11th European Turbulence Conference

Temporal dynamics of small perturbations for a two-dimensional growing wake

S. Scarsoglio[#], D.Tordella[#] and W. O. Criminale^{*}

- # Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, Torino, Italy
- * Department of Applied Mathematics, University of Washington, Seattle, Washington, Usa

Porto, Portugal June 25-28, 2007

Physical problem

Flow behind a circular cylinder steady, incompressible and viscous;

Approximation of 2D asymptotic Navier-Stokes expansions (Belan & Tordella, 2003) parametric in x

Formulation

 Linear, three-dimensional perturbative equations in terms of vorticity:

$$\nabla^{2}\tilde{v} = \tilde{\Gamma}$$

$$\left(\frac{\partial}{\partial t} + U\frac{\partial}{\partial x}\right)\tilde{\Gamma} - \frac{d^{2}U}{dy^{2}}\frac{\partial\tilde{v}}{\partial x} = \frac{1}{R}\nabla^{2}\tilde{\Gamma}$$

$$\left(\frac{\partial}{\partial t} + U\frac{\partial}{\partial x}\right)\tilde{\omega}_{y} + \frac{dU}{dy}\frac{\partial\tilde{v}}{\partial z} = \frac{1}{R}\nabla^{2}\tilde{\omega}_{y}$$

$$\tilde{\Gamma} = \frac{\partial\tilde{\omega}_{z}}{\partial x} - \frac{\partial\tilde{\omega}_{x}}{\partial z}$$

disturbance velocity $(\tilde{u}(t, x, y, z), \tilde{v}(t, x, y, z), \tilde{w}(t, x, y, z))$ disturbance vorticity $(\tilde{\omega}_x(t, x, y, z), \tilde{\omega}_y(t, x, y, z), \tilde{\omega}_z(t, x, y, z))$ • Moving coordinate transform $\xi = x - U_o t$ (Criminale & Drazin,

1990), $U_0 = U_{v \to \infty}$

3

• Fourier transform in ξ and z directions: $\hat{g}(y,t;\alpha,\gamma) = \int \int_{-\infty}^{+\infty} \tilde{g} e^{i\alpha\xi + i\gamma z} d\xi dz$

 $\alpha_r = k \cos(\Phi)$ wavenumber in *x*-direction $\Phi = tan^{-1}(\gamma/\alpha_r)$ angle of obliquity

 $\gamma = k \sin(\Phi)$ wavenumber in *z*-direction $k = (\alpha_r^2 + \gamma^2)^{1/2}$ polar wavenumber

Initial disturbances periodic and bounded in the free stream:

 $\hat{\omega}_{y}(y,t=0) = 0 \begin{cases} \hat{v}(y,t=0) = e^{-(y-y_0)^2} \sin(\beta_0(y-y_0)) & \text{asymmetric} \\ \text{or} \\ \hat{v}(y,t=0) = e^{-(y-y_0)^2} \cos(\beta_0(y-y_0)) & \text{symmetric} \end{cases}$

•Velocity field bounded in the free stream perturbation kinetic energy is finite.

Early transient and asymptotic behaviour

Total kinetic energy *E* and kinetic energy density *e* of the perturbation

$$E(t) = \int_x \int_y \int_z \frac{1}{2} (\tilde{u}^2 + \tilde{v}^2 + \tilde{w}^2) dx dy dz$$

$$e(t;\alpha,\gamma) = k^2 E(t) = \frac{1}{2} \int_y \left(\left| \frac{\partial \hat{v}}{\partial y} \right|^2 + k^2 |\hat{v}|^2 + |\hat{\omega}_y|^2 \right) dy$$

•The growth function *G*

$$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

measures the growth of the perturbation energy at time t.

• The temporal growth rate *r* (Lasseigne et al., 1999) is

$$r(t; \alpha, \gamma) = \frac{\log|e(t; \alpha, \gamma)|}{2t}$$

• The angular frequency f (Whitham, 1974) is

$$f(t; \alpha, \gamma) = \frac{d\varphi(t; \alpha, \gamma)}{dt}$$

 $arphi\,$ perturbation phase

• Asymptotic behaviour \longrightarrow the temporal growth rate r asymptotes to a constant value ($dr/dt < \varepsilon \sim 10^{-4}$).

Comparison with normal mode theory

Results

(b): R=100, $y_0=0$, k=1.2, $\alpha_i=0.1$, $\beta_0=1$, $x_0=10.15$, symmetric initial condition, $\Phi=0$, $\pi/8$, $\pi/4$, $(3/8)\pi$, $\pi/2$. (a): R=50, $y_0=0$, k=0.9, $\alpha_i=-0.15$, $\Phi=0$, $x_0=14$, asymmetric initial condition, $\beta_0=1$, 3, 5, 7.

(c): R=50, $y_0=0$, k=0.3, $\beta_0=1$, $\Phi=0$, $x_0=5.20$, symmetric initial condition, $\alpha_i = -0.1$, 0, 0.1.

(d): R=100, $y_0=0$, $\alpha_i=0.01$, $\beta_0=1$, $\Phi=\pi/2$, $x_0=7.40$, symmetric initial condition, k=0.5, 1, 1.5, 2, 2.5.

(a): R=100, $y_0=0$, $x_0=9$, k=1.7, $\alpha_i = 0.05$, $\beta_0=1$, symmetric initial condition, $\Phi=\pi/8$.

(b): R=100, $y_0=0$, $x_0=11$, k=0.6, $\alpha_i=-0.02$, $\beta_0=1$, asymmetric initial condition, $\Phi=\pi/4$.

 $egin{aligned} ar{u}(x,y,z,t;lpha,\gamma)\ ar{v}(x,y,z,t;lpha,\gamma)\ ar{v}(x,y,z,t;lpha,\gamma)\ ar{w}(x,y,z,t;lpha,\gamma) \end{aligned}$

$$\hat{u} = \frac{\alpha D \hat{v} - \gamma \hat{\omega}_y}{i(\alpha^2 + \gamma^2)} \quad \hat{w} = \frac{\gamma D \hat{v} + \alpha \hat{\omega}_y}{i(\alpha^2 + \gamma^2)}$$

where $\bar{g}(x, y, z, t; \alpha, \gamma) = \frac{1}{2} (\hat{g} e^{-i\alpha x - i\gamma z} + \hat{g}^* e^{i\alpha^* x + i\gamma^* z})$ and $\tilde{g}(x, y, z, t) = \int_{\alpha} \int_{\gamma} \bar{g}(x, y, z, t; \alpha, \gamma) d\alpha d\gamma.$

Conclusions

R=100, $y_0=0$, $x_0=9$, k=1.7, $\alpha_i=0.05$, $\beta_0=1$, symmetric initial condition, $\Phi=(3/8)\pi$.