a subset of the
levels of the channel in a loop, at least for the time in which the underlying flow structure remains
coherent.

As an example, a looping pattern involving three nodes i, j, and k inside the transport network
(formally, a cyclic subgraph of W(τ )) is generated when some tracers released from level i reach
level j at time τ , while at the same time tracers leaving j and k reach levels k and i, respectively. In
the transport network framework, the analysis of cyclic subgraphs has been used to uncover periodic
trajectories in steady or periodic flows and cyclic motions in unsteady flows [46]. In general, patterns
contained in a complex network that occur significantly more than what would happen in a random
graph are called motifs. The study of motifs allows us to detect relevant processes taking place on the
network and contributes to determining the complex behavior of the dynamical system represented
by the network [47,48].

In order to identify motifs on the transport network W(τ ), we employed the algorithm of
Wernicke [49], which performs a search of the network for subgraphs of a given number of nodes
and given structure. In particular, we searched the network for cyclic subgraphs with three nodes,
i.e., a subset of three nodes of the network that are connected in a directed loop. Structures
comprising three nodes are of particular interest since they are linked to the definition of the
clustering coefficient [50]. Additionally, cyclic subgraphs composed of a larger number of nodes
in the transport network identify other periodic structures with longer periods [46].

To determine whether the cyclic subgraphs found with the aforementioned procedure are indeed
motifs, i.e., they contribute significantly to the behavior of the network, we analyzed their statistical
relevance using as a null model a random network. In particular, we computed, using the same
breadth-first search algorithm as before, cycles of three nodes in a random network in which nodes
have the same number of connections of the nodes of the real transport network W(τ ). We found
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FIG. 4. Concentration of cycles’ centroids in the transport networks (a) W(τ = 0.5) and (b) W(τ = 4),
ensemble averaged at five different Reynolds numbers. (c) Distance of the peaks of the concentration of cycles
from the wall, as a function of time. (d) and (e) Prevalence of cycles in the same networks as in (a)–(c),
computed as the ratio between the number of cycles and the number of all subgraphs with three nodes. (f)
Mean radius of cycles (solid lines) and of subgraphs that are not cycles (dashed lines), as a function of time.
The vertical lines show the two time instants of (a) and (b).

that in the real transport network cycles occur more frequently and are also distributed differently
across the height of the channel. Specifically, cycles in the random network are more frequent near
the center of the channel than near the walls, while this is not the case for the real network.

Figures 4(a) and 4(b) show the spatial distribution of the centroids of cyclic subgraphs in
W(τ = 0.5) and W(τ = 4), respectively; the results were ensemble averaged between realizations
at the same Reynolds number. We computed the centroid coordinate yc by averaging the spatial
coordinates yi of the three network levels involved in each cyclic subgraphs. The concentration of
cycles has a peak near y = δ/2 and decreases to zero close to the wall, because of the finite size of
cycles. With increasing time, the peaks of the distribution move towards y = δ, eventually joining
abruptly in the middle of the channel at about τ = 4. The shift of the peak location in time occurs
almost independently of the Reynolds number, although at Reτ = 180 and 265 peaks are somewhat
closer to the center of the channel and they join in the center slightly earlier. The distance of the
peaks from the wall dc

peak as a function of time τ is shown in Fig. 4(c). At the start of the simulation,
cycles are more likely to be found near the solid boundaries, where the action of near-wall vortices
impresses a swirling motion on particles which may result in the formation of cyclic patterns of
links.

As the transport network W(τ ) contains information about the trajectories of particles between
t = 0 and t = τ , then also the cycles found inside the network take into account the entire previous
motion of tracers. As such, the increased presence of cycles is the result of the consecutive action
of several vortical flow structures located in the near-wall region. Because of how the transport
network is built, one needs only temporally sparse position data of particles to explore the existence
and effects of swirling motions of tracers, thus easing the computational requirements and the need
for additional data (i.e., particle velocities and accelerations or vorticity fields).

Figures 4(d) and 4(e) show the ratio between the number of cyclic subgraphs and the number of
all subgraphs with three nodes, across the height of the channel and at the same times τ as used for
Figs. 4(a) and 4(b). Near the walls, cyclic subgraphs are prevalent over all other subgraphs, while
their relative concentration diminishes away from the walls. Thus, cyclic motions of particles are
dominant near the walls of the channel. This happens at all Reynolds numbers, even though at the
lowest one (Reτ = 180) the prevalence of cycles is not as high as in the other cases.

In Fig. 4(f) we show the mean radius of cycles rc, computed as the average distance between each
node involved in the cycle and its centroid rc = 1

3

∑3
i=1 |yi − yc|. The mean radius of cycles (solid
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lines) grows more slowly than the mean radius of subgraphs with three nodes that are not cycles
(dashed lines). This happens independently of the Reynolds number, even at the lower Reynolds
numbers. The slower growth of the size of cycles implies that the diffusion of clouds of particles
entrained in cyclic motions is impeded, since their size on average grows more slowly than that of
clouds of tracers that do not take part in cyclic motions. While the effectiveness of single cycles in
retaining tracers is unchanged across different Reynolds numbers, the stronger prevalence of cycles
at the higher Reynolds numbers indicates a stronger inhibition of dispersion caused by vortical flow
structures.

C. Eigenvector centrality

The transport network W(τ ) holds the discrete representation of particle mixing in the interval
[t0, t0 + τ ]. The properties of W(τ ) are in turn the result of the effects of the flow field, which is
integrated over the same time interval [t0, t0 + τ ] to obtain the trajectories of tracers. To evaluate
the cumulative effects of the flow field, we analyze the eigenvector e1 associated with the leading
eigenvalue λ1 of Wᵀ(τ ). The eigenvector e1 obtained from the transport network weight matrix
represents the concentration along y that particles would attain if left indefinitely under the influence
of the flow as represented by the network W(τ ) at a single time τ . In particular, the eigenvector e1

is the state of the system (i.e., the concentration of tracers) attained after infinite applications of the
same process W(τ ) at a fixed time τ , which is unique and independent of the initial state [51].

Analyzing e1 allows us to isolate the effects of the flow in the time interval [t0, t0 + τ ] and capture
the trend of particle motion. The nodes in the transport network where the local value of the state
ei,1 is higher tend to attract tracers, even if the concentration given by e1 cannot be achieved, due
to the time dependence of the weight matrix W(τ ). The analysis of the eigenvector e1 of networks
W(τ ) as a function of time yields information about the overall motion of particles and the presence
or absence of specific levels in the channel that act as attractors for particles at different times τ .

In general, the eigenvector associated with the leading eigenvalue of a network weight matrix
is a centrality measure, the eigenvector centrality, which quantifies the influence of a node on
the process taking place on the network. A node has a high eigenvector centrality if it is in turn
connected to other nodes with high eigenvector centrality [21,52]. As an example related to a
traditional application of network theory, airport hubs usually have a high eigenvector centrality
in the aerial transportation network, not because of the number of airports they are connected to
(which is measured by the degree centrality), but because of the importance of connected airports
and because of their influence on the entire network. The spectral properties of W(τ ) have also been
exploited to find sets of tracers that remain coherent in time, that is, states that are not perturbed by
the action of the flow, similarly to what happens for the limit state e1 [31,53].

The instantaneous flow field in which particles are released determines their initial velocity
v(x0, 0) and thus the initial evolution of their trajectories, at least for times shorter than the
Lagrangian integral timescale. Since different sets of particles are released inside the channel into
uncorrelated velocity fields, also the resulting sets of trajectories evolve differently in their initial
phase, with a strong dependence on the initial condition. Consequently, also the different realizations
of the transport network W(τ ) are highly diverse, even at the same Reynolds number. The trend of
motion imposed on tracers can be analyzed by means of the study of the eigenvector centrality and
its temporal evolution.

Figure 5(a) shows the eigenvector centrality e1(τ ) of the nodes for four different realizations of
the network at Reτ = 950, as representative of the eigenvector centrality temporal behavior: A clear
peak, with a variable location depending on the realization, occurs at a time τ comparable to the
integral timescale. A similar behavior is found in all realizations. Nodes with a high eigenvector
centrality act as attractors for the motion of tracers, and the higher the eigenvector centrality, the
higher the strength at which tracers are driven towards these nodes. The highly inhomogeneous
velocity field experienced by tracers at their release tends to displace them towards such nodes. As
time grows, the effects of the inhomogeneities are smoothed out by the dispersion of tracers and
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FIG. 5. (a) Eigenvector centrality e1(τ ) for four different realizations of the transport network evolution at
Reτ = 950. (b) Temporal behavior of the standard deviation of the node eigencentrality, averaged over real-
izations at the five Reynolds numbers considered. (c) Distance between the node with the highest eigenvector
centrality and the nearest wall, averaged over realizations at the five Reynolds numbers.

also the eigenvector centrality becomes more uniform across all nodes. In the end, the eigenvector
centrality becomes uniform across the channel height; indeed, the concentration of tracers becomes
uniform in the wall-normal direction in the long run due to continuity and the well-mixed condition,
and so does the limit state [54]. To briefly summarize the evolution of the limit state for different
Reynolds numbers, we computed the spatial standard deviation of the eigenvector centrality of each
node and then we ensemble averaged its value between realizations of the network at the same
Reτ ; results are shown in Fig. 5(b). The relatively high spatial standard deviation of the eigenvector
centrality for short times highlights a nonuniform attraction of tracers across the channel height.
Higher values of the standard deviation, such as those found for the channel flow at Reτ = 180,
indicate a stronger imbalance between attracting and nonattracting nodes. This in turn shows that
tracers at the lowest Reynolds number are more susceptible to attracting structures in the flow,
probably because of the reduced turbulent dispersion. After some time, the eigenvector centrality
tends to spatial uniformity, so its standard deviation quickly decreases.

Additionally, we show in Fig. 5(c) the ensemble-averaged distance of the eigenvector centrality
peak from the nearest wall of the channel, i.e., the position of the nodes that act as attractors
during the very first phase of the dispersion of tracers. The eigenvector centrality peaks of different
realizations at Reτ = 590 and 950 are almost always uniformly distributed over the interval [0, δ]
(albeit slightly skewed towards the walls) and thus their ensemble-averaged distance from the wall
is approximately δ/2; the same happens, after a short transient, for Reτ = 265 and 395. At instead
Reτ = 180, peaks are located much closer to the walls. Thus, near-wall levels of the channel act
as sinks for tracers, at least for some time (the eigenvector centrality becomes almost uniformly
distributed after τ ≈ 2). This is also the cause for the increased standard deviation found in
Fig. 5(b).

D. Temporal properties of links

The peculiar effect of the walls on turbulent mixing is also evident from the analysis of the
duration of links, i.e., the time that a particle moving from level i to level j of the channel [and thus
activating a link (i, j)] spends in level j and maintains the link active. The temporal duration of links
can be measured as the time a given link (i, j) is continuously active in the evolving network W(τ ).
In particular, we focus on the mean duration of links Tl , which we compute for each pair (i, j) of
nodes as the average temporal duration of the links connecting these two levels. The Tl is shown in
Fig. 6(a) for the channel flow at Reτ = 950, where each entry (i, j) of the matrix displays the value
of the mean duration of links starting in level i and ending in level j; we ensemble averaged these
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FIG. 6. (a) Mean link duration for each pair of nodes (i, j), averaged over realizations at Reτ = 950 (in
the labels, the y coordinate of nodes is shown). (b) Same quantity shown in detail for links starting from the
centerline level, averaged over realizations at all Reynolds numbers.

results over realizations of the network at Reτ = 950. The resulting matrixlike representation is not
symmetric, since it follows from a directed network with an asymmetric weight matrix.

It can be noticed that the mean duration of links depends mostly on the spatial location of the
ending node j. Indeed, links ending in the levels closest to the wall have the longest permanence time
(even an order of magnitude larger than in other regions of the channel). Particles that move close
to the walls become trapped in these regions and spend a long time in the same level of the network,
thus resulting in long duration links. This region of increased temporal duration encompasses the
level of the channel nearest to the wall (which has a height equal to 2δ/Nl ). Typical values of Tl in
this region range from Tl ≈ 0.1 at Reτ = 950 up to Tl ≈ 1 at Reτ = 180, which is one-tenth of the
entire simulation time.

The mean duration of links is also slightly larger than the minimum values of Tl for links ending
near the centerline and for links originating between levels close in space; indeed, values of Tl near
the diagonal of Fig. 6(a) are larger than for other couples of connected levels. As an example, links
starting and ending near the center of the channel have a mean duration Tl ≈ 0.1, independently of
the Reynolds number; this is enough for a tracer moving with the bulk velocity to move a distance
�x ≈ 2.2δ downstream at Reτ = 950. The increased duration of links connecting nearby levels
shows how Tl depends not only on the ending level of the link, but also on the starting level (albeit
in a lesser way). The lasting effect imparted by the starting level on the duration of links suggests
the existence of some sort of memory for tracers that move between levels close in space; indeed,
the duration of links is prolonged if tracers came from a nearby level of the channel. Of course, such
memory effects, which are related to the persistent correlation of the velocity field, are possible only
for levels close in space.

Figure 6(b) shows the mean duration of links starting from the level located at the centerline
y = δ, with respect to the ending node j of the link, for all Reynolds numbers. The plots of Fig. 6(b)
correspond to a single row of the matrix shown in Fig. 6(a). The duration Tl of links ending in levels
near the center of the channel is the same at all Reynolds numbers considered. Instead, Tl is far
higher for connections ending near the wall at all Reynolds numbers, as already noted previously;
this increased duration indeed contributes to the lesser diffusive properties of the near-wall region,
since it implies that particles located near the walls become trapped there. Moreover, the duration
of links ending in the near-wall levels is higher for lower Reynolds number. If wall units are used,
the link duration T +

l = Tlu2
τ /ν for the level nearest to the wall is nearly constant at the three higher

Reynolds numbers, while it is almost three times larger at Reτ = 180.

IV. DISCUSSION

Using the different network features analyzed in the previous sections, we are able to provide a
multifaceted perspective on the dispersion process. While some features of dispersion appear in the

124501-15



PERRONE, KUERTEN, RIDOLFI, AND SCARSOGLIO

network at all Reynolds numbers, we found that some properties are exclusive to higher or lower
Reynolds number flows. Most notably, while dispersion of tracers near the walls is reduced in any
case, different mechanisms come into play depending on the Reynolds number. Moreover, through
the network we found that above Reτ = 395 many network properties exhibit Reynolds number
independence if scaled with outer units (with the spatial resolution Nl = 100).

The number of connections established by a node via particle motion, i.e., its degree centrality,
is a concise measure of the local dispersion of particles in that node. Owing to the inhomogeneous
nature of channel flow, we found the growth of the degree to be highly dependent on both the spatial
location of nodes and the time τ from the release of particles. At very short times τ � IL, the
degree centrality of each node grows proportionally to the wall-normal velocity variance in that
node. Indeed, when groups of particles are still confined to a small spatial region, their dispersion
is solely dominated by the local velocity fluctuations. As such, the initial evolution of the degree
[Fig. 3(a)] shows how initially dispersion grows faster in the near-wall region, coherently with the y
location of the wall-normal velocity fluctuations peak. Differently, for times comparable to or longer
than the Lagrangian integral timescales of the flow, the wall-normal velocity variance cannot alone
explain the observed dispersion of particles. We observe that the dispersion becomes stronger near
the centerline of the channel and weaker near the walls; therefore, it appears that phenomena other
than the wall-normal velocity fluctuations come into play, resulting in an inhibition of near-wall
dispersion. Moreover, at short (but comparable to IL) times, the high values of the eigenvector
centrality in a few close nodes of the network shows the presence of a localized attractor, i.e., a zone
in the channel that transiently attracts tracers. This attractor influences the dynamics of the entire
set of particles, even those that are distant from the high eigenvector centrality nodes. Therefore, the
attractor characterizes the shift from a regime in which only local velocity fluctuations determine
the evolution of dispersion to a stage when the entire range of scales of motion in the channel flow
affects the dispersion of groups of particles.

The shift of peak dispersion from the near-wall region of the channel to the centerline is also
associated with the time at which the spatial inhomogeneity of dispersion is the highest, as is shown
by the peak at τ ≈ 1.5 of the degree standard deviation σk . Only after a rather long (compared to the
integral timescale) transient, the inhomogeneities of the degree are smoothed out, as wall-normal
mixing is complete and dispersion has entered an asymptotic phase similar to Taylor’s regime in
homogeneous flows.

The network analysis enables us to pinpoint the causes for the inhibition of near-wall dispersion:
the very low intensity of near-wall velocity fluctuations and the presence of cyclic motions of parti-
cles, each one with its varying relative importance at different Reynolds numbers. First, wall-normal
velocity fluctuations near the wall have a reduced intensity with respect to the rest of the channel,
so particles that move towards the wall are less prone to being vertically displaced by turbulent
velocity fluctuations. This is also evident, from the network perspective, from the increased duration
of links ending near the wall, which is linked to the residence time of particles in those levels. The
second mechanism, highlighted by the analysis of motifs, is linked to the presence of cyclic patterns
of motion of particles between channel levels. Tracers that move persistently in cyclic paths are
effectively prevented from reaching other levels since, even if there is an exchange of tracers as in
the other regions of the channel, this happens between nodes interconnected in looplike paths that
do not promote the diffusion of tracers towards other nodes. Thus, the significant increase in the
concentration of cycles found towards the wall is an obstacle to particle dispersion. Cyclic motion,
which results from the action of vortical flow structures hosted in the near-wall region, is highly
important near the walls. Additionally, the slower growth of the radius rc of cyclic motifs than other
noncyclic structures indicates that the embedding of particles in such motion patterns contributes to
the inhibition of their dispersion for an extended period of time.

While at the higher Reynolds numbers analyzed in this work (Reτ = 395, 590, and 950) cyclic
motifs are highly prevalent near the walls and constitute nearly the entirety of the network structure,
we found the cycles at lower Reynolds numbers to be less frequent, both absolutely and with respect
to the totality of link patterns. Even if cycles have a role in slowing down dispersion, the reduction
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of the prevalence of cycles is not associated with an increase of dispersion at the lower Reynolds
numbers, where instead dispersion is even more inhibited. The slower near-wall dispersion results
in an increased heterogeneity of the degree at Reτ = 180 and 265 and greatly increases the temporal
duration of links ending in the near-wall region, indicating prolonged residence of tracers in those
regions. Also, attractors in the channel at lower Reynolds numbers are predominantly located near
the walls (see Fig. 4), indicating that the near-wall levels greatly influence the overall dynamics
inside the channel and that particles entering these levels tend to remain there for prolonged times.

At lower Reτ the main cause for the inhibited dispersion seems to be the reduced wall-normal
velocity fluctuations near the walls, which result in longer link durations and increased presence
of attractors in that region. Cyclic paths instead are less prevalent and their peak concentration is
located farther from the wall. As the Reynolds number grows larger, the near-wall effects become
confined to a smaller portion of the channel and cyclic structures acquire a dominant role in
slowing down dispersion of tracers. It is also possible that a larger prevalence of near-wall vortices
such as that found at higher Reynolds numbers, while being detrimental to dispersion across long
timescales, is beneficial in lifting particles away from the near-wall region.

At the higher Reynolds numbers (Reτ = 395, 590, and 950) we found that many network
properties are independent of the Reynolds number, if outer-flow variables are used to normalize
the time τ . The reason is that the mixing process involves ever-growing scales of motion inside the
flow, as the clouds of tracers released inside each level grow larger. Additionally, the discretization
employed to create the network divides the channel into levels whose height is independent of Reτ

when scaled in outer units (since it is always equal to 2δ/Nl ). The discretization effectively filters out
from the network representation scales smaller than 2δ/Nl . The importance of the filtered scales is
analyzed in the Appendix. Accordingly, the network evolves independently of the Reynolds number
as outer-flow scales are dominant in the overall mixing process and in its network representation.
With Nl > 100, network properties remain network independent for Reτ � 590 and become slightly
different at Reτ = 395, indicating that the effects of the smaller scales are only important at lower
Reτ . The outer-scale collapse happens to both global properties of the network, such as the degree y
average and standard deviation, and local properties like the spatial concentration of cyclic motifs,
with the notable exception of the temporal duration of links which scales with inner variables in the
near-wall region. Indeed, local properties of network nodes, even those located inside the near-wall
region, are influenced by the links entertained by these nodes. For short times these links only
connect nodes which are very close in space, and thus node properties reflect the local flow features
(i.e., the velocity fluctuations as shown in Fig. 2). For longer times links connect more distant nodes,
so no network property is truly local. In contrast, as was shown in Fig. 6(a), the temporal duration
of links depends almost exclusively on the end level, so near the wall the inner scaling appears.

At lower Reynolds numbers (Reτ = 180, 265, and, to a lesser extent, 395) the scaling by outer
variables observed at higher Reynolds numbers does not hold. While the asymptotic phase of
dispersion (approximately τ > 6) is the same at all Reynolds numbers (since asymptotic network
properties reflect a fully random state), during the transient stage dispersion at low Reynolds
numbers appears to be more spatially inhomogeneous and linked to a different underlying mech-
anism than those bound to the action of outer scales at higher Reτ . While wall-normal velocity
fluctuations continue to grow in the Reynolds number interval considered in this work, transport
network features, and thus global dispersion properties, achieve Reynolds independence above a
certain threshold, which is approximately between Reτ = 395 and 590. We hypothesize that above
this threshold the effects induced by the wall, especially the presence of a region with very low
wall-normal velocity variance that traps particles and hence inhibits dispersion, become confined
to a portion of the channel half-height δ that is negligible. Therefore, the contribution of the outer
flow in determining the evolution of dispersion becomes dominant, the interaction between cyclic
structures and local velocity fluctuations becomes Reynolds-independent, and outer-flow scaling is
achieved.
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V. CONCLUSION

We analyzed the dispersion of numerically simulated passive tracers in a turbulent channel flow
at five different Reynolds numbers, from Reτ = 180 to Reτ = 950, by describing the motion of
particles with a time-evolving network structure. By doing so, we embedded the high-dimensional
Lagrangian dynamics of tracers in turbulence into a lower-order representation, which contains and
highlights the main features of mixing. A time-varying complex network was defined to measure
the wall-normal transfer of particles between levels of the channel, that is, equally spaced partitions
of the domain. In particular, we focused on the initial transient encountered by dispersing tracers,
i.e., the period in which their distribution across the height of the channel is still influenced by
their release conditions. In this phase, the properties of tracers are highly heterogeneous in the
wall-normal direction.

We have demonstrated how the geometrical representation of particle motion can be analyzed
from different perspectives, ranging from the quantification of dispersion to the analysis of repeated
patterns of motion. These perspectives are an integral part to the complete representation of
the features of the flow. Network-based methods can provide both a reduced-order framework
embedding of highly complex fluid dynamics data and the tools to analyze this representation.

We showed the evolution of dispersion for times comparable to and longer than the Lagrangian
integral timescale and up to reaching asymptotic dispersion, highlighting the wall-normal hetero-
geneity of the process. We linked the reduced near-wall dispersion to two main mechanisms, namely,
the smaller velocity fluctuations and the presence of cyclic motions. We found that while both
mechanisms are present at all the Reynolds numbers considered in this work, the cyclic motions
are somewhat more important at the higher Reynolds numbers, whereas the reduced velocity
fluctuations are dominant in inhibiting dispersion at lower Reτ . Finally, we showed that, at a
sufficiently large Reynolds number, most network quantities are Reynolds independent if scaled
with outer-flow variables. We linked this behavior to the minor relative importance of near-wall
effects and thus to the dominant contribution of the outer flow in driving and influencing dispersion.

Based on the present findings, we showed that the transport network framework, applied to a large
set of trajectories integrated for a long time, is able to describe the evolution of mixing at different
timescales and to provide alternative perspectives on the mechanisms involved in the dispersion
of particles in an inhomogeneous flow. The transport network is a reduced-order representation of
particle motion and its analysis through network-derived tools is able to provide a comprehensive
view of dispersion and of its various features. It is also worth noting that turbulent flows, despite
their very high degree of complexity, can be represented by simpler geometrical objects. In this
regard, network-based approaches may provide a foundation upon which reduced-order models
of turbulence are built. Finally, we demonstrated the usefulness of this alternative representation
by linking the properties of the network to the features of Lagrangian turbulence in wall-bounded
flows, showing that the network-based analysis is able to complement classical methods used in the
study of inhomogeneous turbulence and extend our knowledge about turbulent mixing.
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APPENDIX: SENSITIVITY ANALYSIS

In this Appendix the sensitivity of the network representation of dispersion with respect to the
number of network levels Nl is analyzed. By doing so, we explore the influence of the spatial scale
used to build the network (recall that fluid features smaller than the level size are not explicitly
accounted for in the network representation). To investigate the effects of the number of levels, and
thus the spatial size of the discretization employed to build the network, we release another set of
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FIG. 7. (a) Mean degree at Reτ = 950 and simulations with Nl = 100 and Np = 10 000 and with Nl = 200
and Np = 40 000. (b) Outgoing and (c) ingoing degree standard deviations, normalized by

√
1/Nl , for the same

flow cases as in (a). (d) Ensemble-averaged outgoing degree versus the y coordinate at different times [for
Reτ = 950, Nl = 100, and Np = 10 000 (solid lines) and for Reτ = 950, Nl = 200, and Np = 40 000 (dashed
lines)]. (e) Outgoing and ingoing degree standard deviations (top and bottom panels, respectively). The left
panels show all Reynolds numbers with Nl = 100 and Np = 10 000, while the right panels show all Reynolds
numbers with Nl = 200 and Np = 10 000.

Nb = 60 batches of particles in the channel flow at Reτ = 950. Differently from the simulations
employed in the main text, we use a release grid composed of Nl = 200 levels, each one with 200
particles, for a total of Np = 40 000 particles. Keeping the ratio Np/N2

l equal to 1 allows us to
have the same asymptotic value of the mean degree normalized by Nl , i.e., 1 − 1/e, found for the
Nl = 100 case. This property is derived from the assumption that for long times τ network weights
are Poisson distributed [35]; accordingly, the degree is binomially distributed with a success (link
existence) probability of 1 − 1/e and a number of trials equal to Nl . The mean degree 〈k(n)〉 is shown
in Fig. 7(a); the two cases with different Nl exhibit perfect collapse (note that in each case the degree
is normalized with the number of levels Nl ).

Figures 7(b) and 7(c) show the values of 〈σk〉 normalized by
√

1/Nl . Indeed, the asymptotic
value of the degree, which is binomially distributed, has a standard deviation proportional to

√
Nl ;

since we normalize the degree by Nl , similarly we divide the degree standard deviations by
√

1/Nl .
Figures 7(b) and 7(c) show that, before the asymptote, the ingoing and outgoing degrees in the case
with Nl = 200 are more heterogeneous, resulting in larger values of the standard deviations. The
increased heterogeneity of the degree is a result of the inclusion of finer scales of motion in the
network dynamics. Still, the main features are retained, such as the presence and time of a peak
and the imbalance between ingoing and outgoing degrees. Furthermore, the spatial structure of the
degree is left mostly unchanged, as can be seen in Fig. 7(d), where the ensemble-averaged outgoing
degree 〈kO

i 〉 is plotted against the channel y coordinate for several times. Differently from Fig. 3(a),
the mean degree 〈k(n)〉 was not subtracted to enhance readability.

To analyze the Reynolds number scaling of the network properties and its relationship to the
number of levels Nl we use the data sets already employed in the main text, comprising Nb realiza-
tions, each one with Np = 10 000 particles. To fill an increased number of levels with particles, we
used as the initial time for the network building procedure a time t0 subsequent to the actual release
of particles in the channel flow so that particles have populated all levels. Since in this case (with
Nl > 100) Np/N2

l �= 1, the asymptotic values of the degree statistics are not conserved; furthermore,
the degree (especially the outgoing) appears to be more inhomogeneous due to the uneven initial
distribution of particles. However, since in any case the degree of each node is normalized with its
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maximum attainable value, it is possible to compare the evolution of the degree standard deviation at
different Reynolds numbers in the cases with increased Nl . Figure 7(e) shows the ensemble-averaged
standard deviations of the outgoing (top panels) and ingoing (bottom panels) degree centralities.
In the left panels, the original configuration with Nl = 100 computed with the aforementioned
procedure is shown. These left panels demonstrate that, similarly to the network generated from
the regular grid of particles, curves at Reτ greater than 395 collapse, exhibiting Reynolds number
independence when scaled with outer units. Increasing the number of levels to Nl = 200 (right
panels) leads to the appearance of a slight separation between the degree standard deviation at
Reτ = 395 and those at higher Reynolds numbers, which in turn remain collapsed. We found that
increasing the number of levels even further (up to Nl = 500, not shown here), a similar structure
is retained, with the standard deviations at Reτ = 590 and 950 collapsed and that at Reτ = 395
slightly separated. The spatial resolution increase of the network introduces the effects of smaller
scales of motion, which are particularly important in the near-wall region and contribute to the
differentiation of the network evolution at lower Reynolds numbers. Still, we found that the scaling
at the two higher Reynolds numbers employed in this work is rather insensitive to the increase of the
number of spatial levels. Only the point at which the Reynolds independent behavior starts is slightly
modified by the increase of resolution. The sensitivity analysis shows that, even increasing the
spatial resolution of the discretization, the main features of dispersion are unchanged. The increase
of resolution allows the network representation to account for smaller scales of fluid motion. While
this effect is somewhat important at the lower Reynolds numbers, it is negligible at the higher Reτ

employed here, indicating that outer-flow structures are most important in determining the evolution
of dispersion.
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