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Abstract. A 1D description of the arterial tree is coupled to a lumped
parameter model of the remaining circulatory system, resulting in a
closed-loop multiscale model of the cardiovascular apparatus. The regu-
lation of the arterial pressure is also implemented through a short-term
baroreceptor model. The proposed framework reproduces well the physi-
ological cardiovascular behaviour of an healthy young man and the mod-
elled baroreflex mechanism is effective in adjusting the hemodynamic
responses to both heart pacing and open-loop aortic-carotid sinus control.
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1 Introduction

Numerous in-silico models of the human circulation have been proposed for a
variety of clinical applications, helping to explore the genesis and features of
cardiac and vascular pathologies, sustain the design of medical devices, foresee
the effects of therapeutic actions, and trainee medicine students [1].

Depending on the study to carry out, cardiovascular models of different
dimensions, from 0D to 3D, have been developed. In particular, the multiscale
modelling approach (i.e., distinct dimensions are used depending on the circula-
tion district to simulate) has demonstrated its effectiveness to describe the whole
circulation [2]. In fact, it offers a suitable level of detail for each cardiovascular
region at a reasonable computational cost.

In this work, we present a closed-loop multiscale model of the cardiovascular
system, which puts together a 1D representation of the arterial network, a 0D
description of the rest of circulation (peripheral arterial vessels, venous, cardiac
and pulmonary circulations) and a baroreflex model.

We exploit and combine some modelling solutions introduced by other
authors [3–6], obtaining a model which is able to reproduce some complex
key characteristics of the cardiovascular system: the propagation and reflection
phenomena of pressure and flow waves along the arterial tree, the non-ideal
behaviour of cardiac valves, the well-organized structure of micro-circulation
groups and venous return, and the short-term regulation mechanism. In addi-
tion to the previous models [3–6], we explicitly introduce the contribution of
the unstressed volumes of each 0D compartment and adequately scale the time-
dependent cardiac parameters with the heartbeat duration (RR). The novelty of
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this work consists in the integration and completion of different validated models
of the main portions of human circulation, aiming at getting a comprehensive
and versatile framework to explore the hemodynamic response in various con-
figurations, from pathological states (such as valvular dysfunctions and cardiac
arrhythmias) to different posture and acceleration conditions.

2 Multiscale Mathematical Model

A schematic representation of the 0D–1D multiscale model is provided in Fig. 1.
In the following subsections the sub-models are detailed and equations listed.

Fig. 1. Schematic representation of the multiscale model, with a sketch of the arterial
tree on the right and the structure of all the 0D compartments on the left. The electric
circuits corresponding to the lumped elements are given at the bottom (a–c) and the
1D–0D interfaces are highlighted with a purple circle. Values below each 0D compart-
ment are the related unstressed volumes. Regarding the arterioles, the total unstressed
volume is indicated (see the asterisk *). This latter is divided among the 28 arteriole
groups according to the physiological regional blood volumes [7].



Multiscale Cardiovascular Modelling 579

Arterial Tree. Hemodynamics in large-medium arteries is described through
the model first proposed by Guala et al. [8], and then used to study the effects
of atrial fibrillation on arterial circulation [9]. Mass and momentum balance
equations are integrated over the arterial section, leading to the 1D system
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where x and t are the spatial and time coordinates, A is the vascular section,
Q is the flow rate, P is the pressure, ρ is the blood density, β is the Coriolis
coefficient and N4 is the viscous term. To close the above system, a constitutive
relation for P = P (A), accounting for the anisotropic non-linear viscoelastic
behaviour of the arterial walls, is introduced. Details on the parameter settings,
which refer to an healthy young man, can be found in [8,9].

Peripheral, Venous and Pulmonary Circulations. Arterioles, capillar-
ies, venous return (venules, veins and venae cavae) and pulmonary circula-
tion (arteries and veins) are simulated adopting different 0D models of similar
form (Fig. 1b) [3], provided that arterioles are preceded by the characteristic
impedance of the terminating 1D artery (Fig. 1a) [4]. The RLC analog electric
circuit of each 0D compartment corresponds to the following system
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For the generic i-th compartment, Vi and Vi0 are the total and unstressed vol-
umes, Qi−1 and Qi are the flow rates entering and exiting the compartment,
while Pi and Pi+1 are the pressures at the inlet and outlet of the compartment,
respectively. Ri (resistance), Li (inertance), and Ci (compliance) characterize
each compartment and are set according to [4] (for arterioles) and [3,6] (for the
other lumped elements). Vi0 values are reported in Fig. 1 and, together with the
overall stressed volume, give a total blood volume equal to 5.5 l.

Heart Chambers. Pressure, Pch, and stressed volume, (Vch − Vch0), of heart
chambers are linked through the equation [3,6]

Pch = E(Vch − Vch0) + SV̇ch, (3)

where S = 0.0005Pch is the viscoelasticity coefficient of the cardiac wall, V̇ch is
the time derivative of Vch, and E = EAe + EB is the elastance function. In this
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latter expression, EA and EB (the amplitude and baseline values of elastance),
as well as e (the time-varying elastance function) are chosen as in [3,6]. The
time parameters of e are calculated as functions of RR. In particular, durations
of contraction and relaxation periods are: Tacp = 0.17RR and Tarp = Tacp

[3,4,6] for atria, and Tvcp = 0.3
√

RR [10] and Tvrp = 0.5Tvcp [10] for ventricles.
Contraction and relaxation start at: tac = 0.8RR and tar = tac + Tacp for atria,
and tvc = 0RR and tvr = tvc + Tvcp for ventricles.

Heart Valves. Each cardiac valve is simulated by a pressure-flow model [6,11].
The non-ideal behaviour of the valve is considered and the valve opening angle,
θv, is calculated based on the rotational inertia (Iao) and forces acting on the
valve leaflets - pressure difference across the valve, Fpr, dynamic effect of the
blood acting on the valve leaflets, Fbm, frictional effects of neighbouring tissue
resistance, Ffr, and vortices downstream of the valve, Fvo - namely
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Qv is the flow rate through the valve, P1−P2 is the pressure difference across
the valve, and Lv, Rv and Bv stand for the inertance, viscous and turbulent flow
separation effects, respectively. All parameters are set as in [6].

Baroreflex Model. We adopt the baroreflex model introduced by Ottesen et al.
[12]. Sympathetic, ns, and parasympathetic activity, np, are evaluated as

ns(p̄acs) =
1
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(
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1

1 +
(
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)−ν , (5)

where ν (here set equal to 7) gives the slope of the ns and ns responses, while
p̄acs is the aortic-carotid sinus pressure averaged over the cardiac cycle. p̄acs,ref is
the baseline value of the average aortic-carotid sinus pressure which, determined
at a reference heart rate (HR) of 75 bpm, is equal to 92 mmHg. The efferent
responses are described as

dxj

dt
=

1
τj

(−xj + αjns(p̄acs) − βjnp(p̄acs) + γj) , (6)

where xj is the generic efferent organ, τj is the time delay in the efferent response,
αj and βj define the weights of ns and np, and γj equals xj when p̄acs = p̄acs,ref .
Efferent organs are HR, maximum values of right- and left-ventricular elas-
tance (EAr,l

), arteriole and capillary resistances (Ra,c), the compliances, and
unstressed volumes of venules and veins (Cven,v, V0ven,v

). Baroreflex parameters
are indicated in Table 1.
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Table 1. Parameters of the baroreflex model for each efferent organ. α, β, γ values
and saturation levels (Min. and Max.) of efferent organs are non-dimensional.

Efferent organ τ [s] α β γ Min. Max.

HR 3 0.75 0.75 1 0.25 1.75

EArl 3 0.40 0 0.80 0.8 1.2

Ra,c 15 0.80 0 0.60 0.6 1.4

Cven,v 30 −0.20 0 1.10 0.9 1.1

V0ven,v 30 −0.42 0 1.21 0.79 1.21

Numerical Resolution. The complete model is solved through a Runge-
Kutta Discontinuous-Galerkin scheme. Space is discretized according to a
Discontinuous-Galerkin approach and dependent variables are advanced in time
adopting a two-steps Runge-Kutta explicit scheme. Pressure and flow rate values
at the 1D–0D interfaces and at each arterial junction are defined by combining
physical and compatibility numerical conditions [8]. Physical conditions are given
by: the system (4) at aortic valve, the constitutive equation of the characteristic
impedance Z at peripheral arterial vessels, and the conservation of mass and
total pressure at arterial bifurcations.

3 Results and Conclusions

Physiological Behaviour. The modelled cardiovascular system well repro-
duces the physiological hemodynamics of a healthy young man at 75 bpm.
Figure 2 shows pressure (a) and flow rate (b) signals at specific arterial sites,
evidencing that the propagation phenomena of arterial waves are efficiently
reproduced. In fact, moving away from the heart, systolic pressures increase,
diastolic pressures decrease, pressure signals delay and steepen, and flow rate
signals reduce in amplitude [13]. Figure 2c-d display the pressure and flow rate
signals for the lower body venous, VLB , and vena cava, V CLB , compartments.
As expected [4,14], it emerges that pressure is almost constant, while flow rate
is still pulsatile along the venous return. Flow rates through cardiac valves (see
Fig. 2e) clearly show the typical trasvalvular flow, with the physiological reversal
flow as valves close [11].

Baroreflex Efficacy. To demonstrate the reliability of our model, we report
two tests about the baroreflex system: (i) the response to heart pacing and (ii)
the so-called open-loop case. In heart pacing, a fixed value of HR is externally
forced and the response of the remaining effector organs is determined by the
baroreflex mechanism [12]. Instead, in the open-loop case, the ratio p̄acs/p̄acs,ref

is externally applied. We simulated eight HRs (35, 55, 75, 95, 115, 135, 155 and
175 bpm) in heart pacing and seven ratios p̄acs/p̄acs,ref (from 0.625 to 1.375) in
the open-loop analysis.
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Fig. 2. (a) Arterial pressure and (b) flow rate signals along the aorta. (c)–(d) Pressure
(P ) and flow rate (Q) signals: (c) lower body venous compartment (VLB), and (d) lower
body vena cava compartment (V CLB). (e) Flow rate signals through cardiac valves.
All the figures refer to a healthy young man with 75 bpm.

Fig. 3. Heart pacing case. (a) Behaviours of the average aortic-sinus carotid pressure
(with and without baroreceptors) with HR. Dependence of the non-dimensional stroke
volume (b) and cardiac output (c) on HR. Variables marked with a superscript are
non-dimensional. Normalization is referred to the baseline values at 75 bpm for com-
puted results and to the indicated or assumed baseline values for experimental results
(provided in dimensional form). Data by Stein et al. [16] refer to human subjects, while
data by Noble et al. [15] and Miller et al. [17] are measured on dogs.



Multiscale Cardiovascular Modelling 583

Fig. 4. Open-loop case. Non-dimensional open-loop responses for the (a) heart rate,
(b) mean arterial pressure, (c) arterial and capillary resistances, and (d) compliances
of venule and venous compartments. Variables marked with a superscript are non-
dimensional. Normalization is referred to the baseline values at 75 bpm for computed
results and to the indicated or assumed baseline values for experimental results (pro-
vided in dimensional form, except in Cox et al. [20]). All experimental data refer to
dogs.

Figure 3 shows the results in the case of heart pacing simulation. Panel 3a
reports the function p̄acs(HR) with and without baroreceptors, demonstrating
that arterial pressure variations are limited by baroreflex as cardiac frequency is
altered from the reference value (75 bpm). Figure 3b and c show the behaviours
of the stroke volume, SV ′, and cardiac output, CO′, as functions of HR’ (super-
script indicates non-dimensional quantities), together with the experimental data
by [15–17]. Results provided by the model are normalized with respect to base-
line values at 75 bpm. Instead, dimensional experimental results are normalized
with respect to the indicated baseline values (if available) or reasonably assumed
baseline values. It is typically reported in literature [18] that SV reduces as HR
rises, while CO increases at low HRs, reaches a maximum value for higher HRs
(between 90 and 180 bpm) and finally reduces for further HR increments. These
trends are reproduced in Fig. 3b and c, where an overall agreement between com-
puted and experimental data is observed. However, the maximum CO predicted
by the model (between 135 and 155 bpm) seems to be located at non-dimensional
frequencies higher than the ones associated to the experimental measures. This
could depend on the the way in which HR is modified in the experimental mea-
sures (ventricular pacing, atrial pacing, pharmacological agents, exercise, etc..)
as well as the experimental conditions (e.g., conscious or anaesthetized subjects)
[16]. Moreover, since experimental results are given in dimensional form, there
are some difficulties in comparing data from different sources.

Figure 4 refers to the open-loop analysis. The behaviours of HR, mean arte-
rial pressure (MAP ), arterial and capillary resistances (Ra,c), and compliances of
venules and veins (Cven,v), as functions of p̄acs, are provided in non-dimensional
form for computed and experimental results [19–21]. Normalization of both com-
puted and experimental results is done as in the case of heart pacing. One can
appreciate a general correspondence between numerical and experimental results,
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although same discrepancies emerge. In fact, experimental results are obtained
considering only the contribution of carotid sinus pressure in the baroreflex
action. By contrast, pressure activating the baroreflex in our model is a combi-
nation of both aortic arch and carotid sinus pressures.

Based on the previous results, the proposed model satisfactorily reproduces
the most important features of the arterial and venous hemodynamics, cardiac
dynamics and short-term regulation mechanisms. Thus, the choice of the sub-
models representing each portion of the circulation, their integration into a
unique framework, the parameter setting and the numerical resolution of the
complete mathematical formulation, lead to an efficient and accurate in-silico
model of the cardiovascular system.

Next efforts will consist in considering the effects of orthostatic variations,
adding the contribution of the gravity, transmural pressures, and venous valves to
guarantee unidirectional blood flow from lower to upper body. These additional
features will allow one to investigate space-related medical issues, such as the
fallouts of long-term microgravity exposure on the human hemodynamics.
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