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e Phenomenology of turbulence Kolmogorov 1941:
—5/3 power-law for the energy spectrum over the inertial range;

e Common criterium for the production of a fully developed turbu-
lent field to verify such a scaling (e.g. Frisch, 1995; Sreenivasan
& Antonia, ARFM, 1997, Kraichnan, Phys. Fluids, 1967).
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(left) Evangelinos & Karniadakis, JFM 1999. (right) Champagne, JFM 1978.
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Motivation and
general aspects

We study the state that precedes the onset of instability and tran-
sition to turbulence:

e To understand how spectral representation can effectively
highlight the nonlinear interaction among different scales;

e To quantify the degree of generality on the value of the energy
decay exponent of the inertial range;

Different typical perturbed shear systems: plane Poiseuille flow
and bluff-body wake.
The set of small 3D perturbations:

o Constitutes a system of multiple spatial and temporal scales;

e Includes all the processes of the perturbative Navier-Stokes equa-

tions;

e Leaves aside the nonlinear interaction among the different scales;
The perturbative evolution is ruled by the initial-value problem
associated to the Navier-Stokes linearized formulation.
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e The linear transient dynamics offers a great variety of very differ-
ent behaviors (Scarsoglio et al., 2009, 2010, 2011):
= Understand how the energy spectrum behaves;

Motivation and

general aspects o Is the linearized perturbative system able to show a power-
law scaling for the energy spectrum in an analogous way to
the Kolmogorov argument?

e We determine the energy decay exponent of arbitrary pertur-
bations in their asymptotic states and we compare it with the
-5/3 Kolmogorov decay.
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o Linear 3D perturbative equations in terms of velocity and vorticity
(Criminale & Drazin, Stud. Appl. Math., 1990);

e Laplace-Fourier (wake) and Fourier-Fourier (channel) transform
in the  and z directions.

- Wake
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The transversal velocity and vorticity components are ¢ and @,
respectively, I" is defined as I = 0,w, — 0,W,.

e |nitial conditions: symmetric and asymmetric inputs;

e Boundary conditions: (i, 9,1w) — 0 as y — +oo and at walls.
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e |nitial conditions: symmetric and asymmetric inputs;

e Boundary conditions: (i, 9,1w) — 0 as y — +oo and at walls.
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Measure of the
growth

Kinetic energy density e:

1 +Yd o o 12
elbay) = 3 (l1a]” + [2]° + [@]")dy
—Yd
o Amplification factor G:
e(t;o,7)
G(t; =

Temporal growth rate r:

logle(t; o, )]

r(t;a,y) = o1

Angular frequency (pulsation) w:

do(t;y = yo, o, )
dt ’

w(t;y = yo,a,7) = ¢ time phase



Linear transient
dynamics

1000 t

=2
k=1.5

k=1 Channel flow

Re=10000
Sym ic, ¢=1v2

3000 4000

e f’

-
——

Re=10000 y,=0.5

o v @ e

-~

—Sym ¢=0
Asym ¢=0

-=-Sym @=114
Asym @=174

| e e e e e e e i By e

=
o

t 20 30

Wake flow Asym ic ¢=0
Re=100 x;= 50

0.45< k< 50

“Channel flow k=15 | 0.8 H"“‘" T

0 500 t 1000 1500
w P
—Sym ¢=0 Wake flow
0.3/ —Asym¢=0 = Re=100 _|
---Sym ¢=114 XO=50 k=0.7
Asym =4 Yp=1
0 500 t 1000 1500



e The energy spectrum is evaluated as the wavenumber distribution
of the amplification factor, G(k);

Perturbative
system features




e The energy spectrum is evaluated as the wavenumber distribution
of the amplification factor, G(k);

e The spectral representation is determined by comparing the
energy of the waves when they are exiting their transient
state;

Perturbative

system features



e The energy spectrum is evaluated as the wavenumber distribution
of the amplification factor, G(k);

e The spectral representation is determined by comparing the
energy of the waves when they are exiting their transient
state;

o Every perturbation has a characteristic transient exit time, T¢;

Perturbative
system features



The energy spectrum is evaluated as the wavenumber distribution
of the amplification factor, G(k);

e The spectral representation is determined by comparing the
energy of the waves when they are exiting their transient
state;

o Every perturbation has a characteristic transient exit time, T¢;

e The asymptotic condition is reached when the perturbative wave
exceeds the transient exit time, 7., that is when r ~ const is
satisfied for stable and unstable waves.

Perturbative
system features

Scarsoglio, De Santi & Tordella, submitted to Phys. Rev. Lett., 2011.
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Conclusions

Spectrum determined by evaluating the energy of the waves when
they are exiting their transient state;

Regardless the symmetry and obliquity of perturbations, there ex-
ists an intermediate range of wavenumbers in the spectrum
where the energy decays with the same exponent observed
for fully developed turbulent flows (—5/3), where the nonlinear
interaction is considered dominant;

Scale-invariance of G and T, at different (stable and unstable)
Reynolds numbers and for different shear flows;

The —5/3 spectral power-law scaling of inertial waves seems
to be a general and intrinsic dynamical property of the NS
solutions encompassing the nonlinear interaction.
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e Analysis of the perturbation transient dynamics in the 2D
and 3D boundary layer (W. O. Criminale, University of Wash-
ington);

¢ Analytical integration of the kinetic energy equation based
on the perturbed velocity and vorticity field (G. Staffilani,
MIT)

= Study of the intermediate and long term asymptotics.

Conclusions
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