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Abstract. Atrial fibrillation (AF), the most common cardiac arrhyth-
mia leading to irregular and faster heartbeat, has been recently and
independently associated to the risk of dementia. A constellation of
hemodynamic mechanisms has been proposed to explain the possible link
between the two pathologies. However, definitive data still miss, and it is
unknown how heart rate (HR) influences the cerebral microcirculation.
We propose a computational approach, based on a validated hemody-
namic modeling, to compare the cerebral circulation during normal sinus
rhythm (NSR) and AF at different HRs. AF is able to trigger a higher
variability of the cerebral blood flow variables which grows towards the
distal circulation. The alteration of the hemodynamic patterns, inducing
the rupture of the signal periodicity and the consequent higher occur-
rence of extremely high/low values, increases with HR. Awaiting neces-
sary clinical evidences, present findings highlight that a strict rate control
strategy could be beneficial in terms of cognitive outcomes in patients
with permanent AF.
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1 Introduction

Atrial fibrillation (AF), causing irregular and faster heartbeat, is becoming a
public health problem in developing countries [6]. AF has been recently associ-
ated with an increased risk of dementia and cognitive decline, even in the absence
of clinical cerebrovascular events [3,4]. Silent cerebral ischemia, microbleeds, and
impaired cerebral blood flow have been proposed to explain the link between the
two pathologies [2,5]. Among all possible mechanisms, the alteration of cerebral
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perfusion during AF is an aspect which remains poorly investigated so far. In
fact, current clinical techniques - such as transcranial doppler ultrasonography -
do not provide sufficient resolution to fully describe the inner cerebral circle, in
terms of flow and pressure signals. In particular, it is to date unknown whether
the irregularity of the RR intervals during AF directly influences cerebral hemo-
dynamics, mostly of the deepest cerebral circulation.

Given the scarcity of clinical data, we recently proposed a computational app-
roach to evaluate the cerebral hemodynamics in AF. It emerged that AF - when
compared to the same heart rate (HR) in normal sinus rhythm (NSR) - pro-
motes an altered cerebral hemodynamics and a dramatic signal variation, with
the onset of transient hypoperfusions and hypertensive events in the cerebral
microcirculation [1,10,11].

A signal analysis in terms of cerebral pressure and flow rate time series is here
proposed to compare NSR and AF at different HRs, namely from 50 to 130 bpm
[7]. In particular, through the percentile and crossing time analyses, we further
investigate to what extent the cerebral hemodynamic alterations induced by AF
are modulated by means of the heart rate.

2 Methods

2.1 Computational Stochastic Approach

The computational algorithm, as shown in Fig. 1, combines a stochastic extrac-
tion of the heart beating, RR [s], with a lumped parameter modeling of the
cardiovascular and cerebral circulations. More details, including governing equa-
tions, can be found in [7] and therein references.
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Fig. 1. Scheme of the computational algorithm: (left) RR beats and corresponding
probability density functions; (right) Cerebral model with representative capillary pres-
sure signals, P..
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RR Beating Features in NSR and AF. The artificially extracted RR inter-
vals, based on in vivo beating features and validated over available clinically
measured data in NSR and AF [8], span the range of average HR between 50
and 130 bpm. NSR beats are extracted from a Gaussian distribution, which is
the typical distribution observed during sinus rhythm. RR extraction is done
according to the correlated pink noise temporal structure, the heart rate being
a relevant example [8]. Standard deviation values, o, are determined considering
that the coefficients of determination, cv, can be assumed as constant and equal
to 0.07 from 50 to 130 bpm. AF distribution can be described by the superposi-
tion of two statistically independent times, obtained from a correlated Gaussian
and an uncorrelated Exponential distributions. The resulting RR. intervals are
thus drawn by an exponentially modified Gaussian (EMG) distribution (more
details can be found in [8] and therein references). At each HR, the standard
deviation, o, is determined keeping the coefficient of variation, cv, constant and
equal to 0.24, while the rate parameter, 7, is taken as a linear function of the
mean RR (y = —9.2RR + 14.6) [7,8]. To assure the statistical stationarity of the
outcomes, 5000 cardiac cycles are simulated for each configuration. The 5000
beats extracted in NSR and AF conditions and the corresponding RR, probabil-
ity distribution functions are displayed in Fig.1 (left).

Cardiovascular Model. Once RR intervals are extracted, the cardiovascular
model is run to obtain the systemic arterial pressure (P, ). The 0D cardiovascular
model, first proposed and validated in AF over more than 30 clinical datasets [8,
9], consists of a network of compliances, resistances and inductances, describing
the four contractile cardiac chambers, the systemic and venous circuits. Both
atria are imposed as passive to simulate AF conditions, while they can actively
contract during NSR. The model includes short-term baroregulation mechanisms
[7], accounting for the inotropic effect of both ventricles, as well as the control
of the systemic vasculature (peripheral arterial resistances, unstressed volume of
the venous system, and venous compliance). The chronotropic effects due to the
heart rate regulation, which differently act in NSR and AF, are instead implicitly
considered by the RR extraction. The systemic arterial pressure, P,, is then used
as forcing input for the cerebral model.

Cerebral Model. The 0D cerebral model, describing the arterial and venous
cerebral circulation, along with the cerebrovascular control mechanisms of
autoregulation and C'O9 reactivity [12], has been validated in normal conditions
up to the middle cerebral circulation [1], where clinical data are available. A
network of compliances and resistances describes the cerebral circulation, which
is divided into three main regions: large arteries, distal arterial circulation, and
capillary/venous circulation. The left vascular pathway ICA-MCA (i.e., internal
carotid artery—middle cerebral artery) is here analyzed as representative of the
blood flow and pressure distributions from large arteries to the capillary-venous
circulation: left internal carotid artery (systemic arterial pressure, P,, and left
internal carotid flow rate, Qjcq e st), middle cerebral artery (left middle cerebral
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artery pressure, Ppcqeft, and flow rate, Qmeq est), middle distal district (left
middle distal pressure, Pym e, and flow rate, Qam,iest), and capillary-venous
circulation (cerebral capillary pressure, P,., and proximal venous flow rate, Q).
Figure 1 (right) reports examples of capillary pressures, P, in NSR and AF at
different HRs.

2.2 Data Analysis

Percentile and crossing time analyses are evaluated for 5000 cycles at differ-
ent HRs. We here extend the definition of extremely high/low values and the
temporal persistence of the hemodynamic signal above/below the physiological
threshold during AF [1,10] to different HRs, so that each rare event during AF
is defined as referred to the corresponding NSR at the same HR. NSR outcomes
are thus exploited to define the different reference thresholds of each HR [7].
In order to quantify AF-induced variations, the NSR 5th and 95th percentiles
of the cerebral hemodynamic variables are taken as reference thresholds for the
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Fig. 2. (a)-(b) Examples of percentile variation for P. (p(P:) is the probability density
function), at 50 (a) and 130 (b) bpm. NSR thresholds (dashed blue lines) individuate
the 5th and 95th percentiles in NSR (blue areas), while they correspond to higher
percentiles in AF (red areas). (c)-(d) Examples of T., evaluation for representative
portions of the P. time series in NSR and AF ((c¢) 50 bpm, (d) 130 bpm). T¢, intervals
are indicated in green.
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current HR. In AF, we then evaluate to which percentile the NSR reference
thresholds correspond, thereby evaluating how AF modifies the probability of
assuming extremely high or low values at each fixed HR. Examples of pressure
percentile variations between NSR and AF are reported for the capillary region
in Fig.2a and b for HR =50 and 130 bpm, respectively.

Similarly to the percentile analysis, the crossing time evaluation is carried out
throughout the whole temporal series at different HRs. At a fixed HR, the cross-
ing time, T, is defined as the temporal interval consecutively spent by the
hemodynamic variable above or below the threshold individuated at the same
HR by the mean value in NSR. In Fig. 2c and d, illustrative examples of T, are
shown for the capillary pressure, P., during NSR and AF, at 50 and 130 bpm,
respectively. The T, intervals show, at each HR, how AF influences the duration
of excursions from the reference mean value in NSR (individuated at the same
HR).

3 Results and Discussion

The alteration of the cerebral hemodynamic signals due to the effect of HR
during AF is here investigated, by means of the percentile and crossing time
analyses. All the results involve the hemodynamic variables along the selected
left ICA-MCA path. We only account for flow rate variations below the 5th
percentile (i.e., hypoperfusions) and pressure variations above 95th percentile
(hypertensive episodes), since these configurations are the most meaningful from
the hemodynamic point of view. For the crossing time analysis, instead, we
do not discern whether the time lapse spent is above or below the reference
NSR threshold, since both configurations are equally meaningful to evidence the
rupture of the signal periodicity and the variation of its temporal pattern.

3.1 Percentile Analysis

The AF percentiles corresponding to the NSR reference thresholds of each HR
along the ICA-MCA pathway are reported in Fig.3. The percentile alteration
during AF suggests a worsening - in terms of higher probability of extreme values
- in the microcirculation for increasing HR. In fact, at the large artery level
(Qicajiefts Qmeayiefts Pas Pmcajeft) Percentile variations are not substantially
influenced by the HR - being all confined below the 10th percentile for flow
rates (Fig.3a) and even above the 95th percentile for pressures (Fig.3b). This
last aspect can be explained considering the slight decrease of mean P, and
Proca,iest values during AF with respect to NSR, for all the HRs computed [7].
The scenario definitely changes going towards the distal and capillary circulation.
Here, not only percentile variations are more marked (up to the 18th and 75th
percentiles for flow rates and pressures, respectively), but they also increase
with HR. For all the HRs considered, the distal region is the most prone to low
perfusion, since the 5th percentile in NSR corresponds to around the 12th—18th
percentiles in AF, for HR =50 and 130 bpm, respectively. High pressure levels
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Fig. 3. Percentile analysis corresponding to the NSR threshold of each HR along the
ICA-MCA pathway. (a) Flow rate, 5th NSR, (b) Pressure, 95th NSR. Color and thick-
ness (from thin light red to thick dark red) refer to increasing HR (from 50 to 130 bpm),
while the abscissa individuates the ICA-MCA regions.

of greater significance are instead more likely to occur in the capillary district,
with the 95th NSR percentile corresponding up to the 85th—75th AF percentiles,
for HR =50 and 130 bpm, respectively. Moreover, differently to the large arteries
district, mean capillary pressures barely differ between NSR and AF, at all the
HRs [7]. Thus, the marked AF percentile variation here observed is all imputable
to the greater AF variability, which is not absorbed but even magnified in the
microcirculation. What observed so far extends to a wide range of HRs (from 50
to 130 bpm) the higher AF-induced probability of hypoperfusions in the distal
region and hypertensive events in the capillary circulation, previously observed
only at HR ="70bpm [1].

3.2 Crossing Time Analysis

The analysis is here presented in terms of the ratio of the mean crossing time in
AF, u(Ter) ar, to the mean crossing time in NSR, u(Te) nsr (Fig. 4, top panels),
and the T, distributions (Fig.4, bottom panels). The crossing time analysis
shows a behaviour which is qualitatively similar for pressure (left panels) and
flow rate (right panels) signals.

For a fixed HR, the ratio u(Te)ar/p(Ter) Nsr increases from the proximal to
the distal circulation. In particular, in the proximal region the ratio remains
unitary, meaning that AF does not modify the signal periodicity and its tempo-
ral pattern with respect to NSR. In the distal-capillary compartments, instead,
the ratio definitely exceeds one, revealing a higher time lapse spent above/below
the reference threshold and thus a pattern alteration. By changing HR, in the
proximal region the ratio stays close to one, therefore the HR effect on the
signal periodicity and behaviour is negligible. Moving towards the microcircu-
lation, u(Ter)ar/u(Ter)Nsr ranges from 1.2 (HR=50bpm) up to almost 1.8
(HR =130bpm). It should be noted that the region mostly involved is the mid-
dle distal district (Pgm, et and Qgm,ieft), where for HR = 130 bpm crossing times
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in AF are on average from 50% to 80% longer than in NSR. This result high-
lights that, in the deepest cerebral circulation, AF signals at higher HR, are more
prone to lose their periodicity and alter their temporal structure than those at
lower HR. To better explore this last aspect, the probability density functions
(PDFs) of T., where the greatest excursions occur (i. e., middle distal district)
are analyzed (see Fig.4c and d). Even if, at the same HR, the main body of
the PDF is similarly positioned in NSR and AF, PDFs during AF display much
more pronounced right tails and lose the symmetry shown during NSR. This
behaviour becomes more evident when HR is increased from 50 to 130 bpm. The
right tails are thus responsible for the increase, as HR grows, of the mean cross-
ing time values in AF with respect to NSR (see the legends of Fig.4c and d).
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Fig. 4. (a)-(b) Ratio of the mean crossing time in AF, u(Te-)ar, to the mean crossing
time in NSR, u(Ter)Nsr, at the same HR for (a) pressure and (b) flow rate signals.
Color and thickness (from thin light red to thick dark red) refer to increasing HR
(from 50 to 130 bpm), while the abscissa individuates the ICA-MCA regions. (c)-(d)
Probability density functions (PDFs) of the crossing times, Te,, for (¢) Pam,icft and
(d) Qam,iest during NSR and AF, at 50 and 130 bpm.
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4 Conclusions

The present work computationally evaluated how heart rate impacts on the
cerebral hemodynamics during AF, through the percentile and crossing time
analyses. Critical events - such as the alteration of the cerebral hemodynamic
patterns, the loss of the signal periodicity and the related higher occurrence
of rare (i.e., extremely high/low) values - emerge in the distal districts and
significantly increase in frequency with HR. The trend is basically monotone
with HR, thus no optimal HR target to minimize the effects of these transient
episodes can be identified. Awaiting further necessary clinical validation and
provided that all efforts should be addressed to maintain NSR as long as possible,
present findings suggest that a strict rate control strategy could be beneficial in
terms of cognitive outcomes in patients with permanent AF.
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