A multiscale approach to study the stability of long waves in near-parallel flows

S. Scarsoglio[#], D.Tordella[#] and W. O. Criminale^{*}

- [#] Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, Torino, Italy
- * Department of Applied Mathematics, University of Washington, Seattle, Washington, Usa

EFMC7, Manchester, September 14-18, 2008

Physical problem

Initial-value problem

Multiscale analysis for the stability of long waves

Conclusions

Physical Problem

Flow behind a circular cylinder steady, incompressible and viscous;

 Approximation of 2D asymptotic Navier-Stokes expansions (Belan & Tordella, 2003), 20≤Re≤100.

Initial-value problem

 Linear, three-dimensional perturbative equations in terms of vorticity and velocity (Criminale & Drazin, 1990);

• Base flow parametric in x and $Re \longrightarrow U(y; x_0, Re)$

Laplace-Fourier transform in x and z directions for perturbation quantities:

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= - (ik\cos(\phi) - \alpha_i)U\hat{\Gamma} + (ik\cos(\phi) - \alpha_i)\frac{d^2U}{dy^2}\hat{v} \\ &+ \frac{1}{Re}[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{\Gamma}] \\ \frac{\partial \hat{\omega}_y}{\partial t} &= - (ik\cos(\phi) - \alpha_i)U\hat{\omega}_y - ik\sin(\phi)\frac{dU}{dy}\hat{v} \\ &+ \frac{1}{Re}[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{\omega}_y] \end{aligned}$$

 $a_r = k \cos(\Phi)$ wavenumber in x-direction $\gamma = k \sin(\Phi)$ wavenumber in z-direction $\Phi = tan^{-1}(\gamma/a_r)$ angle of obliquity $k = (a_r^2 + \gamma^2)^{1/2}$ polar wavenumber $a_i \ge 0$ spatial damping rate Periodic initial conditions for $\widehat{\Gamma} = \frac{\partial^2 \widehat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2ikcos(\phi)\alpha_i)\widehat{v}$ $\begin{cases} \widehat{v}(y,t=0) = e^{-(y-y_0)^2}cos(n_0(y-y_0)) & \text{symmetric} \\ \widehat{v}(y,t=0) = e^{-(y-y_0)^2}sin(n_0(y-y_0)) & \text{asymmetric} \end{cases}$

and $\hat{\omega}_y(y,t=0)=0$

Velocity field vanishing in the free stream.

Early transient and asymptotic behaviour of perturbations

The growth function *G* is the normalized kinetic energy density

$$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

and measures the growth of the perturbation energy at time t.

• The temporal growth rate r (Lasseigne et al., 1999) and the angular frequency ω (Whitham, 1974)

$$r(t; \alpha, \gamma) = rac{\log|e(t; \alpha, \gamma)|}{2t}, \ t > 0$$

$$\omega(t;\alpha,\gamma) = \frac{|d\varphi(t;\alpha,\gamma)|}{dt}$$

 φ perturbation phase

Exploratory analysis of the transient dynamics

(a): Wave Ospatia = eyokytic 150, the 0.20 direction, for the petric, $p_1 = 30', 0\pi 0, k, 0.0.5, 0, 1.5, 2, 2.5$. (b): R=50, $y_0=0$, $x_0=7$, k=0.5, $\Phi=0$, asymmetric, $n_0=1$, $\alpha_i=0,0.01,0.05,0.1$.

(d): R=100, $y_0=0$, $x_0=11.50$, k=0.7, asymmetric, $\alpha_i=0.02$, $n_0=1$, $\Phi=0$, $\pi/2$.

(e): $R=100 \text{ } x_0=12, \text{ } k=1.2, \alpha_i=0.01,$ symmetric, $n_0=1, \Phi=\pi/2, y_0=0,2,4,6.$

(f): R=50 $x_0=14$, k=0.9, $\alpha_i=0.15$, asymmetric, $y_0=0$, $\Phi=\pi/2$, $n_0=1,3,5,7$.

(a)-(b)-(c)-(d): R=100, $y_0=0$, k=0.6, $\alpha_i=0.02$, $n_0=1$, $\Phi=\pi/4$, $x_0=11$ and 50, symmetric and asymmetric.

(a): R=100, $y_0=0$, $x_0=9$, k=1.7, $\alpha_i = 0.05$, $n_0=1$, symmetric, $\Phi=\pi/8$.

Asymptotic fate and comparison with modal analysis

Asymptotic state: the temporal growth rate r asymptotes to a constant value $(dr/dt < \varepsilon \sim 10^{-4})$.

(a)-(b): Re=50, α_i =0.05, Φ =0, x_0 =11, n_0 =1, y_0 =0. Initial-value problem (triangles: symmetric, circles: asymmetric), normal mode analysis (black curves), experimental data (Williamson 1989, red symbols).

Multiscale analysis for the stability of long waves

Different scales in the stability analysis:

- Slow scales (base flow evolution);
- Fast scales (disturbance dynamics);

In some flow configurations, long waves can be destabilizing (for example Blasius boundary layer and 3D cross flow boundary layer);

In such instances the perturbation wavenumber of the unstable wave is much less than O(1).

Small parameter is the polar wavenumber of the perturbation:

Full linear system

 $G = G(y; k, \phi, \alpha_i, Re)$

base flow (U(x,y:Re), V(x,y;Re))

Multiple scales hypothesis

Regular perturbation scheme, k<<1:</p>

 $\hat{v} = \hat{v}_0 + k\hat{v}_1 + k^2\hat{v}_2 + \dots$ $\hat{\Gamma} = \hat{\Gamma}_0 + k\hat{\Gamma}_1 + k^2\hat{\Gamma}_2 + \dots$ $\hat{\omega}_y = \hat{\omega}_{y0} + k\hat{\omega}_{y1} + k^2\hat{\omega}_{y2} + \dots$

• Temporal scales: $t, \tau = kt, T = k^2t;$

• Spatial scales: y, Y = ky;

<u>Order O(1)</u>

$$\frac{\partial^2 \hat{v}_0}{\partial y^2} + \alpha_i^2 \hat{v}_0 = \hat{\Gamma}_0$$

$$\frac{\partial \hat{\Gamma}_0}{\partial t} - G_h \hat{\Gamma}_0 - H_h \hat{v}_0 = 0 \qquad G_h = G_h(y; \phi, \alpha_i, Re)$$

$$\frac{\partial \hat{\omega}_{y0}}{\partial t} - L_h \hat{\omega}_{y0} = 0$$

Order O(k)

$$\frac{\partial^2 \hat{v}_1}{\partial y^2} + \alpha_i^2 \hat{v}_1 = -2 \frac{\partial^2 \hat{v}_0}{\partial y \partial Y} + 2icos(\phi) \alpha_i \hat{v}_0 + \hat{\Gamma}_1$$
$$\frac{\partial \hat{\Gamma}_1}{\partial t} - G_h \hat{\Gamma}_1 - H_h \hat{v}_1 = -\frac{\partial \hat{\Gamma}_0}{\partial \tau} + G_{h-1} \hat{\Gamma}_0 + H_{h-1} \hat{v}_0 + K_{h-1} \hat{\omega}_{y0}$$
$$\frac{\partial \hat{\omega}_{y1}}{\partial t} - L_h \hat{\omega}_{y1} = -\frac{\partial \hat{\omega}_{y0}}{\partial \tau} + L_{h-1} \hat{\omega}_{y0} + M_{h-1} \hat{v}_0$$

 $G_{h-1} = G_{h-1}(y, Y; \phi, \alpha_i, Re)$

Comparison with the full linear problem

(a)-(b): Re=100, k=0.01, $\Phi = \pi/4$, x₀=10, n₀=1, y₀=0. Full linear problem (black circles: symmetric, black triangles: asymmetric), multiscale O(1) (red circles: symmetric, red triangles: asymmetric).

(a): R=50, y₀=0, k=0.03, n₀=1, x₀=12, $\Phi = \pi/4$, asymmetric, $\alpha_i = 0.04$, 0.4.

(b): R=100, $y_0=0$, $n_0=1$, $x_0=27$, $\Phi=0$, symmetric, $\alpha_i=0.2$, k=0.1, 0.01, 0.001.

(c): R=100, $y_0=0$, k=0.02, $x_0=13.50$, $n_0=1$, $\Phi=\pi/2$, $\alpha_i=0.08$, sym and asym.

(a)-(b): $\overline{R}=50$, $y_0=0$, k=0.04, $n_0=1$, $x_0=12$, $\Phi=\pi/2$, asymmetric, $\alpha_i=0.005$, 0.01, 0.05 (multiscale O(1)), $\alpha_i=0$ (full problem).

Conclusions

- Synthetic perturbation hypothesis (saddle point sequence);
- Absolute instability pockets (Re=50,100) found in the intermediate wake;
- Good agreement, in terms of frequency, with numerical and experimental data;
- No information on the early time history of the perturbation;
- Different transient growths of energy;
- Asymptotic good agreement with modal analysis and with experimental data (in terms of <u>frequency</u> and <u>wavelength</u>);
- Multiscaling O(1) for long waves well approximates full linear problem.