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Energy spectrum in fully developed turbulence

• Phenomenology of turbulence Kolmogorov 1941:
−5/3 power-law for the energy spectrum over the inertial range;

• Common criterium for the production of a fully developed turbu-
lent field to verify such a scaling (e.g. Frisch, 1995; Sreenivasan
& Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

(left) Evangelinos & Karniadakis, JFM 1999. (right) Champagne, JFM 1978.
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Energy spectrum and linear stability analysis

• We study the state that precedes the onset of instability and tran-
sition to turbulence:

• To understand how spectral representation can effectively
highlight the nonlinear interaction among different scales;

• To quantify the degree of generality on the value of the energy
decay exponent of the inertial range;

• Different typical perturbed shear systems: plane Poiseuille flow
and bluff-body wake.

• The set of small 3D perturbations:
• Constitutes a system of multiple spatial and temporal scales;
• Includes all the processes of the perturbative Navier-Stokes equa-

tions;
• Leaves aside the nonlinear interaction among the different scales;

• The perturbative evolution is ruled by the initial-value problem
associated to the Navier-Stokes linearized formulation.
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Spectral analysis through initial-value problem

• The linear transient dynamics offers a great variety of very differ-
ent behaviors (Scarsoglio et al., 2009, 2010, 2011):

⇒ Understand how the energy spectrum behaves;

• Is the linearized perturbative system able to show a power-
law scaling for the energy spectrum in an analogous way to
the Kolmogorov argument?

• We determine the energy decay exponent of arbitrary pertur-
bations in their asymptotic states and we compare it with the
-5/3 Kolmogorov decay.
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Perturbation scheme

• Linear 3D perturbative equations in terms of velocity and vorticity
(Criminale & Drazin, Stud. Appl. Math., 1990);

• Laplace-Fourier (wake) and Fourier-Fourier (channel) transform
in the x and z directions.
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Perturbative equations

• Perturbative linearized system:

∂2v̂

∂y2
− k2v̂ = Γ̂

∂Γ̂

∂t
= iα

(
d2U

dy2
v̂ − U Γ̂

)
+

1

Re

(
∂2Γ̂

∂y2
− k2Γ̂

)
∂ω̂y

∂t
= −iαUω̂y − iγ

dU

dy
v̂ +

1

Re

(
∂2ω̂y

∂y2
− k2ω̂y

)
The transversal velocity and vorticity components are v̂ and ω̂y

respectively, Γ̂ is defined as Γ̃ = ∂xω̃z − ∂zω̃x.

• Initial conditions: symmetric and asymmetric inputs;

• Boundary conditions: (û, v̂, ŵ)→ 0 as y → ±∞ and at walls.
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Perturbative equations
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• Boundary conditions: (û, v̂, ŵ)→ 0 as y → ±∞ and at walls.

S. Scarsoglio, F. De Santi, D. Tordella Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?



Does the
Kolmogorov

scaling bridge
hydrodynamic
linear stability

and turbulence?

S. Scarsoglio,
F. De Santi,
D. Tordella

Introduction

Motivation and
general aspects

Initial-value
problem

Mathematical
framework

Measure of the
growth

Linear transient
dynamics

Results

Perturbative
system features

Spectral
distributions

Conclusions

Conclusions

Perturbation energy

• Kinetic energy density e:

e(t;α, γ) =
1

2

∫ +yd

−yd

(|û|2 + |v̂|2 + |ŵ|2)dy

• Amplification factor G:

G(t;α, γ) =
e(t;α, γ)

e(t = 0;α, γ)

• Temporal growth rate r:

r(t;α, γ) =
log[e(t;α, γ)]

2t

• Angular frequency (pulsation) ω:

ω(t; y = y0, α, γ) =
dϕ(t; y = y0, α, γ)

dt
, ϕ time phase
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Spectral representation

• The energy spectrum is evaluated as the wavenumber distribution
of the amplification factor, G(k);

• The spectral representation is determined by comparing the
energy of the waves when they are exiting their transient
state;

• Every perturbation has a characteristic transient exit time, Te;

• The asymptotic condition is reached when the perturbative wave
exceeds the transient exit time, Te, that is when r ∼ const is
satisfied for stable and unstable waves.

Scarsoglio, De Santi & Tordella, submitted to Phys. Rev. Lett., 2011.
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Energy G(k) at the asymptotic state (r ∼const)
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Transient exit time Te(k)
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Concluding remarks

• Spectrum determined by evaluating the energy of the waves when
they are exiting their transient state;

• Regardless the symmetry and obliquity of perturbations, there ex-
ists an intermediate range of wavenumbers in the spectrum
where the energy decays with the same exponent observed
for fully developed turbulent flows (−5/3), where the nonlinear
interaction is considered dominant;

• Scale-invariance of G and Te at different (stable and unstable)
Reynolds numbers and for different shear flows;

• The −5/3 spectral power-law scaling of inertial waves seems
to be a general and intrinsic dynamical property of the NS
solutions encompassing the nonlinear interaction.
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Coming next...

• Analysis of the perturbation transient dynamics in the 2D
and 3D boundary layer (W. O. Criminale, University of Wash-
ington);

• Analytical integration of the kinetic energy equation based
on the perturbed velocity and vorticity field (G. Staffilani,
MIT)
⇒ Study of the intermediate and long term asymptotics.
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