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A B S T R A C T

Water availability is a major environmental driver affecting riparian and wetland vegetation. The

interaction between water table fluctuations and vegetation in a stochastic environment contributes to

the complexity of the dynamics of these ecosystems. We investigate the possible emergence of spatial

patterns induced by spatio-temporal stochastic resonance in a simple model of groundwater-dependent

ecosystems. These spatio-temporal dynamics are driven by the combined effect of three components: (i)

an additive white Gaussian noise, accounting for external random disturbances such as fires or

fluctuations in rain water availability, (ii) a weak periodic modulation in time, describing hydrological

drivers such as seasonal fluctuations of water table depth, and (iii) a spatial coupling term, which takes

into account the ability of vegetation to spread and colonize other parts of the landscape. A suitable

cooperation between these three terms is able to give rise to ordered structures which show spatial and

temporal coherence, and are statistically steady in time.

� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Random fluctuations can play an important role in determining
the composition and structure of ecosystems (Borgogno et al.,
2009; Holling, 1973). Fire occurrences (D’Odorico et al., 2007),
fluctuations in rain water availability (Noy-Meir, 1973; Laio et al.,
2001; D’Odorico and Porporato, 2006), soil heterogeneity (Puig-
defabregas et al., 1999), and temperature oscillations (Polyak et al.,
1996), are some of the examples of fluctuating environmental
drivers. Evaluating ecosystem response to environmental fluctua-
tions is crucial, among other things, to the management and
restoration of plant communities (Wright et al., 2002; Ridolfi and
Laio, 2006), the understanding of their ability to sustain
biodiversity (Naiman and Decamps, 1997; Mitsch and Gosselink,
2000; D’Odorico et al., 2008), and to predict causes of possible
shifts in vegetation composition (Ridolfi et al., 2007; Chambers and
Linnerooth, 2001; Wright et al., 2002).

The effects of noise on dynamical systems have been studied in a
number of stochastic models proposed in recent years (Sagues et al.,
2007; Garcı́a-Ojalvo and Sancho, 1999). Noise is typically associated
with a ‘‘destroying effect’’, as a driver of disorganized fluctuations
around the stable states of the underlying deterministic dynamics.
However, a number of studies have demonstrated the existence of a
‘‘constructive effect’’ of noise: ordered spatial structures (i.e.
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patterns) can emerge in some spatio-temporal dynamical systems
as a result of noisy fluctuations (see, for example, Ridolfi et al., 2011;
Scarsoglio et al., 2011; van den Broeck et al., 1997; Parrondo et al.,
1996; Sieber et al., 2007). An increase in noise intensity can produce
in these systems a counterintuitive, more regular and organized,
behaviour both in time and in space.

For example, the cooperation of a random external driver with an
external periodic forcing is able to induce ordered transitions
between different states of a dynamical system. Known as stochastic
resonance (see, among others, Gammaitoni et al., 1998; Lindner
et al., 1995; Vilar and Rubi, 1997), this phenomenon may occur when
a bistable system is disturbed by an external random forcing in the
presence of a weak periodic fluctuation in time. Bistable system
exhibits a bistable potential with two minima separated by a
potential barrier. The periodic forcing causes fluctuations in the
height of the potential barrier, without ever causing a transition
between the two states. It is the external random forcing – if strong
enough – that is able to drive the system from a stable state to the
other; these transitions are more likely to occur when the height of
the potential barrier is lowest, which depends on the phase of the
periodic fluctuations. A suitable synchronization between the
frequency of the random transitions (which is related to the noise
intensity) and the frequency of the periodic forcing induces a
resonance-like effect that generates regular transitions between the
two stable states (Wellens et al., 2004; Perc, 2008).

Even though a number of studies have recognized the bistable
character of some ecosystems (Rietkerk et al., 1997; Brovkin et al.,
1998; Zeng et al., 2004; Ridolfi and Laio, 2006) and the ability of
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random fluctuations to induce new dynamical behaviours that do
not exist in the underlying deterministic dynamics (Borgogno
et al., 2007; D’Odorico and Laio, 2005), applications of stochastic
resonance theories to eco-hydrology have started to appear only
recently (see, for instance, Borgogno et al., 2011; Spagnolo et al.,
2004; Rao et al., 2009; Sun et al., 2010).

In this paper we study the basic mechanisms for the occurrence
of spatio-temporal stochastic resonance in a simple model
describing the dynamics of riparian or wetland vegetation
dynamics. The temporal deterministic dynamics of the model
have been proposed by Ridolfi and Laio (2006) to investigate the
emergence of bistability from the interactions between phreato-
phyte vegetation and shallow phreatic aquifers in wetland
ecosystems. The combined effect of external noise and periodic
oscillations on these bistable dynamics has been shown to be able
to induce stochastic resonance in the time domain (Borgogno et al.,
2011).

We investigate the possible emergence of spatio-temporal
stochastic resonance when a diffusive spatial coupling term is
introduced in the presence of random and periodic forcings. The
addition of a spatial diffusive mechanism accounts for the
vegetation ability to encroach across the landscape. The other
assumptions are physically based, due to the presence of
environmental disturbances (e.g. occurrence of fires and rainfall
fluctuations) acting on the system, and a number of periodic
hydrological drivers (e.g. seasonal oscillations of the water table).
In particular, a significant connection exists between water table
fluctuations and vegetation dynamics. The water level variation
appears to be an independent and important vegetation gradient,
as the responses of species to the range of water level fluctuations
seem to reflect their tolerance to disturbances (Laitinen et al.,
2008). Changes in species composition and distribution, as well as
in vegetation structure, have been related to various factors,
mainly the vegetation topographical position with respect to the
water table, frequency and duration of inundation (Moreno-
Casasola and Vazquez, 1999). It has been observed that, under the
periodic declining groundwater availability, vegetation patches
tend to show a regular spatial behaviour (Kong et al., 2009).
Moreover, in dune systems, the occurrence of regular patterns of
heath patches has been associated, among other things, to the
different groundwater discharge (Munoz-Reinoso et al., 2005).

The relevant question here is whether the phenomenon of
stochastic resonance – resulting from the combined effect of noise
and a weak temporal oscillation – can interact with a spatial
diffusive term to generate vegetation ordered spatial structures.

2. Modeling framework

We consider the dynamics of plant biomass, V, and its interplay
with the phreatic aquifer (Ridolfi and Laio, 2006). We first recall
some important aspects of the temporal deterministic dynamics,
and then present the characteristics of the spatio-temporal
stochastic system.

2.1. Deterministic model

Changes in vegetation biomass are the result of a growth–death
process that can be expressed as (e.g. Noy-Meir, 1975; Tsoularis
and Wallace, 2011),

dV

dt
¼ VðVcc � VÞ; (1)

where V is the dimensionless biomass, normalized by a (high) fixed
reference value, t = at is the dimensionless time (where a controls
the temporal response of the system and t is time), and Vcc is the
dimensionless ecosystem carrying capacity, that is the maximum
amount of vegetation sustainable with the available resources.

The interaction between phreatophyte vegetation, i.e. plants
relying on the phreatic aquifer, and the average depth of the local
water table is widely recognized as one of the key aspects affecting
wetland ecosystems dynamics (Peck and Williamson, 1987; Roy
et al., 2000; Chang, 2002; Ridolfi and Laio, 2006). For example, the
water table decreases in the presence of phreatophyte species
because of the lower recharge rates due to rainfall interception and
plant transpiration (Wilde et al., 1953; Borg et al., 1988; Riekerk,
1989; Dubé et al., 1995), and also because vegetation taproots
directly extract water from the aquifer (Le Maitre et al., 1999). The
depth, d, of the water table is adimensionalized with respect to
water table depth in the absence of vegetation, d*, and can be
expressed as a linear function of plant biomass, V,

d ¼ 1 þ bV ; (2)

where b is the dimensionless sensitivity of the water table to the
presence of vegetation. b is positive because plants typically tend
to increase the depth of the water table. The water table depth, d, in
turn affects the dynamics of wetland vegetation. If the water table
is too shallow (waterlogging), vegetation can suffer, due to an
insufficient aeration of the root zone and a decreased rate of
seedling establishment (Roy et al., 2000). If the water table is too
deep, water is out of reach of taproots and vegetation can suffer as
well. These effects are taken into account by a quadratic
dependence of the carrying capacity, Vcc, on the water table depth,
d,

Vcc ¼
aðd � dinf Þðdsup � dÞ if dinf < d < dsup;
0 otherwise;

� �
(3)

where a regulates the sensitivity of carrying capacity to changes in
water table depth, dinf and dsup are the adimensional thresholds of
vegetation tolerance to shallow and deep water tables, respectively.

A positive feedback may exist between vegetation establishment
and water table dynamics, whereby phreatophytes favor their own
survival by increasing the water table depth and enhancing root
aeration (Wilde et al., 1953; Chang, 2002). The presence of positive
feedback mechanisms suggests the possible existence of multiple
stable states (Ridolfi and Laio, 2006). This fact is confirmed by some
experimental evidence suggesting that two alternative equilibrium
states may exist in wetland vegetation dynamics (Roy et al., 2000;
Chambers and Linnerooth, 2001; Wright et al., 2002; Schroder et al.,
2005). Equilibrium states can be found by setting Eq. (1) equal to
zero. V = V0 = 0 is always an equilibrium state, therefore the
existence of multiple equilibrium states depends on the existence
of real, nonnull roots of the equation Vcc = V. These solutions can be
found by substituting Eq. (2) in Eq. (3), and then searching for
intersections between Vcc(V) and Vcc = V (see Fig. 1). Ridolfi and Laio
(2006) showed three possible cases:

(a) dinf < 1 (Fig. 1a). The water table depth in the absence of
vegetation, d = 1, is always greater than the minimum depth
required for vegetation establishment. V0 = 0 is an unstable
state and only one stable state exists, V1. Ecosystem dynamics
always tend to the vegetated state, V1, regardless of the initial
conditions.

(b) dinf > 1 (Fig. 1b) and vegetation is able to keep the water table
below the maximum elevation acceptable for plants (e.g. b = 1),
three equilibrium states are found. Two of these states, V = V0

and V = V1 are stable, while the other one, V = Vu, is unstable. If V

grows above Vu, then the system tends to the vegetated state.
Otherwise, it evolves towards the unvegetated state and
remains here blocked. Note that the two stable states
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Fig. 1. Vegetation carrying capacity Vcc as function of the vegetation biomass V, with a = 11 and dsup = 1.8. (a) b = 1, dinf = 0.95. (b) b = 1, dinf = 1.2. In the upper panel the

potential U(V) is shown. (c) b = 0.6, dinf = 1.2.
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correspond to the minima of the double-well potential, U(V),
with (dV/dt) = � (dU/dV), while the unstable solution, V = Vu

corresponds to a maximum or ‘‘potential barrier’’.
(c) dinf > 1 (Fig. 1c) and vegetation is not able to reduce the water

table elevation below the minimum level suitable for plant
survival (e.g. b = 0.6). In this case the only possible stable state
is the unvegetated condition, V = V0 = 0.

2.2. Spatio-temporal stochastic model

We now focus on the case (b) described above, with two stable
states (vegetated and unvegetated) emerging from the determin-
istic dynamics. We introduce in these dynamics three new terms:
(i) a periodic temporally oscillating term, accounting for seasonal
or interannual fluctuations of the water table depth, d, (Rosenberry
and Winter, 1997; Zhang and Schilling, 2006); (ii) a random forcing
term, representing the effect of random environmental drivers (e.g.
fires or climate fluctuations); (iii) a spatial coupling term, modeling
the diffusive spread of vegetation.

Eq. (1) now reads,

@V

@t
¼ VðVcc � VÞ þ jðr; tÞ þ Dr2V (4)

where D is the strength of the spatial coupling, r2 is the Laplace
operator, j(r, t) is a white (in time and space) Gaussian noise with
zero mean, intensity s, and correlation hj(r, t)j(r0,
t0)i = 2sd(r � r0)d(t � t0), being d(�) the Dirac delta function. The
temporal oscillation is directly inserted into Eq. (4), through the
dependence of Vcc on the water table depth, Eq. (2), which can be
now expressed as

d ¼ 1 þ A cos
vt
a

� �
þ bV ; (5)

where A and v = (2p/T) are the nondimensional amplitude and the
dimensional frequency of the seasonal oscillations, respectively. T

is the oscillation period (for example T = 1 year). Notice that these
seasonal fluctuations of the water table are crucial to the
emergence of the dynamical behaviors (i.e. spatiotemporal
stochastic resonance) presented and discussed in the following
sections. Therefore, Eq. (3) now reads

Vcc ¼
a 1 þ A cos

vt
a

� �
þ bV � dinf

h i
dsup � 1 � A cos

vt
a

� �
� bV

h i
if dinf < d < dsup

0 otherwise

8>><
>>:

(6)

We consider the case of relatively weak seasonal oscillations in
a way that the potential, U(V), still has two minima corresponding
to two stable states. Fig. 2 shows the potential, U(V), of the
temporal deterministic model (1), but with the water table depth,
d, modulated as in (5). The potential always maintains two minima
throughout its periodic oscillation. Thus, even though there are
phases in the modulation of the periodic forcing in which the
height of the potential barrier is strongly reduced (hence, the
probability of occurrence of a state transition is enhanced),
deterministic transitions between the two wells of the potential
are not allowed.

The choice of an additive white (Gaussian) noise to represent
external drivers acting on vegetation dynamics in the time domain
is motivated by the fact that the temporal scales of the random
driver are typically much shorter than the characteristic temporal
scales over which the temporal vegetation dynamics evolve (e.g.
the relaxation time to a stable state). Moreover we used a white
noise also in space to show how spatial coherence is not imposed
by the spatial correlation of these external driver but emerges as an
effect of spatio-temporal stochastic resonance. Therefore, this kind
of noise is typically adopted in stochastic modeling (Sagues et al.,
2007).

The Laplacian, r2, in Eq. (4) is a simple operator which is widely
used to represent the spatial effects of the diffusion mechanisms in
vegetation dynamics (Borgogno et al., 2009; Manor and Shnerb,
2008; von Hardenberg et al., 2010). This operator accounts for
spatial interactions between a point of the domain and its nearest
neighbors, and is therefore considered as a short-range spatial
coupling.

3. Results

The model (4) is numerically solved for different parameter sets
to directly investigate the associated spatio-temporal vegetation
dynamics. Periodic boundary conditions are adopted, while, in the
absence of other indications, the initial conditions used in the
simulations are uniformly distributed random numbers in the
range [0.29, 0.31]. We also use the mean field analysis, a
mathematical framework that provides the steady-state probabil-
ity distribution of V (Ridolfi et al., 2011; van den Broeck et al., 1994,
1997). Details about the numerical scheme and the mean-field
analysis are reported in Appendix A.

Fig. 3 shows numerical results for s = 0.008 and D = 0.1 (other
parameter values are reported in the caption of the figure). Black
and white tones are used for the highest (V = 0.7) and lowest (V = 0)
values of V, respectively. Well defined patterns periodically emerge
(e.g. at t = 250 and t = 341) and disappear (t = 295) in the course of
periodic fluctuations of d. In this case the non-dimensional period
is T0 = 91.25. Pattern occurrence corresponds to temporal minima
of mean vegetation biomass and to maxima of biomass variance,
while homogeneous vegetated states correspond to maxima of
mean biomass and minima of the variance of vegetation biomass
(see circles in Fig. 3). Here and in the following discussion, we call
‘‘homogeneous’’ a state in which the system exhibits negligible
spatial heterogeneity with respect to the patterned state.
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The spatio-temporal dynamics continuously oscillate between
two differently vegetated states. In this example patterns appear
during the transition between these two states, when the system
approaches the least vegetated stable state, and disappear when
the most vegetated state is reached. The interaction of noise with
periodic water table oscillations and spatial diffusion gives rise to
spatial ordered structures which are statistically steady and
periodically appear/disappear in time with the same period, T,
as the fluctuations in d. These periodic state transitions, and the
associated formation and disappearance of spatial patterns are the
evidence of spatio-temporal stochastic resonance, with noise-
induced shifts between the two minima of the potential, U(V).
Although the system tends to oscillate between two stable states,
these states are not always reached. Indeed, temporal oscillations
have to be sufficiently long to permit the system to visit both
states. Here, for example, the temporal period, T = 182.5 days, is too
short and does not allow the system to reach the unvegetated state.
Conversely, with a longer period, T, the system is able to attain both
the vegetated and the unvegetated states (see Section 3.3).

In Fig. 3 numerical and analytical evaluations of the pdf of the
vegetation field are reported. Here and in the following discussion,
the numerical approximation of the pdf (dashed curves) is
obtained using simulated fields in the temporal range
50 < t < 547, which encompasses several temporal oscillation
Fig. 3. Model (4), s = 0.008, D = 0.1, A = 0.08, a = 0.5 d�1, b = 1, a = 13, dsup = 1.8, dinf = 1.2,

variance of the vegetation biomass, V, as functions of time (black circles correspond to me

analysis, dashed: numerical evaluation).
periods (here, T0 = 91.25). Details on the analytical approximation
of the pdf (solid curves) are discussed in Appendix A. The
agreement between numerical and analytical evaluations of the
pdf is quite good in showing a weak bimodality.

3.1. Role of D and s

We now consider changes in the spatial coupling strength, D

(D = 0.01, 0.1, 1), with a fixed noise intensity (e.g. s = 0.008). As D

increases, the least vegetated state moves closer to the most
vegetated one. As a consequence, for higher D values, the system
becomes more homogeneous (the biomass variance oscillates
around lower values and the amplitude of these fluctuations
becomes smaller). By increasing D from 0.01 to 0.1, spatially
coherent patterns appear. If D is further increased, the diffusive
effect is so strong that the field is almost homogeneous, and the
system experiences a blocking effect induced by diffusion.

Different noise levels (s = 0.0024, 0.012, 0.04) with a fixed
spatial coupling (D = 0.2) are then considered. If the noise intensity
is weak (s = 0.0024) with respect to the spatial coupling strength,
D, the biomass density tends to be homogeneous in time and space.
On the other hand, if the noise level is too strong (s = 0.04), the
system experiences random oscillations between more vegetated
and less vegetated states. However, in this case noise has a
 T = 182.5 days. Top: numerical simulations at t = 250, 295, 341. Bottom: mean and

an and variance values at t = 250, 295, 341). Pdf of vegetation field (solid: mean-field
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‘‘destroying’’ effect in that it destroys any spatial and temporal
coherence and no ordered states emerge. An intermediate noise
value (s = 0.012) allows for the emergence of temporal fluctuations
and the formation of periodic spatial patterns. The existence of an
intermediate noise level which, in cooperation with a weak
temporal oscillation, is able to regularly move the system between
different states is the most typical feature of the stochastic
resonance phenomenon (Wellens et al., 2004; Gammaitoni et al.,
1998). In Fig. 4, we show the configuration of the system in
correspondence to local minima (t = 275 for s = 0.0024, t = 202 for
s = 0.012, t = 270 for s = 0.04) and maxima (t = 320 for s = 0.0024,
t = 247 for s = 0.012, t = 310 for s = 0.04) of biomass variance (left
and central columns, respectively) for the three values of noise
intensity.

In general, temporal local maxima (minima) of biomass
variance correspond to minima (maxima) of biomass mean only
when the system is able to exhibit ordered spatial structures (see
Fig. 3). In all the other cases – i.e. with homogeneous (Fig. 4, top) or
disturbed (Fig. 4, bottom) spatial distributions – there is not such a
synchronization between maxima (minima) of biomass variance
and minima (maxima) of biomass mean.
Fig. 4. Numerical simulations of model (4) with D = 0.2, other parameters as in Fig. 3. (T

column), and pdf (right column). (Middle row) Field distributions with s = 0.012 at t = 20

distributions with s = 0.04 at t = 270 (left column), t = 310 (middle column), and pdf (
Also in these cases, there is a very good agreement between the
mean-field steady-state pdfs (solid curves) and the pdfs numeri-
cally calculated (dashed curves) using simulated fields in the
temporal range 50 < t < 547. This result is especially interesting
because this mean-field analysis accounts for the modulation of
the dynamics in time (see Appendix A), an approach that has never
been reported before.

From the results here presented, we can conclude that there is
an optimal region in the (s, D) plane, in which spatial patterns
emerge. This region corresponds to a noise intensity, s, of order
10�2, and a spatial coupling strength, D, of order of magnitude
10�1.

3.2. Influence of initial conditions

In the previous sections the initial conditions were generated as
random numbers uniformly distributed in the interval [0.29, 0.31].
If noise is sufficiently strong with respect to the spatial coupling
strength, D, results similar to those shown in Figs. 3 and 4 (middle
and bottom), are obtained with different initial conditions.
Conversely, if the noise intensity, s, is small with respect to D,
op row) Field distributions with s = 0.0024 at t = 275 (left column), t = 320 (middle

2 (left column), t = 247 (middle column), and pdf (right column). (Bottom row) Field

right column).
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the system tends to an homogeneous steady state, which depends
on the initial conditions. In other words, a sufficiently high noise
intensity with respect to the spatial coupling strength allows the
system to continuously oscillate in time between the two minima
of the potential, regardless of the initial conditions. On the
contrary, if noise is small with respect to the spatial coupling
strength, the system remains trapped into the minimum of the
potential which is closer to the initial conditions.

An example is shown in Fig. 5 where, for s = 0.0024 and D = 0.2,
different initial conditions, uniformly distributed in the interval [0,
0.02] or [0.29, 0.31], lead to an unvegetated (top) or a vegetated
(bottom) state, respectively. When the initial conditions are in the
interval [0, 0.02], the system is initially close to the minimum of the
potential (V0 = 0). The noise intensity s is so weak with respect to
the spatial coupling strength, D, that it is not able to move the
system away from this stable state; therefore the system remains
blocked into the unvegetated stable state.

3.3. Different periodicity of the temporal modulation

We then evaluate the effect of a different temporal periodicity in
the modulation term, G = cos(vt/a), by taking T = 365 days, while all
the other parameters remain the same as in Fig. 3. Patterns
periodically emerge (t = 277 and t = 342) and disappear (t = 235
and t = 310). Their occurrence corresponds to temporal local
maxima of the vegetation variance, while homogeneous vegetated
and unvegetated stable states correspond to maxima and minima of
the vegetation mean, respectively (see circles in Fig. 6). A longer
period, T, allows the system to explore the whole range of values of V.
This fact is confirmed by a non-negligible bimodality of both
analytical and numerical pdfs, whose peaks correspond to the two
alternatively visited stable states. During these state transitions,
patterns appear. Although the temporal modulation establishes the
frequency of pattern appearance, the mechanism of pattern
formation is always present and does not depend on the specific
temporal periodicity imposed into the system.
Fig. 5. Model (4), s = 0.0024, D = 0.2, other parameters as in Fig. 3. (Top row) Field distrib

t = 0 (left column), t = 250 (middle column), and pdf (right column). (Bottom row) Field d

0.31] at t = 0 (left column), t = 250 (middle column), and pdf (right column).
3.4. Non-simultaneous presence of random and periodic forcings

We now consider the case in which noise and temporal
modulation do not occur at the same time. As noted, as the noise
level, s, decreases the spatial distribution of plant biomass becomes
more homogeneous. A similar behavior is expected to occur for
s = 0. The homogeneous state depends on the initial conditions: if
the system is initially in the interval [0, 0.02] it homogeneously
decays to zero, while for initial conditions in the interval [0.29,
0.31] it reaches the homogeneous vegetated stable state and
weakly oscillates in time around it.

When noise is present with no modulation (A = 0), state
transitions may occur. If the noise is weak with respect to the
strength of the spatial coupling, D, the homogeneous steady state
attained by the system depends on the initial conditions. If the
noise is strong enough with respect to D, the system tends to the
homogeneous vegetated state regardless of the initial conditions.
Patterns can emerge only as transient features before the system
approaches the homogeneous steady state. An example is shown in
Fig. 7 where s = 0.008, the initial conditions are in the interval [0,
0.02], D = 0.1 (top) and D = 1 (bottom). For D = 0.1, while passing
from an unvegetated initial condition (t = 0) to a homogeneous
vegetated steady state (t = 250), the system exhibits some
transient patterns (t = 125), which fade out in the long run.
Instead, for D = 1 the noise is weak with respect to D and therefore
the system is blocked into the low vegetated state without even
showing transient patterns.

4. Discussion and conclusions

In the system investigated in this paper the occurrence of spatio-
temporal stochastic resonance can be thought of as the result of the
combined effect of three components: a white (in time and space)
Gaussian noise, a weak periodic modulation in time, and a suitable
spatial coupling term. In the absence of modulation, the noise – if
strong enough with respect to the spatial coupling – can lead the
utions with random initial conditions uniformly distributed in the range [0, 0.02] at

istributions with random initial conditions uniformly distributed in the range [0.29,



Fig. 6. Model (4), s = 0.008, D = 0.1, A = 0.08, a = 0.5 d�1, b = 1, a = 13, dsup = 1.8, dinf = 1.2, T = 365 days. Numerical simulations at t = 235, 277, 310, 342. Bottom: mean and

variance of the vegetation biomass, V, as functions of time (black circles correspond to mean and variance values at t = 235, 277, 310, 342). Pdf of vegetation field (solid: mean-

field analysis, dashed: numerical evaluation).

Fig. 7. Model (4) with s = 0.008, A = 0, other parameters as in Fig. 3, initial conditions are random numbers uniformly distributed in the interval [0, 0.02]. (Top row) Field

distributions with D = 0.1 at t = 0, 125, 250 (from left to right), and pdf (right column, dashed: numerical at t = 547, solid: mean-field analysis). (Bottom row) Field

distributions with D = 1 at t = 0, 125, 250 (from left to right), and pdf (right column, dashed: numerical at t = 547, solid: mean-field analysis).
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system towards the vegetated state, regardless of the initial
conditions. However, if the noise is weak with respect to D, the
system will approach one of the two (vegetated or unvegetated)
stable states, depending on the initial conditions. With no
modulation, patterns can only occur in an initial transient because,
once the stable state is reached, the system is locked in a
homogeneous state. On the other hand, in the absence of noise
the temporal modulation is not able to promote a state transition,
because the system reaches one of the two stable states – depending
on initial conditions – and weakly oscillates around it. The spatial
coupling term is able to induce spatial coherence without itself
enhancing state transitions. In other words, noise is the driver able to
induce state transitions, while the periodic forcing and the spatial
coupling are able to induce temporal and spatial coherence,
respectively. Only a suitable cooperation between these three
mechanisms can lead to the interesting ordered scenarios analyzed
in Section 3. Thus, random and periodic forcings have to be
simultaneously present along with a suitable spatial coupling to
induce the formation of statistically steady ordered structures with
spatial and temporal coherence.

Changes in the periodicity, T, of the weak temporal modulation
strongly affect vegetation dynamics. In this case, if T is of the order
of six months or one year, coherent spatial structures periodically
appear during transitions between vegetated and unvegetated
states. These dynamics could represent the emergence and
disappearance of an herbaceous species, which typically have a
growth/life period comparable to the driving seasonal oscillations
of the water table. Conversely, the emergence of patterns in model



S. Scarsoglio et al. / Ecological Complexity 10 (2012) 93–101100
simulations with longer periods may represent the formation of
ordered structures in the distribution of tree species, which grow
over longer time scales.

Besides this interpretation based on a single species, spatial
patterns result from the simultaneous existence of two different
species, whose growth/life periods are comparable to T but not
synchronized with one anther (i.e. when species 1 is at maximum
density, species 2 is at minimum density). The first species is
dominant at a certain time (almost homogeneous field, see, for
example, left top panel of Fig. 6), but it tends to disappear, while
the density of other increases. The simultaneous presence of both
may give rise to ordered spatial structures (spatial pattern
occurrence, see middle top panel of Fig. 6). At some point, the
second species temporarily dominates the plant community
composition (almost homogeneous field, see right top panel of
Fig. 6), but it will then start to decay, while the first species grows
back and new patterns emerge (see left bottom panel of Fig. 6).

Appendix A. Numerical and analytical methods

The typical numerical approach used to solve stochastic partial
differential equations is based on a discretization of the continuous
spatial domain using a regular Cartesian lattice with spacing
Dx = Dy = D. A two-dimensional square lattice with 128 � 128
sites and D = 1 is here adopted. The original equation (4) is then
transformed into a system of coupled stochastic ordinary
differential equations with a finite difference scheme,

dVi

dt
¼ ViðVcc; i � ViÞ þ ji þ D

X
j 2 nn

ðiÞðV j � ViÞ; (A.1)

where Vi and ji are the values of V and j at site i, respectively, nn(i)
is the set of the four nearest neighbors of the site i. Numerical
simulations are carried out with the Heun’s predictor–corrector
scheme (van den Broeck et al., 1997; Sagues et al., 2007), with a
temporal step Dt = 5 � 10�5. Notice how this method does not
prevent the emergence of a spurious spatial correlation associated
with the discrete representation of the dynamics in a 2D lattice
(Lythe et al., 2001). In our analyses the simulations were repeated
with grids of different sizes and the same qualitative patterns and
dynamical behaviors were observed to emerge regardless of the
resolution used in the discrete representation of the domain.

A qualitative representation of (stochastic) spatio-temporal
dynamics can be obtained through the mean-field method. Its
fundamental assumption is that the mean of the values of V in all
the neighboring cells can be approximated by the spatio-temporal
mean of the field, namely

P
j(Vj) = 4hVji = 4hVi. Therefore, Eq. (A.1)

becomes

dVi

dt
¼ ViðVcc; i � ViÞ þ ji þ 4DðhVi � ViÞ: (A.2)

The classic mean-field analysis allows one to evaluate if a phase
transition occurs. The existence of multiple solutions, hVin, of the
self-consistency equation

hVin ¼
Z 1

0
V pst

n ðV jG; hVinÞdV ¼ FðhVinÞ; (A.3)

indicates the presence of a non-equilibrium phase transition. In
Eq. (A.3) G = cos(vt/a) is the temporal modulation and
pst

n ðV jG; hVinÞ is the conditional probability with respect to G at
steady state. We recall that the occurrence of non-equilibrium
phase transition is neither a necessary nor a sufficient condition for
noise-induced pattern formation (Ridolfi et al., 2011; Scarsoglio
et al., 2011). In fact, non-equilibrium phase transitions imply that
noise is able to change the value of the order parameter, but not
that ordered geometrical structures necessarily emerge.

Here, the dynamics exhibit also a temporal modulation, G,
which has to be adequately accounted for while applying the
mean-field method. To evaluate the steady state pdf of the biomass
vegetation, V, and at the same time to deal with the temporal
modulation G, we propose to solve the self-consistency condition
(A.3) for all the values of G 2 [� 1, 1]. In this way the conditional
probability, pst

n ðV jG; hVinÞ, is obtained. The steady-state probability
pst(V ; hVi) is then computed through the convolution product
between the conditional probability, pst

n ðV jG; hVinÞ, and the
probability, p(G), of the temporal modulation, G.

Depending on s, D and G values, one or three solutions of the
self-consistency equation (A.3) can be found. If the solution of (A.3)
is unique, then it is considered as the steady state solution. If three
solutions are obtained, we can assume that the lowest one
corresponds to the least vegetated stable state (V0), the highest one
to the most vegetated stable state (V1), while the one in the middle
to the unstable state (Vu). If the temporal period, T, is sufficiently
long (e.g. T = 365 or 730 days) to allow the dynamics to fully
develop and periodically visit the two stable states, all the three
solutions are taken into account as steady state solutions. If,
instead, the period T is much shorter (e.g. T = 182.5 days), the
dynamics are able to completely reach only one of the two stable
states, while the other one remains unexplored. As a result, the
system oscillates in time and fully captures only one stable state,
while the other one is not approached. Only the explored stable
state and the unstable state are considered as steady state
solutions.

Once solutions, hVin = mn, of (A.3) are determined, their
conditional probabilities, pst

n ðV jG; hVinÞ, are computed as

pst
n ðV jG; hVinÞ ¼ 1

Zn
exp

�UðVÞ � 2DV2 þ 4DmnV

s

" #
(A.4)

and

Zn ¼
Z 1

0
exp

�UðVÞ � 2DV2 þ 4DmnV

s

" #
dV ; (A.5)

where U(V) is the potential of the temporal deterministic model (1)
with water table depth, d, modulated as in (5). Since the pdf, p(G),
of the cosine function, G = cos(vt/a), is

pðGÞ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � G2

p ; (A.6)

the probability pst(V ; hVi) can be evaluated through the convolu-
tion integral

pstðV ; hViÞ ¼
Z þ1

�1
½
X

n

pst
n ðV jG; hVinÞ� pðGÞdG: (A.7)

If, for a given value of G, two or more conditional probabilities,
pst

n ðV jG; hVinÞ, exist, they are summed together and then weighted
with the same probability (defined by p(G)) to compute the
probability pst(V ; hVi). The probability pst(V ; hVi) is in the end
normalized so that

R 1
0 pstðV ; hViÞdV ¼ 1.
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