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Numerical and experimental turbulence simulations are nowadays reaching the size of the so-
called big data, thus requiring refined investigative tools for appropriate statistical analyses and
data mining. We present a new approach based on the complex network theory, offering a power-
ful framework to explore complex systems with a huge number of interacting elements. Although
interest in complex networks has been increasing in the past years, few recent studies have been
applied to turbulence. We propose an investigation starting from a two-point correlation for the
kinetic energy of a forced isotropic field numerically solved. Among all the metrics analyzed,
the degree centrality is the most significant, suggesting the formation of spatial patterns which
coherently move with similar vorticity over the large eddy turnover time scale. Pattern size can
be quantified through a newly-introduced parameter (i.e. average physical distance) and varies
from small to intermediate scales. The network analysis allows a systematic identification of dif-
ferent spatial regions, providing new insights into the spatial characterization of turbulent flows.
Based on present findings, the application to highly inhomogeneous flows seems promising and
deserves additional future investigation.

Keywords: Complex networks; turbulent flows; time series analysis; spatial correlation; spa-

tiotemporal patterns.

1. Introduction

Turbulence is an important and widely investigated
topic, involving everyday life in several natural phe-
nomena (e.g. rivers, bird flight and fish locomotion,
atmospheric and oceanic currents) and industrial
applications (e.g. flow through pumps, turbines,
chemical reactors, and aircraft-wing tips). Although
studied for decades [Frisch, 1995], due to its chaotic
and complex nature, several important questions
regarding its spatial characterization, prediction,

and control remain mostly unclear [Warhaft, 2002].
In order to achieve a better description of its
dynamics, nowadays experimental and numerical
simulations progressively provide a greater amount
of extremely detailed data, which need to be
examined and interpreted. There is therefore an
increasing urgency of refined investigative tools for
appropriate statistical analyses and data mining.
Different and interdisciplinary approaches, bor-
rowed from bioinformatics to physical statistics,
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can help explore data from a complementary and
innovative perspective.

In the last years, interest in complex network
theory has grown enormously, as it offers a syn-
thetic and powerful tool to study complex systems
with an elevated number of interacting elements
[Albert & Barabdsi, 2002; Watts & Strogatz, 1998;
Newman, 2010]. By combining graph theory and
statistical physics, the present approach finds imme-
diate applications to real existing networks (e.g.
World Wide Web, social, economical and neural
connections) as well as in building networks from
spatiotemporal data series [Costa et al., 2011; Boc-
caletti et al., 2006]. A relevant example is rep-
resented by the climate networks, where differ-
ent meteorological series have been transformed
into networks to disentangle the global atmospheric
dynamics (see, among others, [Yamasaki et al.,
2008; Steinhaeuser et al., 2012; Scarsoglio et al.,
2013; Sivakumar & Woldemeskel, 2014; Tsonis &
Swanson, 2008; Donges et al., 2009]).

In turbulence, few and very recent network-
based approaches have been proposed to character-
ize patterns in two-phase stratified flows [Gao &
Jin, 2009; Gao et al., 2013; Gao et al., 2015a; Gao
et al., 2015b; Gao et al., 2015¢c; Gao et al., 2015d;
Gao et al., 2016], turbulent jets [Shirazi et al., 2009;
Charakopoulos et al., 2014], as well as reacting
[Murugesan & Sujith, 2015] and fully developed tur-
bulent flows [Liu et al., 2010; Manshour et al., 2015].
Most of them focused on temporal data measured in
different spatial locations and, by means of the vis-
ibility algorithm [Lacasa et al., 2008] or recurrence
plots [Donner et al., 2011; Marwan et al., 2009],
converted each time series into a network. Because
of the promising results so far obtained and the
potentiality of the network tools, turbulence net-
works certainly merit further investigation.

We here propose a complex network analysis
on a forced isotropic turbulent field solved through
direct numerical simulation (DNS), available from
the Johns Hopkins Turbulence Database (JHTDB)
[Li et al., 2008; Perlman et al., 2007]. Differently to
what was carried out so far, we did not transform
each temporal series into a network but constructed
a single global network from spatiotemporal data.
The network was built starting from a two-point
correlation for the turbulent kinetic energy com-
puted over all couples of the selected nodes. In so
doing, a unique monolayer network was obtained,
whose nodes partially overlap the numerical grid

cells and whose links are active if the distance
and statistical interdependence between two nodes
satisfy suitably chosen constraints [Donges et al.,
2009]. Correlation-based networks [Donner et al.,
2011; Yang & Yang, 2008] is probably the most
used way of applying network science techniques to
time series, with examples ranging from financial
markets [Caraiani, 2013] to brain activity [Stam &
Reijneveld, 2007]. However, to the best of our
knowledge, the application of correlation networks
to spatiotemporal turbulent data has not been ana-
lyzed to date.

Once the network was built, different topolog-
ical features were analyzed. The degree centrality
turned out to be the most meaningful parameter,
suggesting the onset and evolution of spatial pat-
terns which coherently move with similar vorticity
over the large eddy turnover time scale. A new net-
work metric here introduced (i.e. average physical
distance) is able to indicate the spatial scale of the
turbulent patterns, ranging from small to interme-
diate scales.

2. Methods

2.1. Johns Hopkins turbulence

database description

The forced isotropic turbulence field here used was
solved by means of a DNS over 10243 nodes and is
available from the JHTDB [Li et al., 2008; Perlman
et al., 2007]. Velocity (u, v, w), vorticity (wz, wy, w),
and pressure (p) fields were computed over a cube
of dimension 27w x 2w x 2w. A forcing term was
added to the Navier-Stokes equations so that the
total kinetic energy does not decay and, after a tran-
sient range, the field can be considered statistically
stationary. Once this state was reached, 1024 frames
of data were recorded (time-step = 0.002), last-
ing about one large-eddy turnover time, 77,.. Energy
was injected by keeping the total energy constant,
so that only the integral scale is influenced by the
forcing, while the intermediate and the dissipative
ranges are not involved. Some statistical character-
istics are here given together with a brief physical
recall:

e Taylor microscale, A = 0.118. The Taylor
microscale is the intermediate turbulent length
scale, between the integral and the Kolmogorov
scales, at which turbulent eddies are still substan-
tially influenced by viscosity;
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e Taylor-scale Reynolds number, Rey = (upmsA)/
v = 433, is the ratio between inertial and vis-
cous forces at the Taylor scale, A (upys is the
root-mean-square velocity and v is the kinematic
viscosity);

e Kolmogorov time scale, 7, = 0.0446, and length
scale, n = 0.00287. These are the smallest scales
in turbulence, where viscosity dominates and the
turbulent kinetic energy is dissipated;

e integral scale, L = 1.376, is the size of the largest
eddies of the flow;

e large eddy turnover time, 77, = 2.02, is the time
scale over which the largest eddies develop.

The JHTDB provides an accurate multiterabyte
and comprehensive data archive, which has been
widely exploited for testing modeling [Li et al.,
2009], structural properties [Lawson & Dawson,
2015], experimental data [Fiscaletti et al., 2014] and
statistical analyses [Mishra et al., 2014].

2.2. Complex network metrics

The network measures used in the present work are
here summarized [Albert & Barabdsi, 2002; Boc-
caletti et al., 2006]. A network is defined by a set
V =1,...,N of nodes and a set E of links {i,j}.
We assume that a single link can exist between a
pair of nodes. The adjacency matriz, A:

o fo if {i,j}¢E "
Y, i {i,j} € E,

accounts for whether a link is active or not between
nodes ¢ and j. The network is considered as undi-
rected, thus A is symmetric, and no self-loops are
allowed (A;; = 0).

The normalized degree centrality of a node i is

defined as

N
> Ay
j=1

2
. @)

and gives the number of neighbors of the node %,
normalized over the total number of possible neigh-
bors (N —1). We also define K; = k;(N — 1) as the
(non-normalized) degree centrality.

The eigenvector centrality, measuring the influ-
ence of the node i in the network, is given by

1
T = > Agiax, (3)
k

ki =

Complex Networks Unweiling Spatial Patterns in Turbulence

with Ag; being the adjacency matrix and M\ its
largest eigenvalue [Newman, 2010]. In matrix nota-
tion, we can write:

Ax = zA, (4)

where the centrality vector x is the left-hand eigen-
vector of the adjacency matrix A associated with
the eigenvalue A\, which is the largest eigenvalue in
absolute value.

The local clustering coefficient of a node is
- 6
Ki(K;-1)’

2
where e(T';) is the number of links connecting the
vertices within the neighborhood I';, and K;(K; —
1)/2 is the maximum number of edges in I';. The
local clustering coefficient represents the probability
that two randomly chosen neighbors of a node are
also neighbors.

The betweenness centrality of a node is

o=y 710, (©
ik 7

where o;; are the number of shortest paths con-
necting nodes i and j, while o;;(k) represents the
number of shortest paths from ¢ to j through node
k. If node k is crossed by a large number of all exist-
ing shortest paths (i.e. if BC} is large), then node
k is reputed to be an important mediator for the
information transport in the network.

Modularity @ is a measure of the structure of
networks, detecting the presence of communities/
modules [Newman & Girvan, 2004]. @ is defined, up
to a multiplicative constant, as the fraction of the
edges that fall within the given groups minus the
expected such fraction if edges were distributed at
random. A high modularity degree (roughly above
0.3) indicates a strong division of the network into
clusters [Newman, 2006]. () can be mathematically
quantified as

1 KK,
Q=33 (45 -5

ij

C; =

) 8iSj, (7)

where A;; is the adjacency matrix, (K;K;)/(2m) is
the expected number of edges between nodes 7 and j
if edges are placed at random, m is the total number
of links in the network, s is a membership variable
considering that the graph can be partitioned into
two communities (s; = 1 if node i belongs to com-
munity 1, s; = —1 if it belongs to community 2),
while 1/(4m) is merely conventional.
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In the end, we introduce a new metric which
is related to the reciprocal physical distance of the
network nodes. The neighborhood physical distance,
L;, of a node i is the averaged physical distance
between node ¢ and its neighborhood I';:

2l
Jjels
L=, )
where [;; is the physical distance between node i
and its neighbor j, K; is the degree centrality of
node i.

2.3. Building the network

To build the network, we considered a spherical
subdomain with center C' = (391,391,512) and
radius r = 0.24. For all the nodes inside this sphere
we computed the kinetic energy time series, F =
(u?+v%+w?) /2. This local scalar variable is directly
based on the primary flow field variables and is cru-
cial to characterize the turbulent network. In fact,
starting from the energy time series at a fixed point,
we can infer what happens in its spatial surround-
ings. This choice allowed us to define a monolayer
network, by evaluating the temporal linear corre-
lation among all the cells of the sphere through
the correlation matrix, R;;. A linear Pearson cor-
relation was adopted, as it is one of the simplest
possible metrics to quantify the level of statisti-
cal interdependence between the temporal series.
To avoid results biased by the network geometry,
a link between nodes 7 and j exists if the following
conditions are simultaneously satisfied:

e |R;;| > 7, where 7 is a suitable threshold;

e At least one between nodes i and j lies inside
the reference sphere with radius » = 0.12 and
center C

e The physical distance between nodes 7 and j is
less or equal to r = 0.12.

In so doing, every node ¢ within the reference
sphere had a well-defined region of influence (a
sphere with radius 0.12 and centered in the node ¢
itself) where links with other nodes can occur. The
region of influence had the same size for all nodes,
so that every node within the reference sphere expe-
rienced the same number of potential links.

The size of the reference sphere (r = 0.12) is
linked to the Taylor scale, A = 0.118, as we are
interested in what happens at scales of this order or

smaller, where the spatial correlation is high, there-
fore avoiding spurious correlations which may occur
at larger distances. Recall that in isotropic turbu-
lence, by statistically averaging over an adequate
number of samples, the two-point correlation func-
tion smoothly goes to zero as distance increases.
Long range links, if present, can only be the conse-
quence of spotted random correlations, which may
disturb real short-range links and spuriously alter
the network metrics. For this reason, we restrict the
maximum link length to the region (r < \) where
the noisy links are not present. The turbulent field
is isotropic as a consequence of the DNS geometry
and boundary conditions imposed, thus no preferen-
tial directions can be detected. Moreover, since the
forcing to keep the total energy constant acts on big-
ger scales (wave number |w| < 2), intermediate and
small scales do not experience any source of inho-
mogeneity. Therefore, the center of the reference
sphere can be arbitrarily chosen and we selected
the point C. To test the sensitivity of the results,
another domain portion was then analyzed, namely
a spherical subdomain with radius » = 0.24 cen-
tered in C” = (530,673, 475).

The selection of the threshold, 7, was a non-
trivial aspect of building the network and had to
take into account the goal of both evidencing strong
spatial correlations and managing an appropriate
number of nodes. The influence of the threshold has
been deeply analyzed in climate networks [Donges
et al., 2009]. The threshold 7 = 0.9 represents a
good compromise between a very high degree of cor-
relation and a suitable network cardinality. A sensi-
tivity analysis on 7 values is reported in the Results
and Discussion section.

The network is composed of N = 128 785 nodes
and m = 80920781 links, indicating with Ny, =
31343 the cardinality of nodes inside the reference
sphere and with Nyt the number of nodes outside
of it (N = Nint + Next). The edge density, p(7), is
defined as

n(r)
p(r) = NN —1) Noxt(Next — 1) (9)
2 B 2

where n(7) is the number of active links when
the absolute value of R;; is above the threshold
7 for the two-point correlation. The denominator
accounts for the total number of links of the net-
work, excluding links between purely external nodes
(links between internal and external nodes are
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Fig. 1. Combined bidimensional edge density, pa(7,1).

allowed). The edge density, p, is the ratio between
active links above a given threshold 7 and the total
number of possible links. For the chosen threshold,
p = 2.282-1072. The combined bidimensional edge
density, pa(7,1), is introduced as

_ n(r,1)
~ # total links with distance I’

P2 (Ta l) (10)
where [ € (0,0.12] is the physical distance between
two nodes, n(7,1) is the number of active links above
the threshold 7 and at a fixed [. The combined bidi-
mensional edge density, ps2, is the ratio of active
links above a given threshold 7 at a fixed distance [
and the total number of potential links at the same
distance [. A graphical representation of po(7,1) is
reported in Fig. 1, where high density values are
found for small physical distances, confirming that
at 7 = 0.9 short-term links are always active (p — 1
if I — 0). It should be noted that the combined
bidimensional edge density at a fixed 7 represents
the link length distribution. To summarize, p eval-
uates the density of active links independently of
their physical lengths, while po is the link density
as function of the length.

The network analysis presented in the following
section is focused on the set of internal nodes, Niy,
of the reference sphere. External nodes, which are
part of the network but only exploited to evaluate
links between internal and external nodes, are not
shown.

3. Results and Discussion

The properties of the turbulence network are here
discussed. The degree centrality was first analyzed,

Complex Networks Unweiling Spatial Patterns in Turbulence

evidencing regions with high values which are
clearly distinguishable from the rest of the network.
In Fig. 2 (left panel) the highest values (above 70%
of the maximum value) are highlighted through a
3D perspective, while the other values are trans-
parently colored. A 2D diametral section on the
plane z = 512 is also displayed, reporting all
k; values (central panel). In the right panel, the
cumulative degree distribution function, Peym (k) =
Sow—rp(k'), is shown in a linear-log plot. The
degree distribution is adequately fitted by an expo-
nential distribution for low k& values (k < 0.05),
as happens in many real world complex networks
[Dunne et al., 2002; Deng et al., 2011]. The right-tail
has a qualitative downward behavior [Dunne et al.,
2002], with a decay which is faster than an expo-
nential but slower than an uniform distribution.
Moreover, the network presents a rich-club effect
[Boccaletti et al., 2006], i.e. high degree vertices
connect one to each other.

Other network properties, such as the eigenvec-
tor centrality, the local clustering coefficient and the
betweenness centrality, are reported and compared
with the degree centrality in Fig. 3, as sections
of the plane z = 512. The eigenvector centrality
[Fig. 3(b)] carried the same information of the
degree centrality [Fig. 3(a)], confirming the presence
of distinct spatial regions with high correlation. To
this end, it should be noted that a completely ran-
dom flow field would result in a highly disconnected
network, which in turn would entail a spotted distri-
bution for the centrality indexes, with the most part
of values close to zero. The local clustering coeffi-
cient [Fig. 3(c)] was poorly related to the degree
centrality, as in general happens in spatial networks
[Boccaletti et al., 2006]. The betweenness centrality
[Fig. 3(d)] presented quite low values and a spotted
distribution over the section, which weakly corre-
lates to the degree centrality. No sources of inho-
mogeneity and anisotropy were present in the field,
thus there are no preferential pathways transporting
the information. This translated into a spotted dis-
tribution, with significantly high BC' gradient val-
ues, which is scarcely informative from the point of
view of pattern formation.

The modularity value of the present network is
about Q = 0.31, and 28 communities were detected
through the Newman algorithm [Newman & Gir-
van, 2004; Newman, 2006], where Q) = Ziil q(c)
and ¢(c) is the modularity of a single community.
Modularity is not uniformly distributed over the
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0.05929
0.03953
0.01977

—7.765e-006
Max: 0.07905
Min: 7.765e-006

exp fitting
R2=0.99

unif fitting
R?=0.99

Fig. 2. Normalized degree centrality, k. (Left) 3D perspective (values higher than 70% of the maximum value are reported
with points, the rest of the network is transparently colored). (Center) 2D section on the z = 512 plane. (Right) Cumulative
degree distribution function, Peum(k), with the exponential and uniform fittings of the data and the corresponding coefficients

of determination, R%Z A semi-log graph is adopted.

communities [Fig. 4 (left panel)], as the last eight
modules have ¢ values close to zero, while the first
community has the highest ¢ value (0.055), which is
about 18% of the total modularity value, Q. Nodes

—0.07124

0.05370
0.03615
0.01861

—0.001064
Max: 0.07124
Min: 0.001064

belonging to the community with the highest mod-
ularity ¢ are reported in Fig. 4 (right panel, red
points). This community is the largest in terms of
cardinality and detects a cluster of nodes which are

0.01239
0.008260
0.004130

—2.075e-009
Max: 0.01652
Min: 2.075e-009

— 2.3084e-004

4.2180e-005

2.1174e-005

8.8782e-006

— 1.5225e-007
Max: 2.3084e-004
Min: 1.5225e-007

Fig. 3. (a) Normalized degree centrality, (b) eigenvector centrality, (¢) local clustering coefficient and (d) betweenness
centrality (a nonlinear color scale is used). Results are displayed on the section z = 512.
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10 13 16 19
community ¢

Fig. 4.
highest modularity value (¢ = 0.055).

physically close to each other, representing a wide
coherent region sharing the same properties. More-
over, high degree centrality values are usually found
for nodes belonging to high-order communities. In
particular, about 86% of the nodes highlighted in
Fig. 2 (left panel) fall within the first eight com-
munities. The latest communities are instead less
populated with nodes having medium to low degree
centrality values. From the present findings, nodes
seem to be partitioned into communities based on
their reciprocal physical distance and on their con-
nection to high centrality nodes.

The most meaningful parameter turned out to
be the degree centrality together with the eigenvec-
tor centrality, both direct measures of the impor-
tance of a node in the network. In order to interpret
the network results in terms of physical properties of
the turbulent field, we considered the highest degree
centrality node (node HDC, k = 7.905 - 1072, coor-
dinates (385,401,508)) and another with very low
degree centrality (node LDC, k = 3.052-1073, coor-
dinates (372,387,510)). For both nodes, we evalu-
ated their neighborhoods (I'(HDC) = 10180 and
I'(LDC) = 393) and the average physical distance
(Lupc = 7.515-1072, Lipc = 2.985-1072). In Fig. 5
(left) HDC and LDC nodes are shown together with
the respective neighborhoods. We then considered
nodes A and B at an intermediate physical dis-
tance 6.142 - 1072 (ten grid cells) from nodes HDC
and LDC, respectively. Nodes A and B have nor-
malized degree centrality values k = 4.057 - 1072
and k = 1.553 - 107°, respectively. We evaluated
the temporal series of the vorticity modulus

20 25 2

Complex Networks Unweiling Spatial Patterns in Turbulence

(Left) Modularity distribution over the 28 communities, ¢(c). (Right) Nodes belonging to the community with the

(| =
(HDC-A) and (LDC-B). The couple (HDC-A) pre-
sented a strong temporal correlation for |w| (R =
0.92) and the two time series showed values close
to each other. The couple (LDC-B) had a much
weaker correlation for |w| (R = 0.68) and the two
time series often reached very different specific val-
ues [Fig. 5 (right)]. The behavior of the pairs (HDC-
A) and (LDC-B) is representative of high degree
centrality and low degree centrality regions, since
analogous comparisons were found for many other
couples of nodes. In Table 1 examples of couples of
nodes showing the mentioned behaviors are shown.
Thus, we can say that high degree centrality values
indicate regions with the same instantaneous vor-
ticity, that is, turbulent patterns coherently moving
over the time scale T7,. Moreover, there is a direct
correlation between the degree centrality, &, and the
average physical distance, L, of a node. L gives the
order of magnitude of the spatial patterns identified
by the k; distribution. For node HDC, L = 7.515 -
1072, for node LDC, L = 2.985-102, meaning that
the size of the patterns ranges between the dissipa-
tive scale and the Taylor microscale.

As mentioned in the Methods section, the tur-
bulent energy field is fundamental to characterize
the network. We checked a posteriori that from a
localized information — such as the energy time
series at a fixed point of the field — the net-
work is able to infer the spatial behavior of the
surroundings, which involves velocity gradients, i.e.
the vorticity field. Building the network from the

\/w3 + w2 +w?) for the two pairs of nodes,
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Lypg = 7-515 102 (12.24 cells)
520 - L pc = 2985 10”2 (4.86 cells)
510.
N
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
500 0 128 256 384 512 640 768 896 1024
t
Coordinates: 1.5 :
HDC = (385, 401, 508) LbC
490 A= (395, 401, 508) —Node B R=0.68
LDC = (372, 387, 510) 1
420 \ B = (372, 377, 510) =
400 . s 2
380 / 051 ]
® Node HDC 360 S 400 380
Node LDC X 420
® Nods & Y % 128 256 84 512 640 768 896 1024
® NodeB t
Fig. 5. (Left) High degree centrality (HDC) and low degree centrality (LDC) nodes shown together with their neighborhoods

(D(HDC) in red, T(LDC) in blue). Nodes A and B are at a distance 6.142 - 1072 from nodes HDC and LDC, respectively
(lupc,a = lLpc,B = 6.142 - 1072, ten grid cells). (Right) Time series of the vorticity modulus |w| are shown for the pairs
(A-HDC) and (B-LDC) with the corresponding correlation coefficient, R.

vorticity field would have introduced spatial varia-
tions, by requiring a higher order information and
leading to analogous results in terms of network.

3.1.

In the end, we performed a sensitivity analysis of
the results regarding the reference sphere (r =
0.12 and C = (391,391,512)). We first consid-
ered different thresholds, 7, for the link activa-
tion. Then, another network based on a different
reference sphere (r = 0.12 and centered in C' =
(530,673,475)) was studied.

Besides 7 = 0.9, networks for two different val-
ues were analyzed, 7 = 0.85 and 7 = 0.95. In Fig. 6,
the normalized degree centrality on the plane z =
512 is reported for the three 7 values. In Table 2,

Sensitivity analysis

Table 1.

some topological and spatial features of the three
networks are compared. As 7 was decreased, the
number of active links, m, increased at a faster rate
than the size of the network (total number of nodes,
N), while the cardinality Ni,, does not change in
any case. As a consequence, the degree centrality
averagely increased and the high k; regions were
more spatially expanded for decreasing 7 values.
The average physical distance, L, for the nodes
HDC = (385,401, 508) and LDC = (372, 387,510)
increases for decreasing 7, similarly to what hap-
pens for the degree centrality. Despite the specific
values assumed and the qualitative changes induced
by the three threshold values, the spatial pattern
detection is essentially independent from the choice
of the threshold. Weighted networks, though com-
putationally more expensive, can be adopted in

Examples of couples of nodes belonging to high and low degree centrality regions.

Nodes

Distance R

High degree centrality region
HDC; = (382,405, 515), A; = (382,405, 507)
HDC, = (389, 378, 522), Ay = (389, 390, 522)
HDC3 = (376,403, 509), As = (392,403, 509)

Low degree centrality region
LDC; = (375,396, 520), By = (375, 388, 520)
LDCy = (403, 388,497), By = (403, 388, 509)
LDCs = (374,390, 521), B3 = (390, 390, 521)

8 grid cells 0.96
12 grid cells 0.93
16 grid cells 0.94

8 grid cells 0.58
12 grid cells 0.61
16 grid cells 0.49
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0.09168
0.06188
0.03208

—0.002281
Max: 0.1215
Min: 0.002281

370 380 390 X 400

Fig. 6.
Different color scales are adopted.

Normalized degree centrality, k;,

370
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0.05370

0.03615

0.01861

—0.001064
Max: 0.07124
Min: 0.001064

380 390 X 400 410

t=0.95

—0.02285
0.01726
0.01167
0.006079

—0.0004877
Max: 0.02285
Min: 0.0004877

380 390 X 400 410

on the z = 512 plane. (Left) 7 = 0.85, (Center) 7 = 0.9 and (Right) 7 = 0.95.

Table 2. Topological and spatial features of the networks with 7 = 0.85,0.9,0.95. k = Zfil ki /N is the
mean degree centrality of the network, L = Zf\;l L;/N is the averaged physical distance computed as
mean value of the network. HDC = (385, 401, 508) and LDC = (372, 387, 510).

7 =0.85 =09 r=0.95
Nodes N 172713 128 785 75874
Links m 243355115 80920 781 11061 400
k 1.632 - 1072 9.758 - 1073 3.843-1073
L 9.060 - 1072 7.703 - 1072 4.621-1072
Lupc 8.377-1072 7.515 - 1072 3.784 - 1072
Lipe 5.931 - 1072 2.985 - 1072 1.146 - 1072

—0.07978

0.05984

0.03990

0.01995

— 1.344e-005

Max: 0.07978 B850 540
Min: 1.344e-005

—0.06787

0.05474

0.04161

0.02849

—0.01536
Max: 0.06787  “550 540
Min: 0.01536

Fig. 7.

530 X 520

540 530 y 520 510

510 50540

530 X 520 '

0.01175

0.007830

0.003915

— 1.655¢e-012
Max: 0.01759
Min: 5.546e-018

(d)

—0.1770
* Max: 0.7730
510 Min: 0.1770

Network centered in C’ = (530, 673,475). (a) Normalized degree centrality, (b) eigenvector centrality, (c) average

physical distance and (d) local clustering coefficient. Results are displayed on the section z = 475.
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Table 3. Topological features of the networks centered in
C = (391,391,512) and C’ = (530, 673,475). k = >N | k;i/N
is the mean degree centrality of the network, I = Zf\i 1 Li/N
is the averaged physical distance computed as mean value
of the network, C = ZIJ\LI C;/N is the global clustering
coefficient.

C = (391,391, 512) C' = (530,673, 475)

Nodes N 128 785 74432

Links m 80920 781 38799 854
k 9.758 - 1073 1.400 - 1072
L 7.703-1072 4.853-1072
C 7.211 .10t 6.969 - 107"

future work as they can make results more robust
against threshold variations.

A different spherical subdomain with radius
r = 0.24 centered in C’ = (530,673,475) was ana-
lyzed to build a new network with 7 = 0.9 and the
complete kinetic energy temporal series (1-1024).
The physical distance between nodes C' and C’ is
about 1.93, that largely exceeds the integral scale,
L = 1.376. Nodes C and C’ are far enough so that
the two influence regions do not physically over-
lap. The new reference sphere has radius » = 0.12
and center C’ = (530, 673,475). This region has a
spatiotemporal distribution for the kinetic energy
which is different from the previous sphere centered
in C' and this results into a new network having
different cardinality and topology.

In Fig. 7, the network results in terms of
normalized degree centrality, eigenvector centrality,
average physical distance, and local clustering coef-
ficient are reported on a 2D section of the plane
z = 475. In Table 3, structural properties of the
networks centered in C' and C’ are given for com-
parison. Despite the different shapes assumed by
the network metrics, results are of the same order
of magnitude as those observed in the network cen-
tered in C' = (391,391, 512).

We can conclude that the spatial character-
ization is therefore independent of the chosen
threshold, provided this latter is sufficiently high.
Moreover, the presence of spatial patterns with dif-
ferent size and intensity is not limited to the chosen
domain portion but can involve the whole turbulent
field.

4. Conclusions

In the present work, the complex networks instru-
ments were applied to analyze a forced isotropic

turbulent field. Differently to recent literature stud-
ies which transformed each time series into a differ-
ent network, here a single global network was built
from spatiotemporal data following a two-point cor-
relation approach carried out for all the pairs of
selected nodes. The kinetic energy time series of the
grid cells was chosen to define a monolayer network.
A link between two nodes is active if the distance
and statistical interdependence between two nodes
are above suitably selected thresholds. Degree cen-
trality, k, and average physical distance, L, were
the best metrics able to quantify the spatial dynam-
ics. High degree centrality regions evidenced spatial
patterns coherently moving with similar vorticity
over the large eddy turnover time scale. An indica-
tion of the spatial size of these regions was suggested
by the average physical distance, varying from small
scales up to the Taylor microscale.

The network analysis allowed us to handle big
data and systematically identify different spatial
regions. This goal would not have been so easily fea-
sible without the use of the network metrics, which
synthesized in a single framework a huge amount of
detailed information. The proposed approach can
suggest new insights into the spatial characteri-
zation of turbulent flows and, based on present
findings, the application to highly inhomogeneous
flows — such as compressible or wall flows — seems
to be promising and is worth additional future
investigation.
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