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Physical problem 

 Flow behind a circular cylinder          steady, incompressible and        
viscous; 

 Approximation of 2D asymptotic Navier-Stokes expansions (Belan & 
Tordella, 2003)             parametric in x   
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Formulation 

 Linear, three-dimensional perturbative equations in terms of 
vorticity: 

disturbance velocity 

disturbance vorticity 

 Moving coordinate transform ξ = x – U0t (Criminale & Drazin, 
1990), U0=Uy 
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 Fourier transform in ξ and z directions:  

αr = k cos(Φ) wavenumber in x-direction      γ = k sin(Φ) wavenumber in z-direction  

Φ = tan-1(γ/αr) angle of obliquity                 k = (αr
2 + γ2)1/2  polar wavenumber 
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 Initial disturbances periodic and bounded in the free stream: 
 
                                                                                                  asymmetric 
                                  or 
                                                                                                  symmetric 
 
Velocity field bounded in the free stream          perturbation 
kinetic energy is finite. 
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 Total kinetic energy E and kinetic energy density e of the 
perturbation 
 

Early transient and asymptotic 
behaviour 

The growth function G  
 
 
 
 
measures the growth of the perturbation energy at time t. 
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 The temporal growth rate r (Lasseigne et al., 1999) is 

perturbation phase 

 The angular frequency f  (Whitham, 1974) is 
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 Asymptotic behaviour         the temporal growth rate r  asymptotes 
to a constant value (dr/dt < ε ~ 10-4). 
 

               Comparison with normal mode theory 
 



(a): R=50, y0=0, k=0.9, αi=-0.15, 
Φ=0, x0=14, asymmetric initial 
condition, β0=1, 3, 5, 7. 

Results 

(b): R=100, y0=0, k=1.2,  
αi=0.1, β0=1, x0=10.15, 
symmetric initial condition,  
Φ=0, π/8, π/4, (3/8)π, π/2.  
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(d): R=100, y0=0, αi =0.01, 
β0=1, Φ=π/2, x0=7.40, 
symmetric initial condition, 
k=0.5, 1, 1.5, 2, 2.5. 

(c): R=50, y0=0, k=0.3, β0=1, 
Φ=0, x0=5.20, symmetric 
initial condition,  
αi =-0.1, 0, 0.1. 



β0=1, Φ=0, y0=0. Present results (triangles: symmetric perturbation, circles: 
asymmetric perturbation) and normal mode analysis by Tordella, Scarsoglio and 
Belan, 2006 (solid lines).  Complex 

wavenumber a 

Real 
wavenumber a 
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where 
                                                                                 

and 

(a): R=100, y0=0, x0=9, k=1.7, 
αi =0.05, β0=1, symmetric 
initial condition, Φ=π/8.  

(b): R=100, y0=0, x0=11, k=0.6, 
αi=-0.02, β0=1, asymmetric initial 
condition, Φ=π/4. r=0.0826 

r=0.0038 
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Conclusions 

R=100, y0=0, x0=9, k=1.7, αi =0.05, β0=1, 
symmetric initial condition, Φ=(3/8)π.  

 
 Transients can last up to hundred time scales; 

 
 Complex wavenumber in x-direction; 

 
 Different transient configurations; 

 
 Asymptotically good agreement with normal 

mode theory. 

r=-0.0168 

ETC11_damped.wmv

