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On the frequency of hydrodynamic perturbations.
From the early transient through the intermediate term to the asymptotic state

Francesca De Santi, Stefania Scarsoglio and Daniela Tordella
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy

We present recent findings concerning

We adopt the initial-value problem formulation, proposed by Criminale and Drazin [1], that was recently used to carry out exploratory studies on the pertur-
bation transient dynamics [2,3].

We consider two typical shear flows: the plane Poiseuille flow, as the archetype of wall flows, and the bluff-body wake flow, as an example of unbounded
flow. We show evidence of a discontinuous behaviour in the frequency inside the transient life of three-dimensional travelling perturbation waves.

To describe the travelling waves evolution we define Perturbation geometry scheme.
y is the shear direction. a and 3 are the streamwise (x)
and spanwise (z) wavenumbers, respectively.
Perturbations propagate in the direction of the polar
wavenumber.

| ¢ is the angle of obliquity with respect to the basic flow
the wrapped phase the angular frequency U=U(y).

the kinetic energy density the amplification factor
e(t)=[(Jul*+|vI*+w[*) dy

(Yo,t)=dB(y=yo,t)/dt Boundary conditions:
| | '\ Z (u,vw) - 0asy — =+ coand at walls.

Plane Poiseuille Flow

a) Base flow velocity profiles, U(y) (green curves) and symmetric and antisymmetric
initial conditions of the perturbation transversal velocity.
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The discontinuity, never observed before, appears after many eddy turn over times have elapsed and last about the 50% of the global transient length.

The investigation of the dispersion relation in the asymptotic regime reveals that longitudinal long waves and all the perturbations not aligned with the base
flow present a dispersive behavior, while only longitudinal short waves are non-dispersive.
Moreover the frequency is proportional to the cosine of the obliquity angle. As a result, , always stable in the long-term,

. Since any of these waves arriving in the system will have a zero phase velocity and since during the early transient orthogonal waves can pre-
sent intense algebraic growth, the system in this condition faces a situation where, in principle, instability can be incentivated.
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