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Wall-induced anisotropy effects on turbulent mixing in channel flow: A network-based analysis
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Turbulent mixing is studied in the Lagrangian framework with an approach based on the complex network
formalism. We consider the motion of passive, noninertial particles inside a turbulent channel simulated at
Reτ = 950. The time-dependent network is built to evaluate the transfer of tracers between thin wall-parallel
layers which partition the channel in the wall-normal direction. By doing so, we are able to assess the spatial
and temporal complexities arising from turbulence dynamics and their influence on the mixing process. This
approach highlights the effects of small-scale features of turbulent flow structures and also the larger scale effects
determined by wall-induced anisotropy. Complex networks, coupled to the Lagrangian description of turbulence,
are effective in providing novel insights into inhomogeneous turbulence and mixing.
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I. INTRODUCTION

Mixing processes permeate several physical phenomena
and engineering applications, such as the interaction of chem-
ical species transported in a fluid or the dispersion of pollutant
in the atmosphere [1,2]. Turbulence greatly enhances mixing;
when a contaminant is inserted into a high Reynolds number
flow, the stirring action of eddies thoroughly mixes the fluid
with the contaminant, until the average of the spatial con-
centration gradients has vanished. The Lagrangian formalism,
which relies on following the trajectories of fluid particles, is
particularly suitable to represent mixing problems. A diffus-
ing species can be modeled by Lagrangian fluid particles and
therefore treated as a tracer which is simply advected by the
flow under three main conditions. The species, or scalar, must
be passive, i.e., its motion and concentration do not exert feed-
back on the flow; its response time must be much smaller than
the smallest dynamically relevant timescale in the flow (its
Stokes number must be much smaller than one); finally, the
scalar’s own molecular diffusion must be negligible compared
to the turbulent diffusion, which is usually true in turbulent
flows [3,4].

Past research on tracer dynamics was devoted to investigate
single and multi-particle statistics, providing results on the
asymptotic behavior of tracers [5], their pairwise separation
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[6,7], the shape evolution of higher order particle sets [8,9]
and Lagrangian coherent structures [10,11].

A thorough description of mixing requires to fully retain
the spatial and temporal complexity of the turbulent flow. This
work aims to introduce tools, based on complex networks, to
complement and enhance the results from statistical analysis.
In particular, the effects of spatial inhomogeneities and the
initial transient phase of dispersion pose significant challenges
to a complete description of mixing [12].

To gain a deeper insight into mixing processes in inhomo-
geneous turbulence, we considered the motion of numerically
generated tracers in a direct numerical simulation of a chan-
nel flow at a frictional Reynolds number Reτ = 950. After
partitioning the channel in fixed layers along the wall-normal
direction, we analyzed the trajectories and kept track of the
partitions they visited. A similar approach, based on the dis-
cretization of the transfer operator, has been already applied
to dynamical systems and geophysical flows [13–15]. The
resulting representation of the mixing process is a complex
network. The rationale for doing so is twofold: first, the
network-based approach enables us to obtain a condensed yet
complete representation of the mixing process, without losing
spatial or temporal information; and second, we are able to
use established tools from graph theory, which are particularly
suitable to represent large sets of dynamical interacting units.
The network approach provides us with adequate measures to
identify the onset of the asymptotical dispersion regime while
also retaining the complexity of the transient stage. We also
exploit the transport network representation to measure the
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progress of the mixing process, paying particular attention to
the anisotropic behavior due to wall shear.

Complex networks have proven valid to study a diverse
range of natural phenomena [16]; classically, these methods
have been used to describe, for example, networks of social
interactions or transportation systems [17]. Recent approaches
have focused on fluid dynamics and, in particular, turbulence.
Applications have explored the Eulerian reference frame with
the analysis of time series, multipoint correlations, and vor-
tex dynamics [18–22]; other studies focused on Lagrangian
trajectories, building networks that take into account mutual
separation of particles [23–28].

The present work is divided into four sections. After this
introduction, Sec. II A describes the method employed to ob-
tain the trajectory data, with further details about the direct
numerical simulations given in the Appendix. Section II B
introduces the concept of network and defines some metrics,
with particular focus on directed and weighted networks. Sec-
tion II C reports the definition of the transport network which
is the subject of the present work and some of its basic charac-
teristics. Section III contains the application of the network to
the trajectories and results concerning the temporal evolution
of the network (Sec. III A), the number of connections and
their distribution in time and space (Sec. III B) and the appli-
cation of an algorithm to partition the channel (Sec. III C).
Finally, a discussion and concluding remarks are given in
Sec. IV.

II. CHANNEL SIMULATION AND NETWORK DEFINITION

A. Lagrangian data

In order to obtain a set of Lagrangian trajectories we ex-
ploited the direct numerical simulations (DNSs) performed
by Kuerten and Brouwers [29], which comprise the turbu-
lent channel flow simulation and the integration scheme for
trajectories. A fully developed and incompressible turbulent
flow was simulated by numerically solving the Navier-Stokes
equations inside a rectangular box of size 2πδ × 2δ × πδ,
where δ is half the channel height. The frictional Reynolds
number is Reτ = δuτ /ν = 950, where ν is the kinematic vis-
cosity and uτ = √

τw/ρ is the friction velocity, with τw being
the shear stress at the walls and ρ is the mass density of the
fluid. Reτ is kept fixed by prescribing the mean driving force
in the x direction.

After the flow variables achieved statistical convergence,
Np = 10000 passive tracers were seeded inside the channel
in a square grid at x+ = xν/uτ = 0 and their trajectories
were integrated through the total simulation time TDNS, whose
value in wall units is T +

DNS = TDNSu2
τ /ν = 15200 (throughout

the paper the + superscript indicates wall unit normal-
ization). Since these particles are assumed massless, their
Lagrangian velocity v(x0, t ) matches at any time t the ve-
locity of the underlying Eulerian field v(x, t ), i.e., v(x0, t ) =
v(x(x0, t ), t ), where x0 is the starting coordinate of each
tracer and x(x0, t ) is the subsequent trajectory. The veloc-
ity at the location of tracers was obtained interpolating the
Eulerian velocity field resulting from the simulation; the in-
tegration was performed using the same temporal scheme
as employed for the solution of the Navier-Stokes equa-

FIG. 1. (a) The channel is divided into levels, here identified
by the colored bands, and each level is represented by a node of
the network. Tracers are marked with their starting levels and are
released in a square grid at x+ = 0; as they move across the channel
they enter different levels, thus establishing connections from their
starting node to the present ones. (b) The network nodes represent
the discrete levels of the channel in the same order as reported in
panel (a), while links are determined by the exchange of tracers;
here links are depicted with thickness proportional to the link weight,
i.e., the number of exchanged tracers. As time proceeds, connections
between farther and farther levels are established.

tions. The tracers release pattern is a 100 × 100 square
grid, as exemplified in the left side of Fig. 1(a), equis-
paced in both the y and z directions; the spacing along y is
�y+ = 19 and the first layer is at a distance y+

0 = 9.5 from
the wall, while the spacing along z is �z+ = 29.85. The
wall normal release coordinate is then y+

0 = 9.5 + 19(i − 1),
where i is the starting layer. Also, we usually show the dis-
tance from the nearest wall—ranging from y+ = 0 at the walls
to y+ = 950 at the centerline—instead of the standard y+
coordinate; by doing so, we can refer to both near-wall regions
as low-y+ regions.

Additional details on the direct numerical simulation and
the interpolation scheme are given in the Appendix.

B. Networks: Definition and metrics

In this section, a brief introduction on networks and their
metrics is given, with a focus on directed and weighted
graphs; these tools will be used in the following to describe
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mixing in channel flow. A network G(V, E ) contains a set
V of N interacting objects (nodes or vertices) and a set E
of interactions (links or edges). In a weighted and directed
graph, each link {i, j} ∈ E connects an ordered pair of vertices
i and j and has an associated weight Wi j , which may represent
the strength of the interaction, the physical distance between
nodes or other features of the network [16]. Also, one may
want to consider links starting and ending in the same node,
so that {i, i} ∈ E ; these links are called loops and the resulting
graph is more properly defined as a multigraph [30]. The
whole set of links can be represented in a compact way by
means of the adjacency matrix A, an N × N matrix defined as

Ai j =
{

1 if {i, j} ∈ E
0 if {i, j} /∈ E . (1)

We note that in a directed network {i, j} ∈ E does not imply
{ j, i} ∈ E , since each connection contains directional infor-
mation. Similarly, a weight matrix W can be defined as a
matrix with elements Wi j equal to the weight of the link be-
tween vertices i and j (Wi j = 0 if {i, j} /∈ E). Because of the
directionality of links, neither A nor W are symmetrical for
a directed graph. The number of connections incident to each
node i is the degree ki of that node; for directed networks it is
useful to define both an ingoing degree kIN

i and an outgoing
degree kOUT

i , which are the number of links entering the ith
node or leaving it, respectively. Their calculation starting from
A is performed as follows:

kIN
i =

∑
j∈V

Aji kOUT
i =

∑
j∈V

Ai j . (2)

For weighted networks, it may also be useful to consider the
sum of incident (both ingoing and outgoing) weights; thus the
strength si of nodes can be defined:

sIN
i =

∑
j∈V

Wji sOUT
i =

∑
j∈V

Wi j . (3)

Both degree and strength are measures of node centrality,
which is the importance of a vertex in a graph. A different
metric for centrality is the betweenness Bi, which is defined as

Bi =
∑

s,t∈V s �=t

nst(i)
nst

, (4)

where nst is the total number of shortest paths between nodes
s and t and nst (i) is the number of those paths that pass
through node i. This metric measures the importance of a
node not by the number of its connections, but rather by its
influence on the flow of information between different nodes
[31]. Its definition can be extended to measure the number of
shortest paths running through an edge, thus defining the edge
betweenness Bi j for each link {i, j} ∈ E as

Bij =
∑

s,t∈V s �=t

nst(i, j)
nst

, (5)

where, similarly to Eq. (4), nst (i, j) is the number of shortest
paths from node s to node t that pass through link {i, j}.

When each node has a defined position in Cartesian space
(as is our case), a physical length di j can be associated to
each link, equal to the Euclidean distance between interacting

nodes. The product di jWi j of a link’s length and its weight
can be used to jointly represent the intensity and distance of a
connection and, e.g., highlight long distance connections that
carry significant information. To sum up weighted physical
length information incident to a single node, we define the
mean weighted link length Dw of the ith node as

DIN
w,i = 1

kIN
i

∑
j∈V

d jiWji, DOUT
w,i = 1

kOUT
i

∑
j∈V

di jWi j, (6)

which is the average of all weighted link lengths incident to a
node i, taken over ingoing and outgoing links separately.

Finally, a useful tool to detect communities inside a net-
work is the modularity Q, introduced by Newman and Girvan
[32], which is a measure of the strength of a given graph
partition. A community is a group of vertices which have a
large number of links between themselves and only a few
running outside the community. The value of the modularity
is the fraction of link weights that lie inside a community
minus the same number if they were disposed randomly. Its
definition for weighted and directed networks is [33–35]

Q = 1

m

∑
i, j

[
Wi j − sIN

i sOUT
j

m

]
δc(i),c( j), (7)

where m = ∑
i j Wi j is the sum of all link weights and δc(i),c( j)

is equal to one if vertices i and j are in the same community
and zero otherwise. The contribution qk of the kth community
to the overall modularity can be obtained by restricting the
summation in Eq. (7) to a single community; of course, the
sum of all contributions is the modularity Q = ∑

k qk .

C. Transport network definition

Aiming to quantify the nature of the fluid exchanges be-
tween different regions of the flow, we built a network starting
from the trajectory data, with a focus on processes arising
from the spatial inhomogeneity of the channel. We defined
Nl = 100 levels that partition the channel in the inhomoge-
neous y direction; each level has a constant height �y+ = 19.
By doing so, we address mixing phenomena induced by in-
homogeneities caused by the channel boundaries. The fluid in
the channel moves between different levels, which are repre-
sented by nodes in the network; we quantify this motion by
measuring the number of tracers released at t+ = 0 in level
i that at a given time τ+ are in level j [see Fig. 1(a)]. This
translates in a direct way into a time-dependent definition
of link for the network: two nodes i and j are connected at
time τ+ if a tracer, released in level i, is located in level j at
t+ = τ+ [see Fig. 1(b)]. As can be seen in the figure, when
particles are released (t+ = 0) the network is trivial, contain-
ing only self-loops; as time grows, tracers move farther and
farther away from their starting level and new, longer range
connections are activated. Moreover, we set the weight of this
link to be proportional to the number of exchanged tracers.
The resulting network is weighted and directed, since it retains
a directional information on the motion of tracers. It is also
spatially embedded—as nodes have a physical location inside
the channel which is identified by their y+ coordinate—and
time-dependent, because the existence and weight of the links
depend on the delay τ+ between particle release and the time
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at which the network is defined. Since we do consider loops
in the network definition, i.e., links corresponding to tracers
which do not change level over time, the transport network is
a multigraph; the metrics defined in Sec. II B can be applied
unchanged including these loops.

The entire set of links can be formally represented as a
weight matrix W, which is built starting from the link defi-
nition as

Wi j (τ
+) = Ni→ j (τ+)

Ni(t+ = 0)
, (8)

where Ni→ j (τ+) is the number of tracers, originally located
in level i, which are in level j at time t+ = τ+; Ni(t+ = 0)
is the number of tracers present in level i at the start of the
simulation, which is equal to 100 for all levels. The weight
matrix is time-dependent and asymmetric (Wi j �= Wji) because
of the network directionality; for this reason we are able to
define ingoing and outgoing metrics, accounting for the mo-
tion of tracers into and out of levels. The rows of W always
add up to 1; from a probabilistic point of view, each of its
elements Wi j (τ+) can be interpreted as the probability that
a tracer, starting from level i, is located in level j at time
τ+. The summation of the columns of W(τ+) is equal to the
number of tracers present in each level at time τ+ divided
by Ni(t+ = 0) = 100. Some network metrics, in particular the
degree centrality, require also the use of the adjacency matrix
A, which we define for the transport network as

Ai j (τ
+) =

{
1 if Wi j (τ+) �= 0
0 if Wi j (τ+) = 0. (9)

The transport network allows us to fully describe the verti-
cal mixing in a discrete approach. Moreover, although a single
transport network W(τ+) accounts only for the start and end
position of each tracer after a delay τ+, analyzing the network
evolution for a wide interval of times provides a complete pic-
ture of the temporal evolution of mixing. On the other hand,
diffusion in the homogeneous directions was neglected, as
was motion with a typical scale smaller than the node height,
namely, �y+ = 19. As an example, the two levels nearest to
the top and bottom walls comprise both the viscous and buffer
sublayers, making it impossible to distinguish between the
two using this approach.

III. RESULTS

We now discuss the results obtained by applying the trans-
port network to the set of trajectories. The following analyses
were carried out by transforming the particle dynamics into
its matrix representation via the complex network formalism.
This step simplifies the investigation of particle motion, while
retaining most of its features in the y+ direction.

A. Transport matrix evolution

At the beginning of the mixing process only levels close
in space are connected since tracers are mainly affected by
streamwise advection [26]. As time increases, tracers drift
away from their starting position driven by the diffusive action
of turbulence and new, longer range links are formed. In the
end, tracers lose memory of their starting level and become
thoroughly mixed across the channel. The evolution of the

network weight matrix W(τ+) provides a complete descrip-
tion of the vertical mixing phenomena occurring at any given
time, as shown in Fig. 2. Figure 2(a) shows the time T +

0 at
which each link is activated for the first time; the value of T +

0
for each link {i, j} is depicted in the corresponding matrix
entry i, j. The starting level is labeled with its y+ coordinate,
while the ending one is labeled with the level number; the two
ways of labeling are interchangeable. Also, since the distance
of the level from the closest wall was reported instead of the
y+ coordinate, the y+ values range in the interval [0, δ+]. As
can be seen, the activation time depends both on the levels
mutual distance (farther levels are connected at a later time)
and, more notably, on the spatial position of the involved
nodes. Indeed, links starting from a node located near one
of the two walls tend to form later in time, as indicated by
the higher values in the top right and bottom left portions
of Fig. 2(a). This highlights the fact that tracers released in
those regions diffuse towards other parts of the channel more
slowly than tracers from other levels to levels with a similar
mutual distance. Besides, the opposite is not true, i.e., particles
starting in any other zone of the channel do not experience any
significant delay in reaching the near-wall region.

Figure 2(b) shows the network weight matrix and the cor-
responding spatial distribution of particles for different times.
For τ+ = 100 [Fig. 2(b), first row], no significant mixing
has taken place yet, so that only short-range links are ac-
tive. Tracers are distributed in a bowlike shape determined
by the mean velocity profile; by this time, particles mov-
ing with the bulk velocity Vb have traveled a downstream
distance �x+ = Vbτ

+ = 1985 ≈ 2δ. At τ+ = 500 [Fig. 2(b),
second row], mixing is becoming effective, especially near
the centerline of the channel, which in turns leads to the
activation of new links; the mean downstream distance of
particles is now �x+ = 9930 ≈ 10.5δ. By τ+ = 3990, tracers
appear dispersed in a cloudlike shape determined by diffusion
[Fig. 2(b), third row]; not all links have been activated for
the first time (as can be noted in Fig. 2(a), all connections
will be established for the first time after τ+ ≈ 6000). The
network weight matrix at this time still has larger values
near the main diagonal, representing an ongoing influence
of the mutual distance between levels in link generation.
Tracers have traveled so far an average downstream dis-
tance �x+ = 7.9 × 104 ≈ 83.4δ. At the end of the simulation
(τ+ = 15200) all particles are completely mixed and con-
nections are randomly distributed between levels. Tracers
moving with the bulk velocity have traveled a downstream
distance �x+ = 3.02 × 105 ≈ 318δ.

For very large times, when no memory of the initial tracer
distribution is retained and mixing is complete, tracers are
uniformly distributed, independently of the starting level. Ne-
glecting the constant normalization factor Ni in Eq. (8) enables
us to consider integer weights, which have unitary mean given
by the ratio between the number of tracers (Np = 10000)
and the number of possible links including self-loops (N2

l =
10000). Since these non-normalized weights are independent
and randomly distributed, they follow a Poisson distribution;
the related probability distribution is

f (Wi j ; λ) = λWi j e−λ

Wi j!
, (10)
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FIG. 2. Evolution of the transport matrix. (a) The time T +
0 at which each link is activated for the first time. (b) The evolution of the network

weight matrix and the corresponding distribution of tracers in the channel with their starting location color-coded; in the weight matrices, the
start level is labeled with its distance from the nearest wall, while the end level is indicated by the node number. (c) The weight distribution at
τ+ = 15200 and the Poisson distribution corresponding to a mean value of 1.

where λ = 1 is the mean value. The weight distribution was
tested by the Kolmogorov-Smirnov test which confirmed that
the data is Poisson distributed at the end of the simulation
(with a significance level α = 0.05). The empirical weight
distribution at τ+ = 15200 and the corresponding Poisson
distribution for λ = 1 are shown in Fig. 2(c).

As stated in Sec. II C, each row i of the network weight ma-
trix W(τ+) describes the probability that a tracer starting from
level i is located in any other region of the channel after a time
τ+. The shape of this distribution is heavily influenced by the
release coordinate, y+

0 , of tracers, as can be seen in Figs. 3(a)
and 3(b) for two exemplary cases corresponding to y+

0 = 28.5
and y+

0 = 940.5. The particle position distribution is signifi-
cantly skewed by the presence of the wall for y+

0 = 28.5, while
it is almost symmetric for y+

0 = 940.5; in the limit of very
large times, all distributions become uniform on the [0, 2δ]
interval. The time evolution of the shape of this distribution
provides information about the celerity at which tracers reach
different regions. In particular, the standard deviation of the
particle position measures the dispersion of particles; as can
be seen in Fig. 3(c), the standard deviation for a centerline
level reaches its asymptotic value earlier in time than that of
a near-wall level. After normalizing the y+ coordinate with
the channel height 2δ+, we found that the asymptotic value

for all standard deviations was nearly equal to
√

1/12; this is
the expected value for an uniform distribution on the [0, 1]
interval. The mean value of the distribution for each level
(not shown here) trivially starts at the y+

0 /(2δ) normalized
coordinate of that level and migrates to the centerline, i.e.,
1/2, although the probability distributions related to levels
near the walls reach the asymptote later in time.

In order to further characterize the evolution of the previ-
ously defined distributions and to describe their evolution with
a reduced set of parameters, we chose to fit these distributions
with a beta distribution, which has already been proposed as
a model for diffusion problems [36]. The beta distribution has
a probability density function over the normalized channel
height defined as

f

(
y+

2δ
; α, β

)
=

( y+
2δ

)α−1(
1 − y+

2δ

)β−1

B(α, β )
, (11)

where α and β are two shape parameters and B(α, β ) is
the beta function. This distribution accounts both for sym-
metrical (α = β) and skewed (α �= β) distributions, as is the
case for diffusion in the channel. Values of α and β, com-
puted with a maximum likelihood estimate for the already
considered levels are reported in Fig. 3(d); the fitted beta

043109-5



PERRONE, KUERTEN, RIDOLFI, AND SCARSOGLIO PHYSICAL REVIEW E 102, 043109 (2020)

FIG. 3. Probability density function of tracer distribution after different time lags (solid lines), together with the fitted beta distribution
(dashed lines): (a) tracers starting from y+

0 = 28.5 and (b) tracers starting from y+
0 = 940.5. Both distributions are plotted as a function of the

normalized channel height y+/2δ. (c) Standard deviation of the tracer distribution, both as measured (solid lines) and as obtained from the
fitted beta distribution (dotted lines); (d) α and β parameters of the Beta distribution for two different levels.

distribution is shown superimposed on the empirical dis-
tributions in Figs. 3(a) and 3(b). We also verified the
correspondence between the empirical distribution and the
fitted one with a Kolmogorov-Smirnov test, which confirmed
that the network weights follow a beta distribution for τ+ �
250 (with a significance level α = 0.05).

As expected, α ≈ β for y+
0 = 940.5, while α �= β for y+

0 =
28.5; moreover, the α and β parameters appear to follow a
power-law behavior with respect to time. Values for the first
statistical moments can be calculated from α and β; Fig. 3(c)
shows the measured standard deviation of particle position
(solid lines) alongside the theoretical one (dotted lines),
which is

σB =
√

αβ

(α + β )2(α + β + 1)
, (12)

indicating good agreement between the two empirical and
fitted distributions.

B. Network metrics analysis

1. Strength and degree

This section is devoted to the analysis of two centrality
measures, the strength and the degree, defined in Sec. II B. In
particular, we will briefly describe the behavior of the strength
of nodes, which is closely related to the concentration of trac-
ers in each level. We will analyze in greater detail the degree
centrality, which measures the activation of links neglecting
their weight; we found that the degree is able to provide a
simplified description of the spatial extent of mixing. We seek
to highlight differences between nodes located at different y+
coordinates and to evaluate the spatial inhomogeneities in the
mixing process through the network formalism.

The strength of nodes, being the sum of incident (ingoing
or outgoing) link weights, is closely related to the values of
the transport matrix Wi j . In more detail, the ingoing strength
sIN

i (τ+) is the sum of weights of links entering node i at
time τ , which corresponds to the number of tracers present
inside level i at that time. Evaluating sIN

i (τ+) enables us to
monitor the concentration of tracers across the channel. On
the other hand, the outgoing strength sOUT

i (τ+) is the sum-
mation of the rows of Wi j ; since self-loops are included in
the transport matrix, sOUT

i (τ+) is always equal to one. If we
neglect self-loops and thus ignore tracers that do not change
levels, the (modified) outgoing degree measures the number of
tracers that are not present in their start level at time τ+; since
tracers tend to leave their original level and disperse across the
channel, sOUT

i (τ+) reaches a nearly unitary asymptote for all
nodes in a very short time.

The degree centrality of the transport network is, instead,
the number of levels with which a node has established a
connection by exchanging tracers. Levels with a higher degree
are more active in the overall mixing process: high kIN

i (τ+)
values indicate that level i has received tracers from a large
number of levels, while a high outgoing degree kOUT

i (τ+)
shows how tracers starting from level i have entered a lot
of levels. In the following, the degree of each node has been
normalized with its maximum attainable value, which is 100,
corresponding to a level which is exchanging particles with all
other levels including itself.

Figure 4(a) shows the mean degree 〈k〉 for τ+ ∈
[0, 10000], a time after which no variations are observed (the
mean 〈·〉 is calculated over the degree of all levels); it should
be noted that 〈kIN〉 = 〈kOUT〉 by the definition of degree in
Eq. (2). The asymptotic value of 〈k〉 is approximately 0.63;
recalling that the non-normalized network weights are Poisson
distributed for large times, we can calculate the probability
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(c)

(d)

(a)

(b)

FIG. 4. (a) Mean degree 〈k〉; (b) standard deviation of the ingoing and outgoing degree. (c) Ingoing degree, kIN, and (d) outgoing degree,
kOUT, shown for all levels and τ+ ∈ [0, 10000].

that a weight is zero by substituting in Eq. (10) Wi j = 0 and
λ = 1, obtaining P(Wi j = 0) = f (0; 1) = 1/e ≈ 0.37; since
if a weight is zero there is no link between two nodes, the
expected mean degree at a large time τ+ is equal to the
fraction of nonzero weights in the network, namely, 〈k〉 =
1 − 1/e ≈ 0.63, which is also the measured value. While this
value is strictly dependent on the ratio between the number of
tracers and the number of possible links, the overall behavior
of the degree centrality is invariant to changes in the number
of particles.

The standard deviation of the ingoing and outgoing degree
is shown in Fig. 4(b). The standard deviation of the ingoing
degree reaches a maximum at about τ+ = 500, while the
standard deviation of kOUT reaches its maximum shortly after;
both degrees subsequently decrease and reach an asymptote.
The standard deviation of the outgoing degree reaches its
asymptotic value at τ+ ≈ 6000, while the ingoing degree
reaches its asymptote (which has a larger value) in a shorter
time (τ+ ≈ 2000). The sharp increase in standard deviation
experienced during the transient phase indicates an inhomoge-
neous increase of the degree across the channel and, therefore,
the presence of levels that form a smaller or higher number of
connections than others.

Again, the asymptotic values of the standard deviation of
the degree can be obtained using the Poisson weight model by
generating a random transport matrix with Poisson distributed
weights and the sum of each row fixed and equal to Ni = 100.
We obtained a standard deviation for the ingoing degree equal
to 0.044 (the measured value was 0.047); for the outgoing de-
gree, the standard deviation was 0.032 for the random model
and 0.031 for the measured one.

To further characterize the spatial inhomogeneities during
the early stage of particle dispersion, we show the ingoing and
outgoing degree through time and decomposed by levels, in
Figs. 4(c) and 4(d). During the very early phase the ingoing
degree rises more intensely near the centerline, indicating that
these levels tend to form a large number of ingoing connec-
tions and are thus receiving tracers from a variety of different
and, possibly, distant levels. In particular, the ingoing degree
grows faster than its surroundings at a distance from the walls
y+ ≈ 475; the spikes in the degree kIN(τ+) appear at a time for
which its standard deviation is maximal. Also, the outgoing

degree presents a sharp difference between the two near-wall
zones and the core region, which are again demarcated at
y+ ≈ 475. This behavior hints at the presence of a neat separa-
tion of mixing properties inside the channel; near-wall regions
form a somewhat secluded zone, which transfers a reduced
amount of tracers to the external flow. These inhomogeneities
are more evident for τ+ values between 1000 and 2000, which
corresponds to the time at which the maximum of the standard
deviation of the outgoing degree occurs.

It is also notable that tracers do not experience the same
difficulty while entering the near-wall regions, as the ingoing
degree shows; this hints that tracers released at a low y+

0 co-
ordinate become trapped near their starting location for a long
time. The presence of a stable, long-lasting inhomogeneity of
the degree is the reason why the asymptote of the standard
deviation of kOUT is reached later in time. We provide further
evidence of this trapping of tracers with additional analyses
based on the network features.

2. Link length and link duration

Since the time-dependent transport network is embedded
in physical space, useful information can be extracted by
evaluating the mean weighted link length D+

w,i introduced in
Eq. (6), which in our case represents the spatial distance be-
tween interacting levels weighted by the number of exchanged
tracers, averaged for each node. The link length is a physical
measure of the magnitude of the displacement of particles
from their starting location; unlike topological measures, such
as the characteristic network length, it is not related to paths.
We use this metric for two main reasons: first, to obtain a
condensed measure of both the mutual spatial distance of
interacting levels and of the weight of the interaction. Second,
we hypothesize that, while the majority of tracer exchanges
happens locally, some infrequent events are present, in which
a large number of particles moves between spatially distant
levels. The use of D+

w,i is suitable to highlight this kind of
extreme behavior.

Figure 5(a) shows the outgoing and weighted link length
D+,OUT

w,i of all the levels inside the channel for a wide range
of times. We normalized the value of the link length of each
level with a factor D0 dependent on the y+ value of that level
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FIG. 5. (a) Weighted link length D+,OUT
w,i /D0, averaged for each node and corresponding to outgoing links; (b) mean temporal duration of

each link 〈T +
l 〉 (the highest values are found for end levels 1 and 100); (c) Trend line of the mean centripetal acceleration versus link duration.

and equal to

D0(y+) = 1

2δ

∫ 2δ

0
|s − y+| ds = δ − y+ + (y+)2

2δ
. (13)

We do so to divide the value of D+,OUT
w,i by the average

physical distance between level i and the rest of the chan-
nel; this enables us to account for the fact that near-wall
levels have higher D+,OUT

w,i due to their position (since they
are able to form longer distance links). Figure 5(a) shows
that D+,OUT

w,i /D0 rises faster in the core region and exhibits
a similar distinction between the near-wall and the external
region as found in the outgoing degree [Fig. 4(c)]. Again,
the central region is found to be more active in the mixing
process; only for very large times τ+ does the weighted link
length of near-wall levels rise significantly. As time grows, it
can be noted that some nodes have a larger D+,OUT

w,i /D0 than
their closest neighbors and that this behavior is quite persistent
in time; this determines the presence of streaks in Fig. 5(a),
especially for large times. Some of these streaks appear to last
for times of the order of 1000ν/u2

τ . We hypothesize that this
behavior is related to the occurrence of connections between
distant levels which have a long duration, and are caused by
tracers that spend a long time trapped away from their starting
level.

It is reasonable to assume that persistent and spatially
confined turbulent structures could cause tracers to remain
trapped in small regions, generating links that have such long
durations. Each link has a temporal duration T +

l , equal to the
total time for which it is active at consecutive time instants;
this corresponds to the time during which a tracer stays in
the same level without leaving it. Figure 5(b) shows the mean
duration of links 〈T +

l 〉 for each pair i, j of nodes, calculated
through the entire evolution of the trajectories. The mean 〈·〉
here is calculated over the duration of links between the same
pair of nodes. Values of 〈T +

l 〉 vary greatly with respect to
the end level, while they are almost constant for different
start levels; higher values of 〈T +

l 〉 are found for end levels
near the centerline and, especially, for the two levels closest
to the walls, i.e., levels 1 and 100. The mean link duration
is more than an order of magnitude larger for links ending
in the wall-adjacent levels than for other connections. This
indicates that tracers which enter the levels nearest to the
wall are likely to be trapped and stay in that levels for a

longer amount of time than those which enter other levels;
this happens independently of their starting level.

The low y+ regions in a channel are usually home to a
number of coherent structures, such as hairpin and horseshoe
vortices. These structures are known to induce helical motion
and therefore trap tracers in small-radius vortices [4], as is
exemplified by the particle motion analyzed here. A typical
measure for helical motion in turbulent flows is the centripetal
acceleration experienced by particles [37]. We calculated the
acceleration a of tracers using a second-order finite difference
and computed the modulus of the acceleration centripetal
component as

ac = |a × v̂|, (14)

where v̂ = v/|v| is unit vector pointing in the direction of
the velocity. While a link Wi j (τ ) is active, the tracers gen-
erating that link experience a centripetal acceleration which
varies with time. We averaged the centripetal acceleration of
particles for the entire duration of a link, obtaining the mean
centripetal acceleration a+

c of each link; we also calculated
the duration T +

l of these links. To highlight the correlation
between the centripetal acceleration and the duration of links,
we show in Fig. 5(c) a trend line of a+

c versus T +
l , computed

binning the T +
l values in equal intervals and averaging the

corresponding a+
c values.

Three distinct behaviors can be identified: for relatively
brief link durations (T +

l ≈ 250) the mean centripetal acceler-
ation is low, indicating that spiraling motion is not particularly
important in this kind of connections. On the other hand,
tracers participating in both very brief (T +

l � 150) and very
long-lasting (T +

l � 500) links have significantly higher mean
centripetal acceleration. In very brief links, tracers may possi-
bly experience short bursts of acceleration which move them
outside their current level and quickly end the connection. On
the other hand, very long-lasting links are generated by tracers
which stay in the same, confined, region in space and go
through strong spiraling motion. The majority of links (about
99% of the total number of links) is very brief; very long-
lasting links, instead, are extreme events which occur far less
often (736 out of approximately 5 × 106 links) than all other
connections. The transport network highlights the relation-
ship between the intense helical motion of tracers retained in
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spatially confined structures, the temporal persistence of these
structures [Fig. 5(c)] and their vicinity to the walls [Fig. 5(b)].

C. Communities

The degree centrality and the weighted link length indi-
cate the presence of separate regions inside the channel, with
different mixing properties. In order to better identify this
inhomogeneity, we perform a community detection in the net-
work. Unlike other approaches based on Lagrangian particle
tracking [23], we do not search for sets of tracers which move
coherently across the channel, but rather partition the turbu-
lent channel into regions which exchange a reduced number
of tracers between themselves. To do so, we use the algorithm
introduced by Girvan and Newman [31], which we will briefly
describe here. The main idea is to calculate the betweenness
of all network links; those with a higher betweenness are
bottlenecks in communication between different regions of
the network. In our case, high betweenness links play an
important role in transferring tracers between separate zones
of the channel. Since our network has integer weights up
to a constant and the weights indicate the importance of a
connection (in opposition to its cost, as is the case with many
other networks), we can employ the extension introduced by
Newman [33]. Starting from a single-time transport network
W (τ+), we proceed as follows: we calculate the betweenness
Bi j of each link and divide it by its weight; then we remove
the link with the highest Bi j/Wi j value from the network.
To analytically partition the network, we employ Tarjan’s
algorithm [38] to find strongly connected components—i.e.,
components of the graph in which there is a bidirectional
path between all node pairs—and we calculate the modular-
ity Q of the complete network when partitioned with these
components. This step is repeated until no link remains in
the network; the partition which maximizes the modularity
is chosen as the most suitable division of the network into
communities [39].

This algorithm, applied to networks built at different times
τ+, identifies two long-lasting communities located near each
of the channel walls; also, some smaller communities are
found near the centerline, which rapidly break up and dis-
appear. Figure 6(a) shows the modularity of the network
over time, decomposed into the contribution given by the
two near-wall regions and all the other communities. As can
be seen, the majority of the modularity contribution comes
from the two near-wall communities until τ+ ≈ 4000, when
these partitions dissolve and no modular structure can be
identified anymore. At a similar time, the outgoing degree
[Fig. 4(d)] starts to become more homogeneous across the
channel height; it is the end of the transient phase of the
mixing process. The spatial distribution of the communities
during different phases of the flow is shown in Fig. 6(b).
While the central communities are possibly related to the local
nature of particle movement during the very first phase of the
mixing process [as in Fig. 2(b), first and second rows], the
top and bottom communities are coherent in time and space
and indicate the presence of two secluded regions, that is
regions at y+ coordinates lower than about 475 = δ+/2, which
exchange a reduced number of particles with the centerline
zone. The communities located in the core region are initially

FIG. 6. (a) The modularity of the network is shown for different
times and decomposed into the contributions given by the near-wall
(top and bottom) and all the central communities together. (b) Parti-
tioning for three different times is shown: for very short times, two
near-wall regions are present, while in the channel core there is a
large number of small communities, which we all indistinctly show in
gray; for intermediate times, only the near-wall communities remain
(the core region presents no community structure and is shown in
white); in the end, all communities break up and no modular structure
can be identified (only small communities are present, shown in gray;
still, their contribution to the modularity is negligible).

small [we show all of them indistinctly in gray in Fig. 6(b)]
and quickly dissolve.

In the end, the mixing process leads to the dissolution of
all communities; yet, shortly after their release tracers located
near the walls are less likely to move towards the rest of the
channel. Finally, we compared this method to other partition-
ing methods employed in analogous cases [15], finding that it
yields similar results.

IV. CONCLUSIONS

We analyzed turbulent mixing in a wall-bounded flow from
the Lagrangian perspective of advected fluid tracers using
a network-based approach. While conceptually simple and
easily implementable, treating the dispersion of particles as
a set of interactions between discrete zones of a fluid domain
highlights the richness of detail of the mixing process. Simple
network metrics, such as the degree centrality, are able to
measure the extent of mixing at different times and in different
locations of a channel flow. In particular, during the transient
phase, not all tracers mix together evenly; those released near
one of the two channel walls move more slowly towards the
center of the channel.
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We introduced a metric, the mean weighted link length Dw,
which is capable of highlighting extreme events experienced
by tracers trapped in small regions. The spatial and temporal
features of network links are closely related to the charac-
teristics of Lagrangian trajectories; we have shown that long
duration links are mostly located very close to the channel
walls and are generated by tracers experiencing strong helical
motion. Links involving trapped particles last up to an order of
magnitude longer than other connections, while the associated
centripetal acceleration is up to three times stronger.

The application of established partitioning techniques en-
abled us to further refine the intuition originating from the
degree analysis, i.e., during the first phase of the flow evo-
lution mixing does not involve the channel in its entirety. The
partitioning offered by the betweenness approach compares
well with the other transport network features and offers an
immediate quantification of the spatial extent of mixing. Still,
the features of this approach should be further assessed, espe-
cially by a comparison with other measures of mixing.

Using the network approach, we were able to assess the
main features of the mixing process: we determined the exis-
tence and temporal duration of a transient phase in which the
initial location of the tracers is still relevant and the role of the
channel walls in forcing the dispersion of particle locations
to confined regions of the domain. As noted in Sec. III A,
the variance of the distribution of particles released near the
walls reaches its asymptote (corresponding to a uniform dis-
tribution of tracers) later in time than that of particles starting
away from the solid boundaries. In Sec. III B we have shown
that during the initial transient the outgoing degree, which
corresponds to the number of different locations reached by
the particles, is about 30% lower in the near-wall region.
Moreover, the demarcation between the near-wall zones and
the channel core is sharp and located consistently at y+ = δ/2
until the end of the transient period, which extends until τ+ ≈
4000. The division of the network into communities showed
the presence of two main clusters of nodes, located adjacent
to each wall, which give the main contribution to the modu-
larity Q of the network. The modularity reduces significantly
after τ+ = 4000, as the transient ends and mixing becomes
effective in transferring scalars across the entire channel.

While we did not investigate directly the effects of the
Reynolds number, by choosing to perform our analysis at
Reτ = 950 we achieved a sufficient separation of scales and a
sufficiently quick mixing to hypothesize a similar behavior of
the transport network at higher Reynolds numbers. The trans-
port network was applied to a simple geometry, but it can also
be used to describe different and more complex flow cases, if
an adequate domain partition is chosen in order to define net-
work nodes. Also, since we were mainly interested in vertical
mixing, we restricted the analysis to a one-dimensional node
layout, but this could be changed to investigate the motion of
particles in more than one direction. This could be of use in
investigating the efficiency of mixing in complex geometries
or the tendency of inertial particles to cluster.

The network representation of fluid trajectories provides a
bridge between the analysis of the behavior of single particle
motion and the study of the overall mixing process. This is a

result of the capabilities of complex networks, which are able
to sum up the separate behaviors of a vast number of different
agents (in our case, the particles moving in a turbulent flow)
and bring out the emerging collective features in great detail
(for us, the mixing phenomenon as a whole).
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APPENDIX: DIRECT NUMERICAL SIMULATION

The Navier-Stokes equations for incompressible flow are
solved in their rotation form

∇ · v = 0, (A1)

∂v
∂t

+ 1

ρ
∇P = f − ω × v + ν∇2v, (A2)

where ρ, v, and ν are the mass density, the velocity vector, and
the kinematic viscosity, respectively, P is the total pressure,
and ω is the vorticity. Equations (A1) and (A2) are made
nondimensional using the mass density, the friction velocity
uτ , and the half channel height δ. The frictional Reynolds
number Reτ = 950 is kept fixed by prescribing the mean
driving force per unit mass f . The bulk velocity is not fixed
and its mean value is V +

b = Vb/uτ = 19.8, therefore the bulk
Reynolds number is about 18900. Equations (A1) and (A2)
were solved in a rectangular box of size 2πδ × 2δ × πδ,
with periodic boundary conditions in the two homogeneous
directions (x and z); on the walls the no-slip condition v =
0 was imposed. A pseudospectral method was used, with
a Fourier-Galerkin approach in the homogeneous directions
and a Chebyshev-τ method in the wall-normal. Nonlinear
terms were calculated in physical space through fast Fourier
transform and with the application of the 3/2 rule; they were
explicitly integrated in time with the second order Runge-
Kutta method, while linear terms were advanced in time
through an implicit Crank-Nicolson scheme. The time step
used in the simulation is �t+

DNS = 0.095.
To integrate the Lagrangian trajectories of the seeded trac-

ers the same explicit second order Runge-Kutta method as
employed in the DNS was used. The velocity v(x(x0, t ), t ) at
the tracer location was calculated with trilinear interpolation
using the velocity field after the Fourier transform to phys-
ical space, so that the number of points in the two periodic
directions is increased by a factor of 3/2. Although higher
order schemes could have been employed to achieve better
precision in the determination of single trajectories, the accu-
racy of statistical particle results is unaffected [29,40,41]. The
trajectories of seeded tracers are followed through the total
simulation time T + = 15200 and their position is recorded
with a time step �t+ = 0.475, resulting in Nt = 32000 snap-
shots of the particle positions.
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