
We present recent findings concerning the frequency in the transient evolution of three-dimensional perturbations in sheared flows.  
We adopt the initial-value problem formulation, proposed by Criminale and Drazin [1], that was recently used to carry out exploratory studies on the pertur-
bation transient dynamics [2,3]. 
We consider two typical shear flows: the plane Poiseuille flow, as the archetype of wall flows, and the bluff-body wake flow, as an example of unbounded 
flow. We show evidence of a discontinuous behaviour in the frequency inside the transient life of three-dimensional travelling perturbation waves.  
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Perturbation geometry scheme.  
y is the shear direction. α and β are the streamwise (x) 
and spanwise (z) wavenumbers, respectively.  
Perturbations propagate in the direction of the polar 
wavenumber.  
φ is the angle of obliquity with respect to the basic flow 
U=U(y). 
 

Boundary conditions:  
(u,v,w) → 0 as y →   ± ∞ and at walls. 
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a) Base flow velocity profiles, U(y) (green curves) and symmetric and antisymmetric 
initial conditions of the perturbation transversal velocity.  
 
b-c) transient lives of the perturbations observed through the amplification factor, G 
(b panels) and the angular frequency, w (c panels). The angular frequency  is com-
puted at a distance from the wall equal to 0.25 the channel width and at a distance 
equal to one body length from the centre of the wake flow. 
The quantity Tf  in panel c indicates the temporal periodicity related to the frequency 
fluctuations observed in the early and intermediate dynamics. 
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(a) Frequency temporal evolu-
tion: wt is the value in the 
early transient while wa is the 
asymptotic one.  
 
 
(b) Perturbation transversal 
velocity (real and imaginary 
parts). Temporal periods  
(Tt : transient value, Ta : as-
ymptotic value).  
 
(c) Wrapped wave phase,  
θw(t).  

(a)-(b) Asymptotic frequency, ω, and 
phase speed amplitude, |C|=|ω/k|, 
as fuctions of the angle of obliquity, 
ϕ, for different perturbation wave-
lengths.  
(c)-(d) Asymptotic spectral distribu-
tion of the phase velocity amplitude, 
|C|, for three angles of obliquity (ϕ = 

The discontinuity, never observed before, appears after many eddy turn over times have elapsed and last about the 50% of the global transient length. We 
interpret this phenomenon as the signature of both the end of the early transient, the part of the evolution must affected by the initial condition, and the be-
ginning of the intermediate term, where the accomplishment of the final values of the wave characteristics take place in accordance with the modal theory.  
 
 

The investigation of the dispersion relation in the asymptotic regime reveals that longitudinal long waves and all the perturbations not aligned with the base 
flow present a dispersive behavior, while only longitudinal short waves are non-dispersive. 
Moreover the frequency is proportional to the cosine of the obliquity angle. As a result, purely orthogonal waves, always stable in the long-term, are stand-
ing waves. Since any of these waves arriving in the system will have a zero phase velocity and since during the early transient orthogonal waves can pre-
sent intense algebraic growth, the system in this condition faces a situation where, in principle, instability can be incentivated. 

 the wrapped phase          the angular frequency 
 

   θw(y,t)=arg(v(y,t))                       (y0,t)=dθ(y=y0,t)/dt   

To describe the travelling waves evolution we define 
 
 

the kinetic energy density        the amplification factor   
    

 e(t)=∫(|u|2+|v|2+|w|2) dy                G(t)=e(t)/e(0)   

c) 


